Технология глубокой переработки нефти

2 Технология переработки нефти Цель программы: Повышение уровня квалификации персонала в области технологии глубокой переработки нефти на нефтеперерабатывающих заводах Задачи курса: 1. Усвоение теоретических основ процессов физического разделения нефти и газа. 2. Усвоение принципов работы основных аппаратов и технологических установок переработки нефти и переработки попутного нефтяного газа. 3. Овладение методами технологического расчёта процессов переработки нефти.

3 Технология переработки нефти Структура УМК УМК Лекционные занятия Лабораторные занятия Стажировка Модуль 1 Модуль 2 Модуль 3 Модуль 4 Модуль 5 На территории РФ

4 Технология переработки нефти Наименование модуля Состав лекционного курсаСостав лабораторного практикума Модуль 1: Теоретические основы процессов первичной переработки нефти Направления переработки нефти на нефтеперерабатывающих заводах. Топливное неглубокое, топливное глубокое, топливно-масляное, нефтехимическое или комплексное направления. Классификация технологических процессов переработки нефти и газа. Сущность процесса перегонки или дистилляции. Определение фракционного состава нефти разгонкой в стандартных аппаратах. Изучение процесса ректификации на примере ректификации бинарных смесей. Модуль 2: Процессы первичной переработки нефти Понятие нефтяной фракции. Фракционный состав нефти. Ассортимент и характеристика основных фракций, получаемых при перегонке нефти и мазута. Основы процесса перегонки нефти в ректификационных колоннах. Основные параметры, влияющие на чёткость погоноразделения, флегмовое число. Понятие о теоретической тарелке колонны. КПД тарелки. Минимальное, оптимальное и рабочее число тарелок. Особенности перегонки нефти и мазута. Давление и температура в колоннах перегонки нефти и мазута. Атмосферные колонны, вакуумные колонны и колонны, работающие под давлением. Взаимосвязь давления и температуры в колонне. Способы отвода тепла с верха колонны (способы создания орошения). Способы подвода тепла в низ колонны. Обессоливание и обезвоживание нефти на установках ЭЛОУ. Влияние основных параметров на процесс. Одно – и двухступенчатые схемы ЭЛОУ. Технологическая схема двухступенчатой установки ЭЛОУ. Промышленные установки первичной перегонки нефти. Классификация установок. Установки атмосферной перегонки нефти АТ. Назначение, получаемые фракции. Определение содержания воды в составе нефти.

5 Технология переработки нефти Наименование модуля Состав лекционного курса Состав лабораторного практикума Модуль 3: Термические процессы переработки нефтяного сырья Термический крекинг дистиллятного сырья. Сырьё и целевые продукты процесса. Параметры процесса. Технологическая схема установки термического крекинга дистиллятного сырья. Висбрекинг тяжёлого сырья. Назначение процесса, сырьё, продукты, параметры. Технологическая схема установки висбрекинга гудрона. Пиролиз нефтяного сырья. Назначение процесса, сырьё, продукты. Влияние основных технологических параметров на выход олефинов. Принципиальная технологическая схема установки пиролиза бензина. Производство окисленных битумов. Механизм процесса. Основные параметры процесса. Технологическая схема установки получения окисленного битума Анализ нефтяных битумов (пенетрация). Определение низкотемпературных свойств нефтепродуктов. Модуль 4: Каталитические процессы переработки нефти (облагораживающие процессы) Гомогенный и гетерогенный катализ. – Гомолитический, гетеролитический и бифункциональный катализ. Активность, стабильность и дезактивация катализатора. Физическая и химическая дезактивация. – Обратимая и необратимая дезактивация. Модификаторы катализатора. Каталитический крекинг. Назначение процесса, сырьё, продукты. Требования к сырью. Состав катализаторов каталитического крекинга. Матрица, активный компонент, добавки, их функции. Структурная единица цеолита. Механизм и химизм каталитического крекинга. Определение содержания ароматических углеводородов в нефтепродуктах методом анилиновых точек. Содержание серы и сернистых соединений в нефтях и нефтепродуктах.

6 Технология переработки нефти Наименование модуля Состав лекционного курса Состав лабораторного практикума Модуль 5: Процессы глубокой переработки нефти Технология каталитического крекинга. Типы реакторов. Регенерация катализатора. Влияние параметров процесса на выход и качество продуктов. Технологическая схема установки каталитического крекинга. Теоретические основы и технология каталитических гидрогенизационных процессов облагораживания нефтяного сырья (гидроочистка). Химизм, термодинамика и кинетика реакций гидрогенолиза гетероорганических соединений сырья. Катализаторы гидроочистки и механизм их действия. Технологическая схема установки гидроочистки дизельного топлива. Каталитические процессы гидрокрекинга нефтяного сырья. Назначение процесса. Виды промышленных процессов гидрокрекинга. Состав катализаторов гидрокрекинга. Технологическая схема установки гидрокрекинга вакуумного газойля оС Температура вспышки нефтепродуктов в закрытом тигле. Температура вспышки нефтепродуктов в открытом тигле. Определение давления насыщенных паров нефтепродуктов.

Http://www. myshared. ru/slide/381767/

Просмотров: 6035 Комментариев: 4 Оценило: 2 человек Средний балл: 3 Оценка: неизвестно Скачать

Нефть представляет собой подвижную маслянистую горючую жидкость легче воды от светло-коричневого до черного цвета со специфическим запахом.

С позиций химии нефть – сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах «среднестатистической» нефти. Менее всего колеблется элементный состав нефтей: 82,5-87% углерода; 11,5-14,5% водорода; 0,05 – 0,35, редко до 0,7% кислорода; до 1,8% азота и до 5,3, редко до 10% серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. ч. металлы (Са, Mg, Fe, Al, Si, V, Ni, Na и др.).

Поскольку нефть и нефтепродукты представляют собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности, температурой кипения при данном давлении. Принято разделять нефти и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты принято называть фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постепенно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения (н. к.) и конца кипения (к. к.). При исследовании качества новых нефтей (т. е. составлении технического паспорта нефти) фракционный состав их определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками (например, на АРН-2 по ГОСТ 11011-85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура – выход фракций в % масс, (или % об.). Отбор фракций до 200°С прово-дится при атмосферном давлении, а более высококипящих – под вакуумом во избежание термического разложения. По принятой методике от начала кипения до 300°С отбирают 10-градусные, а затем 50-градусные фракции до температуры к. к. 475 – 550°С. Таким образом, фракционный состав нефтей (кривая ИТК) показывает потенциальное содержание в них отдельных нефтяных фракций, являющихся основой для получения товарных нефтепродуктов (автобензинов, реактивных и дизельных топлив, смазочных масел и др.). Для всех этих нефтепродуктов соответствующими ГОСТами нормируется определенный фракционный состав. Нефти различных месторождений значительно различаются по фракционному составу, а следовательно, по потенциальному содержанию дистиллятов моторных топлив и смазочных масел. Большинство нефтей содержит 15 -25% бензиновых фракций, выкипающих до 180°С, 45 – 55% фракций, перегоняющихся до 300 – 350°С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350°С). Так, самотлорская нефть содержит 58% светлых, а в нефти месторождения Серия (Индонезия) их содержание достигает 77%. Газовые конденсаты Оренбургского и Карачаганакского месторождений почти полностью (85 – 90%) состоят из светлых. Добываются также очень тяжелые нефти, в основном состоящие из высококипящих фракциий. Например, в нефти Ярегского месторождения (Республика Коми), добываемой шахтным способом, отсутствуют фракции, выкипающие до 180°С, а выход светлых составляет всего 18,8%. Подробные данные о фракционном составе нефтей бывшего СССР имеются в четырехтомном справочнике «Нефти СССР».

Эти углеводороды составляют основную часть нефти. Обычно содержание алканов в нефтях колеблется от 20 до 50%. Некоторые нефти, (называемые слабопарафинистые или беспарафинистые, содержат не более 1-2% этих углеводородов, другие могут содержать до 80% этих углеводородов, и они носят название парафинистых нефтей.

Моноциклические нафтены представлены в нефтях в основном производными циклопентана и циклогексана. Производные низших циклов в нефтях не найдены; в небольших количествах в некоторых нефтях найдены производные высших циклоалканов. Кроме моноциклических нафтенов, нефти содержат бициклические, три циклические и полициклические углеводороды. Обычно содержание нафтенов в различных нефтях составляет 30-50%. Однако в некоторых нефтях (слабопарафинистые и беспарафинистые) может быть до 80% нафтенов.

Этот тип углеводородов слабо представлен в нефтях. Обычно нефти содержат 15-20% аренов. В некоторых нефтях их содержание может достигать 35%. Кроме ароматических углеводородов ряда бензола, в нефтях содержатся производные полициклических аренов. Отдельную группу составляют углеводороды смешанного строения. Молекулы таких углеводородов содержат ароматические и нафтеновые кольца и парафиновые цепи.

Эти соединения представлены в основном фенолами, жирными’ кислотами и нафтеновыми кислотами. Кислоты содержатся главным образом в средних нефтяных погонах в количестве 1—2%. Азотистые соединения

Эти вещества представлены в нефтях в основном гетероциклическими соединениями.

В нефтях содержатся меркаптаны, сульфиды, дисульфиды, гетероциклические сернистые соединения

Эти вещества по своей природе представляют собой многокольчатые соединения, содержащие нафтеновые, ароматические циклы и гетероциклы с атомами кислорода, азота и серы. Содержание этих соединений в нефтях может изменяться от нескольких процентов до 10—40% (в случае смолистых нефтей).

К этим веществам относится иода до (4%) и различные минеральные соли, которые находятся в растворенном в воде состоянии. В нефтях также содержатся соли различных металлов и органических кислот, называемых нефтяными, металлы, входящие в состав некоторых комплексных соединений, а также сера и сероводород.

Кроме перечисленных, в нефтях найдены вещества, которые, как доказано в настоящее время, образовались из продуктов животного и растительного происхождения. Эти вещества получили название «биологических меток» или «биомаркеров», так как указывают на связь нефти с живой природой. К «биологическим меткам» относятся, например, следующие группы веществ.

В высококипящих фракциях нефти, имеющих температуру кипения юрядка 450-500°С (300-320’С при 6—8 мм рт. ст.) содержатся веществa, присутствие которых в этих фракциях вызывает вращение плоскости и поляризации поляризованного луча света. Было установлено, что такие соединения относятся к полициклическим нафтеновым углеводородам (3—5 и более циклов в молекуле). Эти оптически активные соединения не могли образоваться путем превращения углеводородов нефти, так как при синтезе соединений с асимметрическим углеродным атомом всегда образуется рацемическая смесь, не обладающая оптической активностью. Поэтому предполагают, что оптически активные соединения перешли в нефть из органического вещества вымерших десятки и сотни миллионов лет назад живых организмов. Таким веществом может быть, например, содержащийся в живых организмах холестерин.

Холестерин вращает плоскость луча поляризованного света влево (против часовой стрелки). Интересно отметить, что продукты превращения холестерина являются правовращающими. Так, из нефтей выделен холестан — углеводород, структура которого соответствует структуре холестерина и который является правовращающим.

Оптическая активность органических соединений с точки зрения термодинамики является маловероятным состоянием, так как это состояние требует повышенной свободной энергии.

Процессы в природе стремятся к уменьшению свободной энергии. Однако для очень сложных оптически активных соединений процесс образования рацемической смеси с минимумом свободной энергии является крайне медленным процессом (хотя он протекает). Примером служит уменьшение оптической активности нефтей с увеличением их геологического возраста.

Это разветвленные алканы, молекулы которых содержат повторяющееся углеводородное звено, углеродный скелет которого соответствует структуре изопрена:

Установлено, что эти углеводороды могли образоваться из фитола — непредельного спирта изопреноидной структуры, являющегося составной частью хлорофилла.

Порфирины являются производными гетероциклического соединения пиррола. В виде комплексов с металлами они входят в состав гемина — красящего вещества крови и в состав хлорофилла. В нефтях найдены как свободные порфирины, так и комплексы порфиринов с металлами (ванадий, никель).

Химическая классификация нефтей строится в зависимости от преобладания в них углеводородов различных рядов. При химической классификации нефти иногда учитывается содержание гетероатомных соединений. Предложен ряд методов химической классификации нефтей. В 1967 г. А. Э. Конторович с сотрудниками предложили классификацию, которая строится в соответствии с групповым углеводородным составом фракции нефти, выкипающей при 250-300 С, т. е. содержанием в этой фракции аренов, нафтенов и алканов 1 . В зависимости от преобладания в этой фракции углеводородов одного ряда (выше 50%) нефти делятся на 3 основных типа:

Метановые — нефти грозненские парафинистые, сураханская, некоторые румынские нефти Западной Украины, Татарии, Самотлора, полуострова Мангышлак;

Нафтеновые — эмбенские, некоторые бакинские (нефть месторождения Грязевая Сопка), калифорнийские нефти США;

Ароматические — нефть месторождения Чусовские Городки, майкопская, нефти Зондских островов.

При содержании во фракции 250-300°С более 25% углеводородов других рядов нефти относят к смешанному типу: метано-нафтеновый, нафтено-метановый, ароматическо-нафтеновый и т. д. В этих названиях первым ставится название углеводородов с меньшим содержанием. Наиболее распространенными являются нефти метано-нафтеновые п нафтено-метановые. Ак. А. Петров подразделяет все нефти на 4 типа (А 1 , А 2 , Б 2 , Б 1 ) в зависимости от концентрации алканов, разветвленных алканов, нафтенов во фракции нефти 200-430°С. Нефти первых двух типов А 1 и А 2 характеризуются высокой концентрацией н-алканов и изопренанов; нефти типа Б 1 и Б 2 – высоким содержанием нафтенов. В пефтях типа А 1 содержание н-алканов выше, чем в нефтях типа А.

Кроме химической, имеется технологическая классификация нефти, в соответствии с которой нефти подразделяются на ряд классов в зависимости от таких характеристик, как содержание серы, содержание фракций, выкипающих до 350 – С, содержание масляных фракций, парафина и т. д.

Процессы первичной переработки нефти, к которым относятся прямая перегонка под атмосферным давлением (получение топливных дистиллятов и мазута) и под вакуумом (получение масляных дистиллятов, гудрона), основываются на законах физического разделения нефти на узкие фракции. Полученные при атмосферной перегонке светлые нефтепродукты при их дополнительной вторичной обработке с помощью каталитических процессов облагораживания (изомеризация, риформинг, гидроочистка) обеспечивают выработку различных моторных топлив — автомобильных бензинов, реактивных и дизельных топлив. Масляные дистилляты подвергаются различным процессам облагораживания по соответствующим поточным схемам НПЗ топливно-масляного профиля.

При сжигании остатков атмосферной перегонки, выкипающих выше 350-36(ГС, в виде котельных топлив, нефть перерабатывается по неглубокому варианту. Цены на остатки первичной переработки нефти на мировом рынке значительно ниже, чем на светлые нефтепродукты (автобензины, дизельные и реактивные топлива). Неглубокая переработка нефти становится экономически невыгодной для производителя и, год от года, эта тенденция будет прогрессировать, чему есть ряд причин. Во-первых, разведка, бурение скважин и добыча нефти в труднодоступных районах связаны с постоянным возрастанием материальных и трудовых затрат, а следовательно, и цен на нефть. В связи с этим, чтобы сделать переработку выгодной, надо из каждой тонны нефти получить больше ценных качественных продуктов — моторных топлив, сырья для нефтехимического синтеза (НХС), тем самым углубить переработку нефти, свести к минимуму выпуск низкосортных малоценных продуктов, каковыми являются высокосернистые остатки первичной перегонки нефти — мазуты, входящие в состав котельных топлив. Во-вторых, важно рационально использовать имеющиеся природные ресурсы, которые являются невосполнимыми. В связи с этим при имеющихся ресурсах необходима такая организация переработки нефти, при которой удовлетворение потребностей народного хозяйства происходит не за счет увеличения добычи нефти, а за счет более глубокой ее переработки.

Экономические расчеты показывают, что добыча и переработка каждой новой тонны нефти по неглубокому варианту в настоящее время обходится в три раза дороже, чем если бы то же количество нефтепродуктов было получено за счет внедрения процессов углубленной переработки нефти. Инвестиции в процессы, углубляющие переработку нефти, за счет выпуска более ценных и высококачественных продуктов и сокращения выработки высокосернистых остатков первичной переработки нефти окупаются в течение 3-5 лет.

В настоящее время в США, странах Западной Европы и Японии глубина переработки нефти достигает 86-95% .

В России и странах СНГ среднеотраслевой уровень глубины переработки нефти значительно ниже и составляет 60-65% из-за недостаточного объема вторичных процессов глубокой переработки нефти.

Глубокая переработка нефти обеспечивается переработкой тяжелых нефтяных фракций (вакуумных Газойлей ) и остатков первичной перегонки нефти.

Применение деструктивных процессов крекинга за счет расщепления молекул исходного тяжелого сырья при температурах 450-550 С позволяет резко повысить выработку светлых нефтепродуктов и газов разложения.

Широкое внедрение процессов термического, каталитического крекинга, а также гидрокрекинга тяжелых нефтяных фракций и остатков прямой перегонки нефти, т. е. их деструктивной, вторичной переработки, дает возможность значительно углубить переработку нефти и, следовательно, увеличить производство различных ценных нефтепродуктов, в первую очередь моторных топлив, не привлекая для этого дополнительные ресурсы нефти. В настоящее время на Киришском НПЗ создается комплекс, включающий комбинированную установку гидрокрекинга под высоким давлением водорода, а в последующие годы и установку каталитического крекинга, что позволит в ближайшем будущем повысить глубину переработки нефти с 47 до 70% и более и вывести предприятие по этому показателю на мировой уровень.

– термический крекинг нефтяных остатков при атмосферном давлении (коксование);

Эти процессы характеризуются высокими температурами — от 450 до 1200° С. Направленность их различна. Так, первая из названных разновидностей процесса — Термический крекинг под давлением — для относительно легких видов сырья (мазутов прямой перегонки, вакуумных газойлей) проводится под давлением от 2 до 4 МПа, температуре 450-51 ОС с целью производства газа и жидких продуктов (в частности бензиновых фракций). Этот процесс утратил свое значение благодаря развитию каталитического крекинга. В настоящее время термический крекинг сохранился для переработки тяжелых нефтяных остатков вакуумной перегонки и направлен преимущественно на получение котельного топлива за счет снижения вязкости исходного сырья. При этом также получается некоторое количество газа и бензиновых фракций. Остальные фракции сохраняются в составе остаточного продукта. Эта разновидность термического крекинга носит название "висбрекинг" и проводится в мягких условиях (температура 450-470’С, давление 2,0-2,5 МПа). Степень конверсии сырья при этом не глубокая.

Термический крекинг нефтяных остатков при давлении до 0,5 МПа и температуре 450-550 С (коксование) проводится в направлении концентрирования асфальто-смолистых веществ в твердом остатке — коксе — и одновременного получения при этом бензиновых и газойлевых фракций — продуктов более богатых водородом, чем исходное сырье.

Пиролиз — это наиболее жесткая форма термического крекинга, проводимого с целью получения газообразных непредельных углеводородов, в основном этилена и пропилена для нефтехимического синтеза. При этом в качестве побочных продуктов образуется некоторое количество ароматических углеводородов — бензола, толуола и более тяжелых. Пиролиз осуществляется при температуре 700-800"С и выше.

Поскольку пиролиз в нефтепереработке составляет незначительный удельный вес, в настоящей книге будут рассмотрены дваосновных направления термического крекинга: 1) термический крекинг под давлением и его разновидность — висбрекинг, и 2) процесс коксования нефтяных остатков.

Как уже было сказано, важную роль в схемах отечественных и зарубежных НПЗ играет процесс неглубокого термического креинга — висбрекинг. Суммарные мощности этих установок в транах Западной Европы оцениваются в 5,6%, в США (с традиционно высокой степенью глубины переработки нефти, где одним из основных процессов переработки остатков является замедленное коксование) — • -1% .

В настоящее время в России в стадии строительства, проектирования новых и расширения действующих находятся 12 установок общей мощностью 46,2 тыс. м 3 /сут при общем объеме переработки нефти 168 млн. т/год. Висбрекинг является одним из самых дешевых процессов переработки тяжелого сырья.

Требуемая степень превращения сырья может быть достигнута при проведении процесса по двум вариантам:

– высокая температура и малая продолжительность пребывания — висбрекинг в трубчатой печи;

– умеренная температура и большая продолжительность пребывания — висбрекинг с выносной необогреваемой камерой (так называемая сокинг-секция).

Повышение температуры или времени реакции ведет к увеличению жесткости процесса, что вызывает рост выхода газа и бензина и снижает вязкость крекинг-остатка. Жесткость процесса определяется временем пребывания сырья, приведенным к 420"С (время 1000 с при 420°С эквивалентно 300 с при 450"С).

В производственных условиях жесткость процесса висбрекинга и, следовательно, степень превращения ограничивается стабильностью (склонностью к осадкообразованию) крекинг-остатка и скоростью закоксовывания труб. Конверсия в процессе, направленном только на понижение вязкости, составляет 6-7% мае., при производстве максимального количества дистиллятных фракций — 8-12% мае. Следует отметить, что в последнем случае конверсия может достигать и даже превышать 20% при условии, если остаток висбрекинга находит специальное применение на конкретном НПЗ (в качестве сырья для производства вяжущих и агломерирующих агентов, нефтезаводского топлива, сырья коксования, для производства битумов и т. д.).

– производство остаточного топлива с одновременным снижением его вязкости и температуры застывания;

– производство максимального количества газойля — сырья для последующих процессов конверсии, например, для каталитического крекинга, гидрокрекинга, получения технического углерода.

Наиболее существенное влияние на результаты висбрекинга оказывают следующие факторы: характеристика сырья, температура процесса, продолжительность пребывания сырья в печи и реакционной камере, рабочее давление в печи.

В настоящее время каталитический крекинг является самым распространенным процессом глубокой переработки нефти. Основное назначение каталитического крекинга — переработка газойлевых фракций 350-560 С с целью получения бензиновых фракций с октановым числом не менее 76-78 по моторному методу, а также значительного количества дизельных фракций, которые хотя и уступают по качеству прямогонным дизельным фракциям, но могут являться одним из компонентов при приготовлении товарных дизельных топлив. При каталитическом крекинге образуется также значительное количество газов с большим содержанием бутан-бутиленовой фракции, на базе которой производится высокооктановый компонент товарных автобензинов — алкилбензин, или алкилаг. Таким образом, каталитический крекинг — это процесс, позволяющий при его реализации в схеме завода топливного профиля значительно снизить объемы остатков атмосферной перегонки и углубить переработку нефти.

В настоящее время самый высокий процент использования процессов каталитического крекинга характерен для нефтеперерабатывающей промышленности США и Канады. Так, уже по состоянию на начало 1988 г. каталитический крекинг в США составил около 33% по отношению к первичной переработке нефти, а доля всех процессов, направленных на углубление, включая коксование и гидрокрекинг, — более 46% .

Идея применения катализаторов для осуществления крекинга в более мягких температурных условиях, чем термический крекинг, появилась давно – в конце 19, начале 20-го века. Но широкое развитие этот процесс получил при использовании, вместо природных, синтетических алюмосиликатных и, особенно, цеолитсодержащих катализаторов.

Ниже приведены основные этапы развития каталитического крекинга в нефтеперерабатывающей отрасли.

Непрерывно циркулирующий в системах катализатор последовательно проходит через стадии: каталитического крекинга сырья, десорбции адсорбированных на катализаторе углеводородов, окислительной регенерации с целью выжига образовавшегося в результате крекинга кокса (восстановления активности) и возврата регенерированного катализатора в зону каталитического крекинга сырья.

В условиях каталитического крекинга нефтяных фракций термодинамически вероятно протекание значительного числа разнообразных реакций, среди которых определяющее влияние на результаты процесса оказывают реакции разрыва углеродной связи, перераспределение водорода, ароматизации, изомеризации, разрыва и перегруппировки углеводородных колец, конденсации, полимеризации и коксообразования.

Катализатор, применяемый в процессе каталитического крекинга, является одним из главных составляющих процесса, от которого зависит эффективность его проведения. На первых этапах развития процесса каталитического крекинга использовались природные глины. На смену им пришли синтетические аморфные алюмосиликаты, которые в настоящее время повсеместно заменяются на кристаллические алюмосиликаты или цеолитсодержащие катализаторы. Химический состав алюмосиликатного катализатора можно выразить формулой А12 О3 • 4Si02 • Н2 0 + пН2 О. Эти вещества обладают кислотными свойствами, и чем более проявляются эти свойства, тем активнее становится катализатор. Механизм реакций при каталитическом крекинге заключается в возникновении на поверхности катализатора при его контакте с сырьем промежуточных продуктов, так называемых карбоний-ионов, образующихся в результате взаимодействия кислотного центра с углеводородом.

Основным компонентом алюмосиликатных катализаторов является окись кремния, содержание активной окиси алюминия составляет 10-25%. От химического состава катализатора зависят его свойства. Так, в случае повышения содержания А12 03 увеличивается стабильность катализатора, т. е. его способность длительное время сохранять свою активность. Однако на его активность влияют и другие примеси: железо, ванадий, никель, медь,— которые способствуют реакциям дегидрирования, конденсации, усиленному образованию водорода и кокса.

Для катализатора решающее значение имеют его структура и поверхность. В связи с большой пористостью катализаторы обладают большой поверхностью — 150-400 м 2 /г. Активность внутри пористой поверхности зависит от диаметра пор. Если диаметр пор меньше среднего диаметра молекул сырья, то активная поверхность катализатора, образованная этими порами, будет использована не полностью для крекирования сырья. В то же время продукты разложения будут проникать в эти поры, дополнительно контактировать с активными центрами поверхности, разлагаться, образуя газ и кокс, уменьшая выход целевой продукции. Поэтому для каталитического крекинга применяются широкопористые катализаторы со средним радиусом пор от 50 до 100А. Современные катализаторы крекинга содержат в своем составе от 3 до 20% цеолита, равномерно распределенного в матрице, в качестве которой используются природные или синтетические алюмосиликаты. Преобладающей формой цеолитсодержащего катализатора являются микросферические шарики со средним диаметром частиц около 60 мкм — для установок с псевдоожиженным слоем и 3-4 мм — для установок с движущимся слоем катализатора.

Цеолиты, используемые в составе катализаторов, придают им высокую активность и селективность, способствуют повышению стабильности, особенно в условиях высокотемпературного воздействия пара и воздуха при регенерации, придают необходимые размеры входным окнам во внутренние полости, что способствует болee эффективному использованию всей пористой активной поверхности катализатора. При производстве цеолитсодержащих катализаторов таким требованиям отвечают цеолиты типа X и Y. Матрица, в качестве которой применяют синтетический аморфный алюмосиликат, природные глины с низкой пористостью и смесь синтетического аморфного алюмосиликата с глиной (полусинтетическая матрица), выполняет в цеолитсодержащих катализаторах ряд важных функций, а именно: обеспечивает стабилизирующее воздействие и оптимальный предел активности, так как цеолиты в чистом виде из-за их чрезмерной активности не могут использоваться на современных установках; создает оптимальную вторичную пористую структуру, необходимую для диффузии реагирующей смеси сырья к активному цеолитному центру и вывода продуктов реакции в газовую фазу в циклах крекинга и регенерации. Кроме того, в цикле регенерации матрица забирает часть тепла от цеолитного компонента, тем самым не допуская излишнего воздействия на него температуры. Наконец от матрицы зависит обеспечение заданной формы самого катализатора и его механические прочностные свойства.

На современных нефтеперерабатывающих заводах мира гидрокрекинг является главнейшей составляющей глубокой переработки нефти. Гидрокрекинг — процесс переработки различных нефтяных дистиллятов (реже остатков) под давлением водорода при умеренных температурах на бифункциональных катализаторах, обладающих гидрирующими и кислотными свойствами. Гидрирующие свойства катализатора позволяют получать без образования кокса продукты, во многом сходные с продуктами каталитического крекинга, но значительно менее ароматизированные, очищенные от серы и азота и не содержащие непредельных соединений.

Под воздействием давления водорода, температуры и катализатора в процессе гидрокрекинга протекают реакции гидрогенолиза гетероорганических соединений азота, серы и кислорода, гидрирования полиароматических структур, раскрытия нафтеновых колец, деалкилирования циклических структур, расщепления парафинов и алкильных цепей, изомеризации образующихся осколков, насыщения водородом разорванных связей. Превращения носят последовательно-параллельный характер и обуславливаются природой соединений, молекулярной массой, энергией разрываемых связей, каталитической активностью катализатора и условиями процесса.

– легкий гидрокрекинг под давлением водорода от 5 до 10 МПа, степень превращения 50-60%;

– глубокий гидрокрекинг под высоким давлением водорода от 10 до 20 МПа, степень конверсии 90% . Эта модификация процесса в последние десятилетия ХХ-го столетия получила широкое развитие. При конверсии сырья 90% и более обеспечивается высокий выход продуктов: бензиновой, керосиновой и дизельной фракций, практически свободных от серы и азота.

– большая гибкость, позволяющая вести процесс с разной степенью конверсии и направленностью с учетом сезонных колебаний спроса на бензин, реактивные и дизельные топлива;

– возможность использования широкого ассортимента сырья, порою трудно крекируемого в процессе каталитического крекинга;

– небольшое количество серо – и азотсодержащих соединений в продуктах процесса;

– высокая экологическая чистота процесса. К началу 1999 г. в мировой нефтеперерабатывающей промышленности на установках гидрокрекинга перерабатывалось 201 млн. т сырья, львиная доля этого объема (более 88,5%) приходилось на США. Страны Азиатско-Тихоокеанского региона перерабатывали 36,7 млн. т/год, Западной Европы —33,9 млн. т/год, Ближнего и Среднего Востока — 28,2 млн. т и только на Восточную Европу и страны СНГ приходилось 7,8 млн. т. Причем в России и в странах СНГ этот процесс практически не внедрен.

Основными зарубежными фирмами-разработчиками этого процесса в настоящее время являются "Юнокал", UOP, Shevron. В Советском Союзе много разработок по гидрокрекингу как низкого, так и высокого давления принадлежат ВНИИНП.

В качестве сырья гидрокрекинга используются вакуумные дистилляты широкого фракционного состава, а также остатки сернистых нефтей. Могут использоваться дистилляты и остатки вторичного происхождения (висбрекинга, коксования, термического и каталитического крекингов), однако в сырье ограничивается содержание металлов (никеля и ванадия) — менее 1 ррт, азота — не более 0,12% мае. Коксуемость этого сырья не должна превышать 0,03% мае. Рассмотрим сущность процесса гидрокрекинга. Процесс гидрокрекинга под высоким давлением, или глубокий гидрокрекинг, осуществляется на бифункциональных катализаторах, содержащих в качестве гидрирующих компонентов металлы VI и VII групп таблицы Менделеева, чаще всего в виде оксидов и сульфидов молибдена, никеля, кобальта, ванадия. Крекирующая и расщепляющая функция катализатора обуславливается кислотными центрами носителя, в качестве которого используются окись алюминия или алюмосиликаты. Аморфные алюмосиликаты используются для производства средних дистиллятов, цеолитсодержащие — при получении максимума бензиновых фракций. Процесс идет в среде высокоочищенного водорода при давлении до 20 МПа. В этом процессе происходит одновременное расщепление молекул углеводородной части сырья и их гидрирование. Отличительной чертой процесса является получение продуктов значительно меньшей молекулярной массы, чем исходное сырье. В этом отношении процесс гидрокрекинга имеет некоторое сходство с каталитическим крекингом

1. П. Г. Баннов. Процессы переработки нефти. – М.: ЦНИИТЭнефтехим, 2001. – 415с.

2. С. А. Ахметов. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. – 672 с.

3. В. Д. Рябов. Химия нефти и газа. – М.: Издательство “Техника”, ТУМА ГРУПП, 2004. – 288 с.

4. И. Л. Гуревич. Технология переработки нефти и газа: Ч.1. – М.: Химия, 1972. – 360с.

Http://www. bestreferat. ru/referat-206548.html

Федерации в качестве учебного пособия для подготовки специалистов по специальностям 130606 «Оборудование нефтегазопереработки» и 240403 «Химическая технология природных энергоносителей и углеродных материалов»

Академик АН РБ, доктор технических наук, профессор Р. Н. Гимаев Заведующий кафедрой «Машины и аппараты химических производств, доктор технических наук, профессор И. Р. Кузеев С. А. Ахметов А95 Лекции по технологии глубокой переработки нефти в моторные топлива: Учебное пособие. — СПб.: Недра, 2007. — 312 с.

ISBN В учебном пособии рассмотрены современное состояние и сырьевые проблемы нефтегазового комплекса России и мира;

Современные и перспективные требования к качеству моторного топлива; роль, значение, направления совершенствования технологических процессов; эффективные способы решения актуальных проблем углубления переработки нефти и повышения качества моторных топлив; изложены преимущественно общепризнанные представления по теории тех технологических процессов переработки нефти в моторные топлива, которые внедрены в производстве.

Учебное пособие написано по материалам лекций автора, прочитанных студентам в течение многих лет. В книге использованы сокращения терминов и слов, как это принято в энциклопедических изданиях.

Предназначено для студентов, завершающих обучение по специальности 240403 «Химическая технология природных энергоносителей и углеродных материалов», 130603 «Оборудование нефтепереработки» и специализирующихся по технологии производства моторных топлив.

УДК 665:63.0 ББК 35.5 ISBN © С. А. Ахметов, 2007 © Оформление. ООО «ДизайнПолиграфСервис», 2007 Содержание Предисловие.

Принятые сокращения. 7 Тема I. Современное состояние нефтегазового комплекса мира и России. 15 Лекция 1. Значение нефти и газа. 15 Тема 2. Характеристика нефти и ее фракций как сырья для производства moторныx топлив. 21 Лекция 2. Фракционный и углеводородный состав нефти и ее дистиллятных фракций. 21 Лекция 3. Гетероатомные и смолисто-асфальтеновые соединения. 25 Лекция 4. Классификациянефтей, процессов их переработки и товарных нефтепродуктов..

Принципы работы двигателей внутреннего сгорания. 40 Лекция 6. Химмотологические требования к качеству и марки авто – и авиабензинов.. 48 Лекция 7. Химмотологические требования к качеству и марки дизельных и реактивных топлив..

Лекция 8. Основные требования к качеству энергетических топлив и их марки.

Альтернативные моторные топлива. 63 Тема 4. Теоретические основы и технология процессов первичной переработки нефти.

. 72 Лекция 10. Теоретические основы процессов перегонки нефти. 81 Лекция 11. Основное оборудование ректификационной колонны. 91 Лекция 12. Технология атмосферной перегонки нефти. 103 Лекция 13. Технология перегонки мазута (установки ЭЛОУ-АВТ-6). 111 Тема 5. Теоретические основы и технология термолитических процессов переработки нефтяного сырья. 123

Учебное пособие написано по материалам лекций автора, прочитанных в течение многих лет студентам, завершающим обучение по специальности 240403 «Химическая технология природных энергоносителей и углеродных материалов»

И специализирующимся по технологии производства моторных топлив. До этого курса студенты изучали такие учебные дисциплины, как общая, аналитическая, органическая и физическая химии, химия нефти, процессы и аппараты нефтепереработки, теоретические основы процессов переработки нефти, все три части технологии нефтепереработки, проходили общеинженерную и технологическую практики и др. Предлагаемый данный курс специализации является интегрирующей учебной дисциплиной и предназначен для более углубленного и целенаправленного изучения теории переработки нефти в моторные топлива.

Чтобы уменьшить объем, в книге использованы сокращения терминов и слов, как это принято в энциклопедических изданиях Автор надеется, что студенты-технологи старших курсов, тем более инженеры, умеют свободно читать принципиальные технологические схемы процессов, как музыканты — ноты, для удобства чтения в них будут отсутствовать насосы, компрессоры, обвязки теплообменных аппаратов.

АРТ — процесс термоадсорбционного облагораживания тяжелого сырья каталитического крекинга (США);

Современное состояние нефтегазового комплекса мира и России Лекция 1. Значение нефти и газа Трудно представить совр. мир. экономику без энергии, транспорта, света, связи, радио, телевидения, вычислительной техники, средств автоматизации, космической техники и т. д., основой развития к-рых явл. топливно-энергетический комплекс (ТЭК). Уровень развития ТЭК отражает соц.

Экономически наиб. значимой составной частью ТЭК ныне явл. НГК. НГК включает нефтегазодобывающую, нефтегазоперераб., нефтегазохим. отрасли пром-сти, а также разл. отрасли транспорта (трубопроводный, ж.-д., водный, морской и др.) нефти, г. кон-та, прир. газа и продуктов их перераб.

Нефть и газ — уникальные и исключительно полезные ископаемые. Продукты их перераб. применяют практ. во всех отраслях пром-сти, на всех видах транспорта, в военном и гражданском строительстве, сельском хозяйстве, энергетике, в быту и т. д. Из нефти и газа вырабатывают разнообразные хим. мат-лы, такие как пластмассы, синтет. волокна, каучуки, лаки, краски, дорожные и строительные битумы, моющие средства и мн. др.

Ресурсы и м-ния нефти. Мир. извлекаемые запасы нефти оцениваются в 141,3 млрд т (табл. 1.1). Этих запасов при нынешних объемах добычи нефти хватит на 42 года. Из них 66,4 % расположено в странах Ближнего и Ср. Востока. Для этого региона характерно не только наличие огромных запасов нефти, но и концентрация их преим. на уникальных (более 1 млрд т) и гигантских (от 300 млн до 1 млрд т) м-ниях с исключительно высокой продуктивностью скважин. Среди стран этого региона первое место в мире по этому показателю занимает Саудовская Аравия, где сосредоточено более четверти мир. запасов нефти. Огромными запасами нефти в этом регионе обладают Ирак, Иран, Кувейт и Абу-Даби — арабские страны, каждая из к-рых владеет почти десятой частью ее мир. запасов.

Второе место среди регионов мира занимает Американский континент — 14,5 % мир. извлекаемых запасов нефти.

Наиб. крупными запасами нефти обладают Венесуэла, Мексика, США, Аргентина и Бразилия. Извлекаемые запасы нефти в Африке составляют 6,9 %, в т. ч. в Ливии — 2,9, Нигерии — 2,3 и Алжире — 0,9 %.

В Зап. Европе крупные м-ния нефти и газа расположены в акватории Северного моря, гл. обр. в британских (0,5 млрд т) и норвежских (1,5 млрд т) территориях.

В Азиатско-Тихоокеанском регионе пром. запасами нефти обладают Китай (2,35 %), Индонезия (0,5 %), Индия, Малайзия и Австралия (в сумме 1 % от мир.).

Вост.-Европейские бывш. социалистические страны и бывш. СССР владеют 5,8 % извлекаемых запасов нефти, в т. ч. бывш. СССР — 5,6, Россия — 4,76 %, т. е. 6,64 млрд т.

Ресурсы и м-ния прир. газа. Мир. извлекаемые запасы прир. газа оцениваются в 154,9 трлн м3. Ресурсов газа при нынешних темпах его добычи хватит на 63,1 года. По разведанным запасам прир. газа первое место в мире занимает Россия — 31 %. Одна треть общемир. его запасов приходится на Ближний и Ср. Восток, где он добывается преим.

Попутно с нефтью, т. е. на страны, обладающие крупными м-ниями нефти: Иран (14,9 % от общемир. запасов — 2-е место в мире), Абу-Даби (4,0 %), Саудовская Аравия (3,9 %) и Кувейт (1,0 %). В Азиатско-Тихоокеанском регионе знач. ресурсами газа обладают Индонезия, Малайзия и Китай. Достаточно большие запасы (7,2 %) газа размещены в Африке, пр. вс. в таких странах, как Алжир (2,9 %), Нигерия (2,2 %) и Ливия (0,9 %). На американском континенте обнаружено 12,7 % от общемир. запасов прир. газа, в т. ч. США — 3,1 % (5-е место), Венесуэла — 2,7 %, Канада — 1,1 %. Зап. Европа обладает 2,9 % от мир. запасов прир. газа, в т. ч. Норвегия — 0,8 %, Нидерланды — 1,1 % и Великобритания — 0,5 %.

Добыча нефти. Гл. нефтедобывающие регионы мира — страны, обладающие крупными ресурсами нефти. По объему добычи нефти первые места в мире занимали до 1974 г. — США, затем до 1989 г. — бывш. СССР, а с 1995 по 2000 гг. — Саудовская Аравия. Как видно из табл. 1.1, в наст. время Россия по этому показателю занимает 1-е место в мире. В десятку крупных нефтедобывающих стран мира (добывающих более 100 млн т/г) входят еще Иран, Китай, Норвегия, Венесуэла, Мексика, Ирак, Великобритания, Ливия, Канада и Нигерия.

В 2005 г. добыча нефти в нек-рых странах бывш. СССР со ставила (в млн т): Казахстан — 61, Азербайджан — 22, Туркмения — 9,5.

В табл. 1.2 приведена динамика добычи нефти и газа, объемов переработки нефти в России и СССР за 1990–2005 гг.

Из этих данных следует однозначный вывод об исключительно негативных последствиях распада СССР для развития НГК России. Так, добыча и объем переработки нефти за 1990–1995 гг. упали в 1,7 раза. Такое кризисное положение в НГК России обусловливалось пр. вс. отходом гос-ва от объединяющих и координирующих функций и контроля за деятельность возникших нефтегазовых компаний, к-рые, прикрываясь «рыночной экономикой», приобрели за бесценок гос. собственность и прир. ресурсы страны. При этом осн.

Целью «хозяев» стало получение max прибыли от эскпорта энергоресурсов, а не планомерное развитие НГК в интересах всех россиян. Нефтегазовые компании практ. перестали финансировать программы по модернизации НПЗ с целью углубления перераб. нефти и повышения кач-ва нефтепр-тов.

После распада СССР в России не было построено ни одного НПЗ нового поколения (за исключением ок. 50 мини-НПЗ).

С начала XXI в. Россия интенсивно наращивает добычу нефти, несмотря на ограниченность ее запасов (

Россия, экспортируя более половины произведенной нефти, все более становится нефтегазосырьевым придатком развитых стран. Бол-во отеч. м-ний нефти ныне находится на стадии исчерпания активных рентабельных запасов. Непрерывно растет обводненность нефт. м-ний, к-рая в ср. по России составляет 82 %. Низок ср.-суточный дебит одной скважины (ок. 7 т), только высокая цена нефти на мир. рынке позволяет временно считать такие дебиты рентабельными. Высока изношенность оборуд. нефтегазового комплекса страны. В ближайшем будущем Россия обречена работать с трудно извлекаемыми и малодебитными м-ниями нефти.

Из-за недальновидного свертывания геолого-разведочных работ (так, объем разведочного бурения с 1990 по 2005 гг.

Упал в 4 раза) очень мала вероятность ввода в разработку новых крупных, типа Зап.-сибирских, высокодебитных м-ний в ближайшие два-три десятилетия. В этой связи нельзя считать оправданной проводящуюся руководством страны и нефт. компаниями политику резкого ускорения темпов добычи нефти без компенсации восполнения ее ресурсов (прирост запасов нефти упал до 0,6 т на 1 т добычи нефти против 1,5 т/т в годы СССР), что приведет к хищнической выработке остаточных запасов и серьезным негативным последствиям для экономики след. поколений россиян. Назрела необходимость для законодательного установления ограничительных квот как на добычу, так и экспорт нефти и газа.

Добыча прир. газа. По объемам добычи газа в мире со знач. отрывом от др. стран лидируют бывш. СССР и США.

В число крупных газодобывающих стран мира входят Канада, Великобритания, Алжир, Индонезия, Нидерланды, Иран, Норвегия, Мексика, Узбекистан, Туркменистан.

Приведена в табл. 1.2, откуда следует, что произ-во газа, к-рый по ср. с нефтью знач. менее исчерпан, непрерывно возрастает и достигло 641 млрд м3. Разумеется, такие высокие объемы газодобычи в стране, в отличие от нефт. отрасли, экономически оправданы, поскольку обоснованы исключительно большими его ресурсами.

Характеристика нефти и ее фракций как сырья для производства moторныx топлив Лекция 2. Фракционный и углеводородный состав нефти и ее дистиллятных фракций Как известно из курса химии нефти, нефть — сложная многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углев-дов разл. хим. строения с числом углеродных атомов до 100 и более с примесью ГОС серы, азота, кислорода и нек-рых металлов.

По ХС нефти разл. м-ний весьма разнообразны. Эти различия обусловливаются:

3) термобарическими условиями в пласте, глубиной залегания пласта;

В этой связи речь можно вести лишь о составе, молекулярном строении и св-вах «ср.-статистической» нефти. Менее всего колеблется элементный состав нефтей: 82–87 % углерода, 12–16,2 % в-да; 0,04–0,35 %, редко до 0,7 % кислорода, до 0,6 % азота и до 5 и редко до 10 % серы. Кроме названных, в нефтях обнаружены в небольших кол-вах очень мн.

ФС нефтей. Поскольку нефть представляет собой многокомпонентную непрерывную смесь углев-дов и гетероатомных соед-й, то обычными методами перегонки не удается разделить их на индивид. соед. со строго определенными физ. константами, в частности t кипения при данном давл.

Принято разделять нефть и нефтепр-ты путем перегонки на отдельные компоненты, каждый из к-рых явл. менее сложной смесью. Такие компоненты называют фр-ями или дистиллятами. В условиях лабораторной или пром. перегонки отдельные нефт. фр-и отгоняются при постоянно повышающейся t кипения. Следовательно, нефть и ее фр-и характся не t кипения, а температурными пределами н. к. и к. к.

Паспорта), их ФС определяют на стандартных перегонных аппаратах, снабженных РК (напр., на АРН–2 по ГОСТ 11011–85). Это позволяет знач. улучшить четкость погоноразделения и построить по рез-там перегонки т. н. кривую ИТК в координатах t — выход фр-й в % мас., (или % об.).

Кривая ИТК показывает потенциальное содерж-е в нефти отдельных (узких) фр-й, являющихся основой для послед.

Их перераб. и получения товарных нефтепр-тов (АБ, реактивных, дизельных и энергетических топлив, СМ и др.).

Нефти разл. м-ний знач. различаются по ФС и, следовательно, по потенциальному содерж-ю дистиллятов МТ и СМ. Бол-во нефтей содержит 10–30 % бензиновых фр-й, выкипающих до 200 % и 40–65% керосино-газойлевых фрй, перегоняющихся до 350 °С. Известны м-ния легк. нефтей с высоким содерж-ем светлых (до 350 °С). Так, Самотлорская нефть содержит 58 % светлых, а г. конд-ты бол-ва м-ний почти полностью (85–90 %) состоят из светлых. Добываются также очень тяж. нефти, состоящие в осн. из высококипящих фр-й (напр., нефть Ярегского м-ния, добываемая шахтным способом).

Углев-дный состав нефтей — явл. наиб. важным показателем их кач-ва, определяющим выбор метода переработки, ассортимент и экспл. св-ва получаемых нефтепр-тов.

В исходных (нативных) нефтях содержатся в разл. соотношениях все классы углев-дов, кроме алкенов: алканы, цикланы, арены, а также гетероатомные соед-я.

Алканы (СnН2n+2) — парафиновые углев-ды — составляют знач. часть групповых компонентов нефтей, г. кондтов и прир. газов. Общее содерж-е их в нефтях составляет 25–75 % маc. и только в нек-рых парафинистых нефтях типа Мангышлакской достигает 40–50 %. С повышением ММ фр-й нефти содерж-е в них алканов уменьшается. Попутные нефт. и прир. газы практ. полностью, а прямогонные бензины чаще всего на 60–70 % состоят из алканов. В масляных фр-ях их содерж-е снижается до 5–20 % маc. Из алканов в нативных бензинах преобладают 2- и 3-монометилзамещенные, при этом доля изоалканов с четвертичным углеродным атомом меньше, а этил – и пропилзамещенные изоалканы практ. отсутствуют. С увеличением числа атомов углерода в молекуле алканов свыше 8 относительное содерж-е монозамещенных снижается.

В газойлевых фр-ях (200–350 °С) нефтей содержатся алканы от додекана до эйкозана. Установлено, что среди алканов в них преобладают монометилзамещенные и изопреноидные (с чередованием боковых метильных групп через три углеродных атома в осн. углеродной цепи) структуры. В ср.

Циклоалканы (ц. СnН2n) — нафтеновые углев-ды — входят в состав всех фр-й нефтей, кроме газов. В ср. в нефтях разл. типов они содержатся от 25 до 80 % мас. Бензиновые и керосиновые фр-и представлены в осн. гомологами циклопентана и циклогексана, преим. с короткими (C1 — С3) алкилзамещенными цикланами. Высококипящие фр-и содержат преим. полициклические гомологи цикланов с 2–4 одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фр-ям нефти самое разнообразное. Их содерж-е растет по мере утяжеления фр-й и только в наиб. высококипящих масляных фр-ях падает. Можно отметить след. распределение изомеров цикланов: среди С7 — циклопентанов преобладают 1,2 — и 1,3-диметилзамещенные; С8 — циклопентаны представлены преим. триметилзамещенными; среди алкилциклогексанов преобладает доля ди – и триметилзамещенные, не содерж. четвертичного атома углерода.

Цикланы явл. наиб. высококач-венной составной частью МТ и смазочных масел. Моноциклические цикланы придают МТ высокие экспл. св-ва, явл. более кач-венным сырьем в процессах КР. В составе СМ они обеспечивают малое изменение вязкости от t (т. е. высокий индекс). При одинаковом числе углеродных атомов цикланы по ср. с алканами характся большей плотн. и, что особенно важно, меньшей tзаст Арены (ароматические углеводороды) с эмпирической формулой СnНn+2–2Ка (где Ка — число ареновых колец) — содержатся в нефтях обычно в меньшем кол-ве (15–50 %), чем алканы и цикланы, и представлены гомологами бензола в бензиновых фр-ях.

В легк. нефтях содерж-е аренов с повышением t кипения фр-и, как правило, снижается. Нефти ср. плотн. цикланового типа характ-ся почти равномерным распределением аренов по фр-ям. В тяж. нефтях содерж-е их резко возрастает с повышением t кипения фр-й.

Установлена след. закономерность распределения изомеров аренов в бензиновых фр-ях: из C8-аренов больше 1,3-диметилзамещенных, чем этилбензолов; С9-аренов преобладают 1,2,4-триметилзамещенные.

Арены явл. ценными компонентами в АБ (с высокими ОЧ), но нежелательными в РТ и ДТ. Моноциклические арены с длинными боковыми алкильными цепями придают СМ хорошие вязкостно-температурные св-ва.

Лекция 3. Гетероатомные и смолисто-асфальтеновые соединения Гетероатомные (серо-, азот – и кислородсодержащие) минеральные соед.

, содержащиеся во всех нефтях, явл. нежелательными компонентами, поскольку резко ухудшают кач-во получаемых нефтепр-тов, осложняют переработку (отравляют кат-ры, усиливают коррозию аппаратуры и т. д.) и обусловливают необходимость применения гидрогенизационных процессов.

Между содерж-ем гетероатомных соед. и плотн. нефтей наблюдается вполне закономерная симбатная зависимость:

Легк. нефти с высоким содерж-ем светлых бедны гетеросоединениями и, наоборот, ими богаты тяж. нефти. В распределении их по фр-ям наблюдается также определенная закономерность: гетероатомные соед. концентрируются в высококипящих фр-ях и остатках.

Серосодерж. соед. Сера явл. наиб. распространенным гетероэлементом в нефтях и нефтепр-тах. Содержание ее в нефтях колеблется от сотых долей до 5 % мас., реже до 14 % мас. Низким содерж-ем серы характ-ся нефти след.

М-ний: Озек-суатское (0,1 %), Сураханское (Баку, 0,05 %), Доссорское (Эмба, 0,15 %), Бориславское (Украина, 0,24 %), Узеньское (Мангышлак, 0,25 %), Котур-Тепе (Туркмения, 0,27 %), Речицкое (Белоруссия, 0,32 %) и Сахалинское (0,33–0,5 %). Богаты серосодерж. соед. нефти Урало-Поволжья и Сибири: кол-во серы в арланской нефти достигает до 3,0 % мас., а в усть-балыкской — 1,8 % мас.

Распределение серы по фр-ям зависит от природы нефти и типа сернистых соед. Как правило, их содерж-е увеличивается от низкокипящих к высококипящим и достигает max в остатке от ВП нефти — гудроне. В нефтях идентифицированы след. типы серосодерж. соед:

1) элементная сера и серов-д — не явл. непосредственно сероорганическими соед., но появл. в рез-те деструкции последних;

2) меркаптаны — тиолы, обладающие, как и серов-д, к-тными св-вами и наиб. сильной коррозионной активно стью;

3) алифатические сульфиды (тиоэфиры) — нейтральны при низких температурах, но термически мало устойчивы и разлагаются при нагревании свыше 130–160 °С с обрем серов-да и меркаптанов;

Серов-д (H2S) обнаруживается в сырых нефтях не так часто и знач. в меньших кол-вах, чем в прир. газах, г. кондтах и нефтях, напр., из м-ний, приуроченных к Прикаспийской впадине (Астраханское, Карачаганакское, Оренбургское, Тенгизское, Жанажолское, Прорвинское и др.).

Меркаптаны (тиолы) имеют строение RSH, где R — углев-дный заместитель всех типов (алканов, цикланов, аренов, гибридных) разной ММ. Они обладают очень неприятным запахом.

По содерж-ю тиолов нефти подразделяют на меркаптановые и безмеркаптановые. К первому типу относят долматовскую (0,46 % RSH из 3,33 % общей серы) и марковскую (0,7 % RSH из 0,96 % общей серы) и нек-рые др. В аномально высоких концентрациях меркаптаны содержатся в вышеперечисленных г. конд-тах и нефтях Прикаспийской низменности. Так, во фр-и 40–200 °С Оренбургского г. кон-та на долю меркаптанов приходится 1 % из 1,24 % общей серы. Обнаружена след. закономерность: меркаптановая сера в нефтях и г. конд-тах сосредоточена гл. обр. в головных фр-ях. Так, доля меркаптановой серы от общего содерж-я составляет в тенгизской нефти 10 %, а во фр-и н. к. — 62 °С — 85 % мас.

Сульфиды (тиоэфиры) составляют осн. часть сернистых соед. в топливных фр-ях нефти (от 50 до 80 % от общей серы в этих фр-ях). Сульфиды подразделяют на две группы:

Диалкилсульфиды (тиоалканы) и циклические RSR’ (где R и R’ — алкильные заместители). Тиоалканы содержатся преим. в парафинистых нефтях, а циклические — в циклановых и нафтено-ароматических. Тиоалканы С2 – С7 имеют низкие t кипения (37–150 °С) и при перегонке нефти попадают в бензиновые фр-и. С повышением t кипения нефт. фр-й кол-во тиоалканов уменьшается, и во фр-ях выше 300 °С они практ.

Отсутствуют. В нек-рых легк. и ср. фр-ях нефтей в небольших кол-вах (менее 15 % от суммарной серы в этих фр-ях) 26 найдены дисульфиды RSSR’. При нагревании они образуют серу, серов-д и меркаптаны.

Моноциклические сульфиды представляют собой 5- или 6-членные гетероциклы с атомом серы. Кроме того, в нефтях идентифицированы полициклические сульфиды и их разнообразные гомологи, а также тетра – и пентациклические сульфиды.

С диалкилсульфидами. Среди тиоцикланов, как правило, более распространены моноциклические сульфиды. Полициклические сульфиды при разгонке нефтей преим. попадают в масляные фр-и и концентрированы в нефт. остатках.

Все серосодерж. соед. нефтей, кроме низкомолекулярных меркаптанов, при низких температурах хим. нейтральны и близки по св-вам к аренам. Пром. применения они пока не нашли из-за низкой эффективности методов их выделения из нефтей. В ограниченных кол-вах выделяют из ср.

Окисления в сульфоны и сульфок-ты. Сернистые соед. нефтей в наст. время не извлекают, а уничтожают гидрогенизационными процессами. Образующийся при этом серов-д перерабатывают в элементную серу или серную к-ту. В то же время в последние годы во мн. странах мира разрабатываются и интенсивно вводятся многотоннажные пром. процессы по синтезу сернистых соед., имеющих большую народнохозяйственную ценность.

Азотсодерж. соед-я. Во всех нефтях в небольших колвах ( 1 %) содержится азот в виде соед., обладающих осн.

Или нейтральными св-вами. Большая их часть концентрируется в высококипящих фр-ях и остатках перегонки нефти. Азотистые основания могут быть выделены из нефти обработкой слабой серной к-той. Их кол-во составляет в ср.

Азотистые основания нефти представляют собой гетероциклические соед. с атомом азота в одном (реже в двух) из колец, с общим числом колец до трех. В осн. они явл. гомологами пиридина, хинолина и реже акридина.

Нейтральные азотистые соед. составляют большую часть (иногда до 80 %) азотсодерж. соед. нефти. Они представлены гомологами пиролла, бензпиррола — индола и карбазола.

С повышением t кипения нефт. фр-й в них увеличивается содерж-е нейтральных и уменьшается содерж-е осн. азотистых соед. В процессах переработки нефт. сырья азотистые соед. проявляют отрицательные св-ва — снижают активность кат-ров, вызывают осмоление и потемнение нефтепр-тов.

Кислородсодерж. соед. Осн. часть кислорода нефтей входит в состав САВ и только ок. 10 % его приходится на долю кислых (нефт. к-ты и фенолы) и нейтральных (сложные эфиры, кетоны) кислородсодерж. соед. Они сосредоточены преим. в высококипящих фр-ях. Нефт. к-ты (CnHmCOOH) представлены в осн. циклопентан – и циклогексанкарбоновыми (циклановыми) к-тами и к-тами смешанной нафтеноароматической структуры. Из нефт. фенолов идентифицированы фенол (С6Н5ОН), крезол (СН3С6H4ОН), ксиленолы ((CH3) 2C6H3OH) и их производные. Из бензиновой фр-и некрых нефтей выделены ацетон, метилэтил-, метилпропил-, метилизопропил-, метилбутил – и этил-изопропилкетоны и нек-рые др. кетоны RCOR’. В ср. и высококипящих фр-ях нефтей обнаружены циклические кетоны типа флуоренона, сложные эфиры (ACOR где АС — остаток нефт. к-т) и высокомолекулярные простые эфиры (R’OR) как алифатической, так и циклической структур, напр. типа бензофуранов, обнаруженных в высококипящих фр-ях и остатках. Пром. значение из всех кислородных соед. нефти имеют только циклановые к-ты и их соли — нафтенаты, обладающие хорошими моющими св-вами. Поэтому отходы щелочной очистки нефт.

Дистиллятов — т. н. мылонафт — используется при изготовлении моющих средств для текстильного произв-ва.

Техн. нефт. к-ты (асидол), выделяемые из керосиновых и легк. масляных дистиллятов, находят применение в кач-ве растворителей смол, каучука и анилиновых красителей; для пропитки шпал; для смачивания шерсти; при изготовлении цветных лаков и др. Натриевые и калиевые соли циклановых к-т служат в кач-ве деэ-ров при обезвоживании нефти.

Нафтенаты кальция и алюминия явл. загустителями консистентных смазок, а соли кальция и цинка явл. диспергирующими присадками к моторным маслам. Соли меди защищают древесину и текстиль от бактериального разложения.

Остатках. CAB концентрируются в ТНО — мазутах, полугудронах, гудронах, битумах, кр-г-остатках и др. Суммарное содерж-е CAB в нефтях в зависимости от их типа и плотн.

Колеблется от долей процентов до 45 %, а в ТНО достигает до 70 % мас. Наиб. богаты CAB молодые нефти нафтено-ароматического и ароматического типа. Таковы нефти Казахстана, Средней Азии, Башкирии, Республики Коми и др. Парафинистые нефти — марковская, доссорская, сураханская, бибиэйбатская и нек-рые др. — совсем не содержат асфальтенов, а содерж-е смол в них составляет менее 4 % мас.

CAB представляют собой сложную многокомпонентную исключительно полидисперсную по ММ смесь высокомолекулярных углев-дов и гетеросоед-й, включающих кроме C и H, S, N, O и металлы, такие как V, Ni, Fe, Mo и т. д. Выделение индивид. CAB из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена. Совр. уровень знаний и возможности инструментальных физ.-хим. методов иссл. (напр., n-d-M-метод, рентгеноструктурная, ЭПР – и ЯМР-спектроскопия, электронная микроскопия, растворимость и т. д.) позволяют лишь дать вероятностное представление о структурной организации, установить кол-во конденсированных нафтено-ароматических и др. характеристик и построить ср.-статистические модели гипотетических молекул смол и асфальтенов.

В практике иссл. состава и строения нефт., угле – и коксохим. остатков широко используется сольвентный способ Ричардсона, основанный на различной растворимости групповых компонентов в органических растворителях (слабых, ср. и сильных). По этому признаку различают след. усл.

1) растворимые в низкомолекулярных (слабых) растворителях (изооктане, петролейном эфире) — масла и смолы (мальтены или – фр-я в коксохимии). Смолы извлекают из мальтенов адсорбц. хроматографией (на силикагеле или оксиде алюминия);

2) нерастворимые в низкомолекулярных алканах С5–С8, но р-римые в бензоле, толуоле, четыреххлористом углероде — асфальтены (или – фр-я);

3) нерастворимые в бензоле, толуоле и четыреххлористом углероде, но р-римые в сероуглероде и хинолине — карбены (или 2-фр-я);

В нефтях и нативных ТНО (т. е. не подвергнутых термодеструктивному воздействию) карбены и карбоиды отсутствуют. Под термином «масла» принято подразумевать высокомолекулярные углев-ды с ММ 300–500 смешанного (гибридного) строения. Методом хроматографического разделения из масляных фр-й выделяют парафино-циклановые и арены, в т. ч. легк. (моноциклические), ср. (бициклические) и полициклические (три и более циклические).

Наиб. важное значение представляют смолы и асфальтены, к-рые часто называют коксообразующими компонентами, и создают сложные технол. проблемы при переработке ТНО. Смолы — вязкие малоподвижные жид-сти или аморфные твердые тела от темно-коричневого до темно-бурого цвета с плотн. ок. ед. с ММ 450–1500. Они представляют собой плоскоконденсированные системы, содерж. пять-шесть колец ароматического, цикланового и гетероциклического строения, соединенные посредством алифатических структур. Асфальтены — аморфные, но кристаллоподобной структуры твердые тела темно-бурого или черного цвета с плотн.

Несколько больше ед. с ММ 1000–6000 и выше. При нагревании не плавятся, а переходят в пластическое состояние при t ок. 300 °С, а при более высокой t разлагаются с обр-ем газообразных и жидких в-в и твердого остатка — кокса. Они в отличие от смол образуют пространственные в большей степ. конденсированные кристаллоподобные структуры.

Асфальтены обладают высокой парамагнитностью — 1018–1019 (спин/г), характерной для структур, содерж. мн.

Смолы образуют истинные р-ры в маслах и топливных дистиллятах, а асфальтены в ТНО находятся в коллоидном состоянии. Растворителем для асфальтенов в нефтях явл.

Арены и смолы. Благодаря межмолекулярным взаимодействиям асфальтены могут образовывать ассоциаты — надмолекулярные структуры. На степ. их ассоциации сильно влияет 30 среда. Так, при низких концентрациях в бензоле и нафталине (менее 2 и 16 % соответственно) асфальтены находятся в молекулярном состоянии. При более высоких значениях концентрации в р-ре формируются ассоциаты, состоящие из множества молекул.

Все CAB отрицательно влияют на кач-во СМ (ухудшают цвет, увеличивают нагарообразование, понижают смазывающую способность и т. д.) и подлежат удалению. В составе нефт. битумов они обладают рядом ценных техн. св-в и придают им кач-ва, позволяющие широко использовать их. Гл.

Направления их использования: дорожные покрытия, гидроизоляционные мат-лы, строительство, произ-во кровельных изделий, битумно-асфальтеновых лаков, пластиков, пеков, коксов, связующих для брикетирования углей, порошковых ионитов и др.

Металлоорганические соед. МОС в осн. сосредоточены в гудроне, хотя нек-рая часть из-за их летучести переходит в масляные дистилляты. Осн. часть металлов (V, Ni, Fe, Cu, Zn и др.) связана со смолами и асфальтенами. Знач. их часть находится в нефт. остатках в виде металлопорфириновых комплексов (напр., ванадилпорфирины и никельпорфирины).

Нефт. остатки, содерж. САВ и МОС, явл. трудноперерабатываемым сырьем для произв-ва МТ из-за повышенной их коксуемости и высокого содерж-я металлов, необратимо отравляющих кат-ры технол. процессов.

Лекция 4. Классификация нефтей, процессов их переработки и товарных нефтепродуктов Классификация нефтей.

Классификаций нефтей (хим., генетическая, технол. и др.), но до сих пор нет единой международной их классификации.

Хим. классификация. За ее основу принято преим. содерж-е в нефти одного или нескольких классов углев-дов.

Различают 6 типов нефтей: парафиновые, парафино-циклановые, циклановые, парафино-нафтено-ароматические, нафтено-ароматические и ароматические.

В парафиновых нефтях (типа узеньской, жетыбайской) все фр-и содержат знач. кол-во алканов: бензиновые — не менее 50 %, а масляные — 20 % и более. Кол-во асфальтенов и смол исключительно мало.

В парафино-циклановых нефтях и их фр-ях преобладают алканы и циклоалканы, содерж-е аренов и САВ мало. К ним относят бол-во нефтей Урало-Поволжья и Зап. Сибири.

Для циклановых нефтей характерно высокое (до 60 % и более) содерж-е циклоалканов во всех фр-ях. Они содержат min кол-во твердых парафинов, смол и асфальтенов. К циклановым относят нефти, добываемые в Баку (балаханская и сураханская) и на Эмбе (доссорская и макатская) и др.

В парафино-нафтено-ароматических нефтях содержатся примерно в равных кол-вах углев-ды всех трех классов, твердых парафинов не более 1,5 %. Кол-во смол и асфальтенов достигает 10 %.

Нафтено-ароматические нефти характ-ся преобладающим содерж-ем цикланов и аренов, особенно в тяж. фр-ях.

Ароматические нефти характ-ся преобладанием аренов во всех фр-ях и высокой плотн. К ним относят прорвинскую в Казахстане и бугурусланскую в Татарстане.

1) 3 класса (I–III) по содерж-ю серы в нефти (малосернистые, сернистые и высокосернистые), а также в бензине (н. к. — 180 °С), в РТ (120–240 °С) и ДТ (240–350 °С);

32 2) 3 типа по потенциальному содерж-ю фр-й, перегоняющихся до 350 °С (T1–T3);

4) 4 подгруппы по кач-ву базовых масел, оцениваемому индексом вязкости (И1–И4);

Из малопарафинистых нефтей вида III можно получать без ДП реактивные и зимние ДТ, а также дистил. базовые масла. Из парафинистых нефтей П2 без ДП можно получить РТ и лишь летнее ДТ. Из высокопарафинистых нефтей П3, содерж. более 6 % парафинов, даже летнее ДТ можно получить только после ДП.

Предварительную оценку потенциальных возможностей нефт. сырья можно осуществить по комплексу показателей, входящих в технол. классификацию нефтей. Однако этих показателей недостаточно для определения набора технол.

Процессов, асортимента и кач-ва нефтепр-тов, для составления мат. баланса установок, цехов и НПЗ в целом и т. д. Для этих целей в лабораториях науч.-иссл. институтов проводят тщательные иссл. по установлению всех требуемых для проектных разработок показателей кач-ва исходного нефт. сырья, его узких фр-й, топливных и масляных компонентов, промежуточного сырья для технол. процессов и т. д. Рез-ты этих иссл. представляют обычно в виде кривых зависимости ИТК, плотн., ММ, содерж-я серы, низкотемпературных и вязкостных св-в от ФС нефти (рис. 2.1), а также в форме таблиц с показателями, характеризующими кач-во данной нефти, ее фр-й и компонентов нефтепр-тов. Справочный мат-л с подробными данными по физ.-хим. св-вам отеч. нефтей, имеющих пром.

Техн. классификация. Для оценки товарных кач-в подготовленных на промыслах нефтей в 2002 г. был разработан применительно к международным стандартам и принят новый ГОСТ России Р 51858–2002, в соответствии с к-рым (табл. 2.1) их подразделяют (классифицируют):

Условное обозначение марки нефти состоит из четырех цифр, соотв. обозначениям класса, типа, группы и вида нефти. Напр., нефть марки 2,2Э,1,2 означает, что она сернистая, поставляется на экспорт, ср. плотн., по кач-ву промысловой подготовки соответствует 1-й группе и по содерж-ю серов-да и легк. меркаптанов — 2-му виду.

34 Таблица 2.1 — Классификация и требования к качеству подготовленных на промыслах нефтей по ГОСТ Р 51858–2002

Классификация процессов переработки нефти. Технол. процессы НПЗ принято классифицировать на след. две группы: физ. и хим.

1. Физ. (массообменными) процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фр-и) без хим. превращений и удаление (извлечение) из фр-й нефти, нефт. остатков, масляных фр-й, г. кон-тов и газов нежелательных компонентов (полициклических аренов, асфальтенов, тугоплавких парафинов), неуглев-дных соед.

2. В хим. процессах переработка нефт. сырья осуществляется путем хим. превращений с получением новых продуктов, не содержащихся в исходном сырье. Хим. процессы, применяемые на совр. НПЗ, по способу активации хим. р-ций подразделяют на:

2.1.1. Термодеструктивные (ТК, ВБ, коксование, пиролиз, пекование, произ-во техн. углерода и др.).

«Олимпиада кадет: «Кирилл Разумовский – к вершинам знаний». Методические рекомендации по разработке заданий и требований по проведению регионального и заключительного этапов Олимпиады кадет: «Кирилл Разумовский – к вершинам знаний» по химии в 2014/2015 учебном году Москва – 2014 СОДЕРЖАНИЕ Введение_2 Часть I. Форма и порядок проведения регионального и заключительного этапов Олимпиады кадет: «Кирилл Разумовский – к вершинам знаний»_4 Форма проведения регионального и заключительного этапов _4. »

«H. JI. Глинка ОБЩАЯ ХИМИЯ Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служитьпособием для лиц, самостоятельно изучающих основы химии, и дляучащихся химических техникумов и старших классов средней школы ОГЛАВЛЕНИЕ Предисловие к двадцать четвертому изданию Предисловие к двадцать третьему изданию 9 Из предисловия к шестнадцатому изданию 9 Введение 1. Материя и ее движение 1 2. Вещества и их изменения. Предмет химии 11 3. Значение химии. »

«Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Северный (Арктический) федеральный университет имени М. В. Ломоносова» Н. А. Макаревич, Н. И. Богданович ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АДСОРБЦИИ Учебное пособие Допущено Северным (Арктическим) федеральным университетом имени М. В. Ломоносова в качестве учебного пособия Архангельск САФУ УДК 661.183.2 ББК 35.762 Б73 Рекомендовано к изданию. »

«В. С. Сибирцев Основы электрохимических процессов Практикум. Часть 3. Учебное пособие Санкт–Петербург, МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО В. С. Сибирцев Основы электрохимических процессов Практикум. Часть 3. Учебное пособие Санкт–Петербург Сибирцев В. С. Основы электрохимических процессов. Практикум. Часть 3. Учебное пособие. – СПб: Университет ИТМО, 2015. – 93 с. Пособие соответствует программе курса «Основы электрохимических процессов» студентов–бакалавров. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФИЛИАЛ «ТОБОЛЬСКИЙ ИНДУСТРИАЛЬНЫЙ ИНСТИТУТ» ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ОТЧЕТ О САМООБСЛЕДОВАНИИ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ 190600.62 «Эксплуатация транспортно-технологических машин и комплексов» код, наименование Директор филиала ТюмГНГУ в г. Тобольске _Л. В. Останина Заведующий кафедрой химии и. »

«ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ О КАЧЕСТВЕ И ГАРАНТИЯХ КАЧЕСТВА ОБРАЗОВАНИЯ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ПО СПЕЦИАЛЬНОСТИ 5В072100 «ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ» РГКП «Павлодарский государственный университет имени С. Торайгырова РЕЗЮМЕ Реализация образовательной программы 5В072100 «Химическая технология органических веществ» осуществляется кафедрой «Химия и химические технологии», заведующий кафедрой – Кульшат Хайруллаевна Жапаргазинова, на факультете «Химическая технология и. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра неорганической и физической химии Бурханова Т. М. ХИМИЯ Учебно-методический комплекс. Рабочая программа для студентов направления 022000.62 «Экология и природопользование» очная форма обучения Тюменский государственный университет Бурханова Татьяна Михайловна. Химия. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра органической и экологической химии Лебедева Н. Н. ФУНКЦИОНАЛЬНЫЙ И ЭЛЕМЕНТНЫЙ АНАЛИЗ Учебно-методический комплекс. Рабочая программа для студентов очного обучения по направлению 04.03.01 «Химия», профиль подготовки «Органическая и биоорганическая химия» Тюменский государственный. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра неорганической и физической химии Турнаев В. А. ИНФОРМАЦИОННО-ХИМИЧЕСКИЙ ПОИСК Учебно-методический комплекс. Рабочая программа для студентов направления 04.03.01 Химия Форма обучения очная Тюменский государственный университет Турнаев Валентин Александрович. »

«Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет имени Франциска Скорины» Ю. А. Пролесковский, Т. В. Макаренко, Е. В. Воробьева, С. М. Пантелеева Коллоидная химия Практическое пособие для студентов специальности 1-31 01 01-02 Биология (научно-педагогическая деятельность) Гомель ГГУ им. Ф. Скорины УДК 544 (076.6) ББК 24.5я73+24.6я73 Ф 505 Рецензенты: доктор химических наук А. С. Неверов; кафедра химии учреждения образования «Гомельский. »

«СОДЕРЖАНИЕ 1 ОБЩИЕ ПОЛОЖЕНИЯ.1.1 Основная профессиональная образовательная программа высшего образования (ОПОП ВО) бакалавриата, реализуемая вузом по направлению подготовки 020400 Биология и профилю подготовки Биохимия.1.2 Нормативные документы для разработки ОПОП бакалавриата по направлению подготовки 020400 Биология.1.3 Общая характеристика вузовской ОПОП ВО бакалавриата.1.4 Требования к абитуриенту. 2 ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКА ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ. »

«А. А. РЕМПЕЛЬ А. А. ВАЛЕЕВА МАТЕРИАЛЫ И МЕТОДЫ НАНОТЕХНОЛОГИЙ Учебное пособие Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина А. А.Ремпель, А.А. Валеева МАтеРиАлыиМетоды НАНотехНологий Учебное пособие Рекомендовано методическим советом УрФУ для студентов, обучающихся по направлениям подготовки 210100 «Электроника и наноэлектроника», 210600 «Нанотехнология» Екатеринбург Издательство Уральского университета УДК. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт биологии Кафедра экологии и генетики И. В. Пак ПСИХОГЕНЕТИКА Учебно-методический комплекс. Рабочая программа для студентов по направлению подготовки 06.03.01 Биология (уровень бакалавриата), профили подготовки «Ботаника», «Зоология», «Физиология», «Биохимия», «Биоэкология», «Генетика», форма. »

«СОДЕРЖАНИЕ 1. Общие положения Основная образовательная программа (ООП) бакалавриата, реализуемая в ФГБОУ 1.1. ВПО «Бурятская государственная сельскохозяйственная академия имени В. Р. Филиппова» по направлению подготовки 110100 Агрохимия и агропочвоведение и профилю подготовки «Агрохимия и агропочвоведение». Нормативные документы для разработки ООП бакалавриата по 1.2. направлению подготовки 110100 Агрохимия и агропочвоведение. Общая характеристика вузовской основной образовательной программы. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный химико-технологический университет» Утверждаю: Ректор _ О. И. Койфман «» 2011 г. Номер внутривузовской регистрации Основная образовательная программа высшего профессионального образования Направление подготовки 230400 Информационные системы и технологии Квалификация (степень) выпускника «бакалавр» Нормативный. »

«6. АНАЛИЗ МОРСКОЙ МИКРОФАУНЫ Микрофауна морей и океанов дает богатый материал для палеогеографических реконструкций и как материал для разного рода химических и физических анализов (определение абсолютного возраста разными методами, изотопного состава карбоната раковин, Mg/Са и Sr/Ca и т. д.), и, главное, как индикатор условий палеосреды и изменений природных событий прошлого. Последнее связано с широким стратиграфическим и географическим распространением организмов микрофауны и обилию и большой. »

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральский государственный лесотехнический университет» Кафедра химической технологии древесины, биотехнологии и наноматериалов Одобрена: Утверждаю: Кафедрой ХТДБиН Проректор по научной работе _С. В. Залесов Протокол от _20_г. №_ Зав. кафедрой_ /Ю. Л.Юрьев/ «»20_г. Методической комиссией ИХПРСиПЭ Протокол от 20_г. №_ Председатель_. »

«Государственное общеобразовательное учреждение «Школа № 237 им. В. Ф.Орлова» СТРУКТУРНОЕ ПОДРАЗДЕЛЕНИЕ № 242 «Согласовано» «Утверждаю» РАБОЧАЯ ПРОГРАММА по _химии_ _9 класс _2 часа в неделю, 68 часов в год кол-во часов в неделю, в год Учитель: Шведова Галина Ивановна, высшая категория Ф. И. О. педагога, категория Рабочая программа разработана на 1 год (годы обучения) Учебник Г. Е. Рудзитис, Ф. Г. Фельдман. Химия. 8 класс. Просвещение, 2007. (Автор, название, издательство, год издания). »

Http://metodichka. x-pdf. ru/15himiya/468581-1-lekcii-tehnologii-glubokoy-pererabotki-nefti-motornie-topliva-dopuscheno-uchebno-metodicheskim-obedineniem-vuzov-rossi. php

Для студентов специальности 1-48 01 03 «Химическая технология природных

Составитель: С. М. Ткачев Новополоцк 2006 УДК 665.63 (675.8) ББК 35.514 А 11

Рекомендован к изданию методической комиссией технологического факультета А 11 Технология переработки нефти и газа. Процессы глубокой переработки нефти и нефтяных фракций: Учеб.-метод. комплекс для студ. спец. 1-48 01 03 в 2-х ч./Сост.: С. М. Ткачев – ч.1 Курс лекций. – Новополоцк: ПГУ, 2006. – 345 с.

ISBN 5-7501-0296-3 В предлагаемом учебно-методическом комплексе представлены курс лекций (часть 1) и материалы к практическим и семинарским занятиям (часть 2) по курсу «Технология переработки нефти и газа. Процессы глубокой переработки нефти и нефтяных фракций».

В части 1 приведены темы лекционного курса, подробно изложены теоретические основы, технологические схемы и конструкции оборудования для ряда процессов глубокой переработки нефти. Представлены вопросы для текущего контроля по основным темам курса и ориентировочные вопросы к экзамену.

Предназначен для преподавателей и студентов химико-технологических специальностей вузов. Может быть полезен инженерно-техническим работникам нефтеперерабатывающей промышленности и смежных отраслей.

УДК 665.63 (675.8) ББК 35.514 ISBN 5-7501-0296-3 УО «ПГУ», 2006 С. М. Ткачев, сост., 2006 Содержание Предисловие автора 4 Программа лекционного курса 5 Введение 8

1. Термодеструктивные процессы переработки углеводородного 13 сырья

Все увеличивающийся поток информации, изменения в подходах к окружающему миру и, нередко, мнение близких к власти чиновников приводят к росту количества предметов, обязательных для изучения студентами. Это перегружает обучающихся и в конечном итоге к снижает качество получаемого образования. Для его повышения нам рекомендуют ряд методов, в частности, модульный принцип обучения, развитие, так называемой, самостоятельной управляемой работы студентов. В рамках последнего, широко рекламируется создание учебно-методических комплексов (УМК), повсеместное использование рейтинговой системы и тестирования при оценке знаний. Бесспорно, как варианты эти элементы могут и должны использоваться в ВУЗах, однако, на мой взгляд, они не должны считаться панацеей, а только одним из возможных вариантов решения глобальной задачи – повышения качества образования и воспитания специалиста. Кроме того, они не должны ни в коем случае внедряться в учебный процесс под давлением руководящих (зачастую бюрократических) структур. Каждый из перечисленных выше элементов при определенных условиях имеет не только достоинства, но и недостатки.

По моему мнению, УМК для устранения субъективизма должен разрабатываться не отдельным специалистом, а группой преподавателей и проходить тщательную экспертизу. В ином случае мы рискуем либо навязать студенту субъективное понимание вопроса, не всегда соответствующее действительности, либо скатиться на взаимствование чужого материала (плагиат). Хорошо, когда помимо УМК студент имеет возможность изучить детали прорабатываемой темы по литературным источникам. Однако в некоторых случаях это невозможно по причине их недоступности. Например, на отечественных нефтеперерабатывающих заводах введены в эксплуатацию ряд новых лицензионных процессов. Имеющаяся в открытой литературе информация отрывочна и скудна. Основываясь на данных заводов (регламенты, данные проектных фирм), преподаватели готовят материал для лекций и практических занятий, который студент не найдет больше нигде. Для самостоятельной проработки его никак нельзя рекомендовать. В этом случае преподаватель должен подробно изложить его в УМК. Однако это очень трудоемкая и объемная работа, которая должна быть защищена авторскими правами и оплачена соответствующим образом. Иначе при распространении его (особенно в электронном виде) такой материал станет после небольшой обработки собственностью практически любого человека.

В представленном УМК приведен материал, в основе которого лежат как литературные, так и промышленные данные. По этой причине считаю его распространение в электронном виде недопустимым. Выражаю большую благодарность специалистам университета (доцентам Хорошко С. И., Покровской С. В., Ермаку А. А.) и промышленных предприятий (Зубовичу В. С., Елизарову А. С., Ельцову И. П. и другим) за совместную разработку части материала, вошедшего в данный УМК.

Программа лекционного курса № п Темы Краткое содержание лекций Часы 1 Введение Роль вторичных процессов в нефтеперерабатывающей про – 2 мышленности. Глубина переработки нефти, выход светлых нефтепродуктов и моторных топлив. Безотходные энергосберегающие технологии. Комплексы переработки нефти (ЭЛОУ-АВТ, ЛК-6У, ГК-3, Г-43-107, КТ-1, КТ-1/1, КТ-2).

Углубление переработки нефти за рубежом. Классификация процессов глубокой переработки нефти.

2 Термодест – Научные основы термодеструктивных процессов. Их хи – 1 руктивные мизм, механизм, кинетические закономерности и термодипроцессы пе – намика. Влияние различных факторов на глубину и скорость реработки уг – протекания термодеструктивных процессов.

Леводородного сырья Висбрекинг нефтяных остатков. Особенности процесса, ис – 2 пользуемое сырье, поведение сырьевых компонентов при висбрекинге. Режим проведения процесса, получаемая продукция, различные технологии висбрекинга, их техникоэкономические показатели работы, основное оборудование.

Комбинирование установок висбрекинга с блоками ВТ и термокрекинга.

Особенности термокрекинга нефтяных фракций и остатков. 1 Сырье, режим работы, получаемая продукция, материальный баланс, технико-экономические показатели процесса, технологическая схема, основное оборудование Процессы коксования нефтяных остатков, их место в схеме 2 завода. Особенности процесса, используемое сырье, поведение сырьевых компонентов при коксовании. Режим проведения процесса, получаемая продукция, различные технологии коксования, их технико-экономические показатели работы, основное оборудование.

Пиролиз углеводородного сырья. Особенности процесса (химизм, механизм, кинетика, термодинамика). Влияние природы сырья (химический, групповой состав, индекс корреляции) и технологических факторов (температура, давление, продолжительность пребывания в зоне высоких температур, расход водяного пара и т. п.) на выход целевой продукции.

Режим проведения процесса, получаемая продукция, различные технологии пиролиза, их технико-экономические показатели работы, основное оборудование. Блок схема установки пиролиза. Технологическая схема секции пиролиза и первичного фракционирования 3 Термокатали – Термокаталитические процессы в нефтепереработке и неф – 3 тические про – техимии. Каталитический крекинг нефтяного сырья. Научцессы ные основы процесса, кислотные свойства катализаторов и их связь с механизмом реакций, химизм, термодинамика и кинетика превращений углеводородов. Используемые катализаторы, их состав и назначение вводимых модификаторов.

Факторы, влияющие на процесс (сырье, температура, крат – 2 ность циркуляции катализатора, давление и т. п). Технологические схемы современных установок каталитического крекинга. Режим проведения процесса, получаемая продукция, различные технологии каталитического крекинга, их технико-экономические показатели работы, основное оборудование.

Состав современного комплекса каталитического крекинга. 1 Процесс термоадсорбционной очистки нефтяных остатков ART.

4 Гидрогениза – Разновидности гидрогенизационных процессов и их роль в 4 ционные про – производстве топлив. Научные основы процесса, состав и цессы свойства катализаторов, их связь с механизмом реакций.

Гидроочистка и гидрокрекинг нефтяных фракций. Исполь – 3 зуемые катализаторы. Факторы, влияющие на процессы (сырье, температура, кратность циркуляции ВСГ, давление, объемная скорость подачи сырья и т. п). Технологические схемы современных установок. Режим проведения процессов, получаемая продукция, различные технологии, их техникоэкономические показатели работы, основное оборудование.

Гидродепарафинизация нефтяных фракций. Факторы, 1 влияющие на процесс (сырье, температура, кратность циркуляции ВСГ, давление, объемная скорость подачи сырья и т. п). Технологические схемы современных установок. Режим проведения процесса, получаемая продукция, различные технологии, их технико-экономические показатели работы, основное оборудование.

Каталитический риформиг Научные основы процесса, состав 4 5 Производство высокоокта – и свойства катализаторов, их связь с механизмом реакций.

Новых бензи – Химизм, термодинамика и кинетика превращений углеводонов родов. Факторы, влияющие на процесс (сырье, температура, кратность циркуляции ВСГ, давление, объемная скорость подачи сырья и т. п). Технологические схемы современных установок (со стационарным слоем катализатора, НРК, дуалформинг). Режим проведения процесса, получаемая продукция, различные технологии, их технико-экономические показатели работы, основное оборудование.

Изомеризация легкой бензиновой фракции Научные основы 2 процесса, состав и свойства катализаторов, их связь с механизмом реакций. Химизм, термодинамика и кинетика превращений углеводородов. Факторы, влияющие на процесс (сырье, температура, кратность циркуляции ВСГ, давление, объемная скорость подачи сырья и т. п). Технологические схемы современных установок. Режим проведения процесса, получаемая продукция, различные технологии, их техникоэкономические показатели работы, основное оборудование.

Адсорбционное извлечение н-алканов. Научные основы про – 2 цесса. Применяемые адсорбенты. Технологические схемы установок. Режим проведения процесса, получаемая продукция, различные технологии и их комбинирование с установками изомеризации легких бензиновых фракций.

6 Переработка Разделение углеводородных газов АГФУ и ГФУ. Техноло – 2 углеводород – гические схемы установок. Режим проведения процесса, поных газов лучаемая продукция, технико-экономические показатели работы, основное оборудование.

Нефтеперерабатывающая и нефтехимическая промышленность играет важную роль в экономике любой страны, в том числе и Республики Беларусь.

Поэтому развитие данной отрасли и мероприятия по совершенствованию существующих технологий являются чрезвычайно важными.

Безудержное использование природных ресурсов земли привело к тому, что по данным OMCS (консультационная служба нефтяного рынка) человечеством добыто уже 129 миллиардов м3 нефти (осталось примерно столько же).

Мировое потребление нефти составляет более 4 миллиардов м3/год, прирост же разведываемых запасов 0,95 миллиардов м3/год. Нетрудно сделать прогноз, что нефти хватит только на 40-50 лет, а если предположить, что темпы ее потребления будут возрастать, то и того меньше.

Увеличение глубины переработки нефти – наиболее актуальная проблема в современной нефтепереработке. Ее необходимость обусловливается опережающим ростом потребности в моторных топливах по сравнению с возможностями нефтедобычи. По литературным данным, среднегодовой прирост количества легковых автомобилей составляет около 9%, а мировое потребление бензина достигло 840 млн. т в год. Повышается также и потребление дизельного топлива – основного энергоносителя для тяжёлых грузовых автомобилей, железнодорожного транспорта, автобусов и автотранспортных средств, эксплуатируемых вне дорог (приблизительно на 2% в год). В таблице 1 приведены темпы роста потребления нефтяных топлив по регионам мира.

Конец прошлого и начало нового столетия ознаменовались резким изменением требований к качеству автомобильных бензинов и дизельных топлив.

Это обусловлено стремлением людей уменьшить отрицательное воздействие, оказываемое выбросами от двигателей внутреннего сгорания (ДВС) на окружающую среду и человека.

После отказа от применения для повышения октанового числа бензинов тетраэтилсвинца ограничениям подвергается содержание в них сернистых соединений и ароматических углеводородов. За первые десять лет 21 века автомобильные бензины претерпят большие изменения, чем за предыдущие 50-60 лет. Законодателем в этом направлении являются США, которые могут быть названы бензиновой страной из-за своеобразной структуры потребления топлив для ДВС. В соответствии с законом о чистом воздухе в потребляемых на территории США бензинах общее содержание ароматических углеводородов не должно превышать 25-28%, а бензола – 1,0%. Выполнение этих и других требований в ограниченный промежуток времени для многих стран мира просто невозможно. Даже в богатых странах Европы принят план поэтапного выхода на уровень этих норм. В соответствии с ним с января 2000 года (нормы Евро-3) страны Европы перешли на автомобильные бензины, содержащие ароматические углеводороды в количествах не превышающих 42%, а бензола не более 1,0%. По нормам Евро-4 (2005 год) и Евро-5 (2010 год) планируется снизить содержание суммы ароматических углеводородов в бензинах сначала до 35,0, а затем до 25,0%.

По совершенствованию качества дизельных топлив большие усилия прилагают европейские страны. В них принята концепция ужесточения требований к этому виду топлива, особенно по содержанию в нем сернистых соединений. В отличие от действующих у нас стандартов, допускающих наличие общей серы в дизельных топливах 0,2 и даже 0,5% мас., в некоторых странах Европы в данном нефтепродукте присутствие серы ограничено 0,005% мас. В дальнейшем очень вероятно снижение этого уровня до 0,0005-0,001% мас. В настоящее время ограниченное число нефтеперерабатывающих заводов в мире может получать дизельное топливо с таким ультранизким содержанием сернистых соединений. Кроме названного показателя в этих топливах предусматривается уменьшение присутствия ароматических углеводородов, 98%-й точки выкипания фракции и повышение цетанового числа (в настоящее время 52 пункта, а в перспективе до 55-58 пунктов).

Отечественные НПЗ уже сейчас освоили выпуск продукции, удовлетворяющей европейским требованиям к экологически чистым дизельным топливам, в том числе и с содержанием общей серы до 0,001% мас. Оно производится в ОАО «Мозырский НПЗ» с середины 2002 года (первые в СНГ), а в ОАО «Нафтан» с 2003 года.

В настоящее время на отечественных НПЗ автомобильные бензины, удовлетворяющие требованиям норм Евро-3, могут выпускаться только в очень ограниченном количестве, так как основным высокооктановым компонентом, производимым на них, является катализат установок риформинга, содержащий в среднем 4-5% бензола и 62-68% суммарных ароматических углеводородов.

Поэтому на данных предприятиях предусмотрены и уже реализованы мероприятия, направленные на выделение бензола из катализата риформинга. Это позволят им освоить массовое производство автомобильных бензинов по нормам Евро-3. Переход на выпуск бензинов по нормам Евро-4 и тем более Евро-5 является более дорогостоящим, чем выход на нормы Евро-3, и требует коренного изменения структуры нефтеперерабатывающего предприятия. Для этого на Мозырском НПЗ строится целый комплекс технологических установок, включающий процессы каталитического крекинга, алкилирования изобутана олефинами, получения индиавидуальных ароматических углеводородов, изомеризации пентан-гексановой фракции и т. п. Не остается в стороне и ОАО «Нафтан».

Таким образом, особую актуальность на НПЗ в последние годы получили каталитические процессы, предназначенные как для увеличения глубины переработки нефти, так и для получения высококачественных компонентов нефтепродуктов.

Основными направлениями развития нефтеперерабатывающих предприятий в настоящее время являются следующие:

– использование энерго – и ресурсосберегающих технологий и оборудования;

По мере развития технологии и потребностей общества понятия глубины и комплексности переработки нефти непрерывно изменялись. Если в начальный период развития нефтепереработки под глубиной и комплексностью понималась степень извлечения из нефти осветительного керосина и колесной смазки, то затем на передний план выдвинулись требования производства бензинов для автомобилей, авиации и т. д. Глубина переработки нефти в настоящее время определяется как степень использования нефти для удовлетворения потребностей общества различными углеводородсодержащими продуктами за исключением потребностей в котельных топливах (в том числе и для нужд самого НПЗ) и безвозвратных потерь при переработке.

Комплексность переработки нефти предполагает как рациональное извлечение из нефтей ценных компонентов (масел, жидких и твердых парафинов, нафтеновых кислот, серо – и азотсодержащих соединений, металлов и т. п.), так и оптимальную переработку ранее неутилизируемых продуктов, например легких газов, асфальтов, пеков.

Безотходность переработки нефти, ставшая особо острой в связи с возросшими отрицательными воздействия человека на окружающую среду, предусматривает не только полную переработку всех фракций нефти, но и в большей степени применение технологий, катализаторов и реагентов, исключающих образование вредных выбросов и отходов.

Анализ развития схем и процессов глубокой переработки нефти говорит о их многовариантности, которая зависит от целого ряда объективных и субъективных факторов. Однако при этом могут быть выделены основные закономерности. В последние годы общемировой тенденцией развития нефтепереработки является сращивание НПЗ с нефтехимическими заводами. То есть, НПЗ только топливного профиля уступают место заводам топливно-нефтехимического направления. Один из вариантов схем современного нефтеперерабатывающего завода топливно-нефтехимического направления представлен на рисунке 1.

Рис.1 Поточная схема глубокой переработки нефти (один из вариантов топливно-нефтехимического направления)

К термическим процессам, использемым в нефтепереработке, обычно относят следующие: висбрекинг, термический крекинг, коксование и пиролиз. Процессы термической переработки тяжелого нефтяного сырья в промышленности применяются с 1912 г. Их первоначальным назначением было получение автомобильного бензина.

В США к 30-м годам мощности термического крекинга достигли максимальных значений, однако из-за возросших требований к качеству моторных топлив этот процесс постепенно вытеснился каталитическим крекингом и к 60м годам фактически использовались только два термических процесса – коксование и висбрекинг.

Процесс висбрекинга гудрона получил широкое развитие за рубежом в 80—90-е годы. Это связано с сокращением использования в качестве топлива прямогонных мазутов. При этом высвободившиеся ресурсы вакуумного дистиллята направляются на каталитический крекинг или гидрокрекинг, а вакуумный остаток (гудрон) является сырьем висбрекинга, который позволяет существенно снизить вязкость этого остатка. Возможен также вариант, сочетающий гидрогенизационное облагораживание вакуумного дистиллята и его последующее смешивание с продуктами висбрекинга гудрона, что позволяет получать котельное топливо с умеренным содержанием серы. В настоящем конспекте лекций из серии термических процессов будут рассмотрены только висбрекинг нефтяных остатков и пиролиз углеводородного сырья. Информацию об остальных термических процессах можно найти в учебниках, содержащихся в директории «Сканированная литература».

1.1 Висбрекинг нефтяных остатков Висбрекинг – наиболее мягкая форма термического крекинга, представляет собой процесс неглубокого разложения нефтяных остатков (мазутов и гудронов) в относительно мягких условиях (под давлением до 5 МПа и температуре 430-490°С) с целью снижения вязкости остатков для получения из них товарного котельного топлива. Процесс эндотермический, осуществляется в жидкой фазе. Возможности висбрекинга по увеличению выработки светлых нефтепродуктов ограничены требованиями к качеству получаемого остатка.

Степень превращения сырья в этом процессе минимальная, отбор светлых нефтепродуктов из гудрона не превышает 5—20%, а из мазута — 16-22%. При этом получается более 75% условно непревращенного остатка — котельного топлива.

На современных нефтеперерабатывающих заводах висбрекинг позволяет:

• уменьшить количество прямогонных дистиллятов для разбавления тяжелых, высоковязких остатков (гудронов), используемых в качестве котельного топлива;

• расширить ресурсы сырья для каталитического крекинга и гидрокрекинга;

• выработать дополнительное количество легких и средних дистиллятов, используемых как компоненты моторных и печных топлив.

Химизм процесса Большинство авторов рассматривает термический крекинг как свободнорадикальный процесс. Превращения компонентов сырья при крекинге являются совокупностью последовательных и последовательно-параллельных реакций. Ф. Раис предложил цепной механизм распада парафиновых углеводородов. Поскольку энергия связи С-С меньше, чем энергия связи С-H то первичный распад молекулы парафинового углеводорода происходит по этой связи и дает радикал, обладающий неспаренным электроном •СН3, •С2Н5, •С3Н7 и т. д.

Продолжительность существования радикалов более сложных, чем •С3Н7, при температурах крекинга ничтожно мала. Они мгновенно распадаются на более простые, которые могут вступать в реакции с молекулами углеводородов, отнимая у них водород и превращаясь, в свою очередь, в насыщенный углеводород. Например, образовавшийся радикал вступает в реакцию с новыми молекулами углеводородов. Если этот радикал имеет сложное строение, он далее распадается на более простой радикал и непредельный углеводород. Радикалы, существующие достаточно продолжительное время чтобы при данной температуре способны вступать во взаимодействие с углевородом (к ним относятся Н •, • СН3 и • С2Н5), называются свободным. Для нафтеновых углеводородов предполагается термический распад не по свободно-радикальному, а по молекулярному механизму. Хотя в отдельных случаях возможен крекинг циклопропана, циклобутана и их производных через стадию образования бирадикалов [1].

Предложен радикальный механизм распада и для голоядерных ароматических углеводородов. Образование ароматического радикала происходит в результате взаимодействия бензола (нафталина и т. д.) с атомом водорода [2].

Ароматические радикалы вступают в реакции рекомбинации, приводящие ко все большему усложнению структуры образующихся молекул и к обеднению их водородом. Поскольку связи в ароматических кольцах весьма прочны, при крекинге алкилароматических углеводородов происходит в первую очередь частичное отщепление алкильной цепи с образованием алкилароматических углеводородов более простого строения. Для алкилароматических углеводородов характерна конденсация через метильные группы, а не путем соединения бензольных колец.

Олефинам свойственны весьма разнообразные термические превращения, направление которых зависит от температуры и давления. Умеренная температура (примерно до 500°С) и высокое давление способствуют протеканию полимеризации олефинов; напротив, высокая температура и низкое давление вызывают их распад. Наряду с полимеризацией и разложением происходит циклизация с дегедрирогенизацией олефинов. Наличие насыщенных углеводородов в продуктах крекинга олефинов показывает, что при разложении не только образуются два олефина меньшей молекулярной массы, но протекает реакция перераспределения водорода с образованием систем парафин + диолефин. Последний вступает в реакции полимеризации с моноолефинами.

Установлено, что при термических превращениях углеводородов всех типов свободные радикалы наиболее легко возникают при низких давлениях и высоких температурах. Их стабильность уменьшается с увеличением длины радикала, а концентрация уменьшается с увеличением давления.

Образующиеся первичные продукты разложения при углублении крекинга вновь расщепляются или, наоборот, вступают в реакции соединения с другими углеводородами, и в результате даже при термическом крекинге индивидуального углеводорода получается весьма сложная смесь продуктов реакции. Состав этой смеси существенно усложняется, если крекингу подвергается нефтяное сырье. Следовательно, предугадать более или менее точный состав продуктов крекинга сложной углеводородной смеси не представляется возможным. Однако исследование крекинга индивидуальных углеводородов и их простейших смесей позволяет определить общий характер реакций.

Установлено, что при термическом крекинге парафиновых углеводородов практически не происходит изомеризации, что сказывается отрицательно на качестве бензинов термического крекинга, лишенных изоалканов.

Нафтеновые углеводороды в условиях термического крекинга несколько устойчивее парафиновых.

1) дегидрирование колец с образованием ароматических углеводородов:

Расщепление непредельных углеводородов происходит труднее, чем насыщенных.

Особое значение для алкенов имеют условия крекинга: при умеренных температурах и повышенных давлениях протекают реакции их полимеризации;

Повышенные температуры и низкое давление способствуют реакциям их распада на низкомолекулярные непредельные углеводороды. При очень жестких режимах процесса из непредельных могут образовываться ароматические углеводороды.

Весьма важной является способность алкенов к конденсации с ароматическими углеводородами с образованием высокомолекулярных продуктов уплотнения.

Ароматические углеводороды обладают наибольшей термической устойчивостью. Это положение относится, однако, только к так называемым голоядерным ароматическим углеводородам, т. е. не содержащим боковых цепей (например, бензол, нафталин, антрацен и др.), а также к ароматическим углеводородам с короткими боковыми цепями (толуол, метилнафталин). Ароматические углеводороды с длинными боковыми цепями легко подвергаются крекингу с образованием более простого ароматического и олефинового или парафинового углеводородов.

Особенностью ароматических углеводородов является склонность их к реакциям уплотнения с образованием конденсированных ароматических углеводородов. Реакции уплотнения могут также происходить между молекулами ароматического и непредельного углеводородов. В обоих случаях продукты уплотнения являются исходным материалом для образования смолистоасфальтовых и коксоподобных веществ. Сырье, богатое ароматическими углеводородами, является наименее желательным для переработки с получением светлых продуктов — оно требует жесткого режима проведения процесса и при этом будет обладать значительной склонностью к коксообразованию.

Характерным для протекания процесса крекинга является обогащение получаемых продуктов ароматическими углеводородами. Поскольку термическая устойчивость образующихся ароматических значительна, концентрация их в продуктах крекинга возрастает.

По данным Е. В. Смидович, начало образования продуктов уплотнения зависит от состава исходного сырья и режима. Сырье, содержащее парафиновые и алкилароматические углеводороды претерпевает вначале разложение, подготавливающее материал для последующих реакций уплотнения; таким материалом являются голо-ядерные ароматические и непредельные углеводороды.

Образование продуктов уплотнения происходит по радикально-цепному механизму через алкильные и финильные радикалы по следующей схеме:

Каждый последующий продукт уплотнения обладает все более высокими молекулярной массой и степенью ароматичности, а также уменьшающейся растворимостью в органических растворителях.

Технологическую схему установки висбрекинга определяет прежде всего назначение процесса. Существуют схемы, позволяющие получать максимальное количество котельного топлива с минимальным количеством газа и бензина. Имеются схемы, обеспечивающие производство значительного количества легких дистиллятов типа дизельного топлива.

Процесс отличается простым технологическим оформлением. В промышленности применяют в основном две разновидности висбрекинга: с использованием (рис. 1.1) выносной реакционной камеры (сокер-камеры) и печной (рис.

Рис. 1.1 Принципиальная технологическая схема установки висбрекинга с сокер-камерой I – экстракты или крекинг-остатки, II – вода или водяной пар, III – водяной пар.

Рис. 1.2 Принципиальная технологическая схема установки печного висбрекинга (обозначения теже, что на рис 1.1) Печной крекинг представляет собой высокотемпературный процесс с малым временем контакта, а крекинг с сокер-камерой — низкотемпературный процесс с большим временем контакта.

С начала 80-х годов все более широкое распространение получает схема с выносными реакционными камерами. Фирмами Шелл и Луммус построены десятки установок, использующих такие камеры. Применение реакционных камер позволяет использовать печь меньшей тепловой мощности, что упрощает утилизацию тепла дымовых газов, приводит к меньшему количеству вырабатываемого водяного пара.

Фирма Луммус отмечает следующие преимущества процесса висбрекинга с реакционной камерой, по сравнению с обычным (печным):

Снижение капитальных затрат на 10—15%; меньший размер печи; меньшие размеры оборудования для утилизации тепла дымовых газов; более низкий перепад давления и меньший расход топлива в печи; большие выходы продуктов и лучшая селективность; большая длительность межремонтного пробега — до 1 года; меньшая чувствительность к авариям.

Одним из решающих преимуществ, определяющих интенсивное внедрение процесса висбрекинга с реакционной камерой, является уменьшение энергетических затрат. В качестве наиболее эффективной конструкции зарекомендовали себя вертикальные цилиндрические реакционные камеры. Применение указанных камер позволяет снизить глубину превращения сырья в реакционном змеевике и довести ее до нужной величины в сокер-камере.

Если при печном висбрекинге сырье необходимо нагревать в печи до температуры 480°С, то для достижения той же глубины превращения при висбрекинге с реакционной камерой достаточно иметь температуру 450-455°С.

В отличие от традиционных реакционных камер, существующих на установках термического крекинга, в которых продукты реакции проходят сверху вниз, в данном случае продукт из печи поступает снизу, а выходит через верх, что позволяет значительно увеличить время пребывания жидкой фазы в зоне реакции и приводит к увеличению степени превращения исходного сырья. Материальный баланс висбрекинга с реакционной камерой аналогичен материальному балансу висбрекинга, осуществляемому в трубчатом змеевике.

Свойства котельного топлива, получаемого при висбрекинге в реакционной камере и трубчатом змеевике, практически одинаковы, но вследствие более высоких температур, применяемых при проведении процесса в реакционном змеевике, и наличия значительных перегревов пристенной пленки жидкости стабильность котельного топлива несколько выше при получении топлива при висбрекинге с использованием реакционной камеры.

Недостатком варианта с выносной реакционной камерой является сложность очистки печи и самой камеры от кокса. Такая очистка проводится реже, чем на установке со змеевиковым реактором, однако для нее требуется более сложное оборудование. В настоящее время фирмы Фостер Уилер и ЮОПи предлагают совместно разработанный вариант змеевикового висбрекинга. Лицензиаром процесса висбрекинга с выносной реакционной камерой является фирма Шелл, по технологии которой также сооружено значительное количество промышленных установок.

Параметры процесса Поскольку основным назначением процесса висбрекинга является снижение вязкости, в дальнейшем мы будем рассматривать влияние различных факторов именно на этот параметр.

Склонность остатков к термическому крекингу связана с их способностью к разделению на смолы и асфальтены и определяет жесткость условий проведения висбрекинга. В процессе висбрекинга асфальтены относительно слабо подвергаются трансформациям, тогда как смолы превращаются в более легкие углеводороды, имеющие характеристики дистиллятов. После висбрекинга отношение асфальтены/смолы в остатке возрастает. Если крекинг проводится в жестких условиях, то количество смол становится недостаточным для диспергирования асфальтенов в жидком топливе. В таких системах асфальтены оседают в емкостях, и подобные остатки не могут быть эффективно использованы для производства котельного топлива. Чем выше содержание асфальтенов в сырье и меньше в нем смол, тем меньше снижение вязкости в остатке висбрекинга.

Природа происхождения исходного сырья оказывает существенное влияние как на уровень снижения вязкости, так и на материальный баланс висбрекинга:

-сырье с одинаковым содержаниеи асфальтенов может иметь одинаковый уровень снижения вязкости при различной глубине превращения исходного продукта;

-чем выше содержание асфальтенов в исходной сырье, тем меньше допустимая глубина превращения, обеспечивающая достаточную стабильность котельного топлива.

-наибольшее снижение вязкости наблюдается при висбрекинге фракций, имеющих высокую исходную вязкость. Это фракции, выкипающие в пределах температур выше 490-540°С.

-висбрекинг фракции, выкипающей в пределах 400-490°С и имеющей низкую исходную вязкость, практически не приводит к уменьшению вязкости остатка.

Важнейшими факторами термических процессов являются температура и продолжительность реакции. Эти факторы в некоторых пределах температур взаимозаменяемы, т. е. можно получить данную вязкость сырья при высокой температуре и непродолжительном времени его пребывания в зоне крекинга или, напротив, при более мягком температурном режиме, но длительном времени реакции.

Сравнительно небольшие изменения температуры вызывают значительное ускорение или замедление крекинг-процесса. Приближенно зависимость между временем (или скоростью реакции) и температурой крекинга подчиняется закону химических реакций Вант-Гоффа, а именно: с повышением температуры на 10°С скорость реакций крекинга удваивается (т. е. время крекинга сокращается вдвое).

Термическое разложение начинается уже при 300—350°С, заметно проявляется при температуре около 400°С и быстро нарастает при 450°С и более высоких температурах. Скорость крекинга зависит от температуры и характера сырья. Повышение температуры при постоянном давлении и постоянной степени превращения приводит к повышению содержания в продуктах легких компонентов и к снижению выхода тяжелых фракций. Это происходит потому, что температурные коэффициенты для реакций крекинга, приводящих к образованию низкокипящих углеводородов, больше, чем для вторичных реакций, в результате которых образуются высококипящие продукты. Опыты на пилотных установках БашНИИНП показали, что наибольший уровень снижения вязкости наблюдается при температуре 450-460°С, с дальнейшим ростом температуры вязкость остатка снижается незначительно.

Целым рядом исследований предложено проводить висбрекинг гудрона в присутствии веществ, которые, воздействуя на сырье, понижают температуру реакции. Такие вещества являются источником водорода, снижающего долю побочных реакций поликонденсации и реакций, увеличивающих коксообразование в системе. В качестве добавок к гудрону используют нефтяные фракции, индивидуальные химические вещества, такие как метанол, тетралин, промышленные отходы типа щелочных сточных вод и металлоорганические соединения, а также другие доноры водорода.

Влияние времени на изменение вязкости остатка в процессе висбрекинга можно проследить по изменению молекулярной массы.

Изменение молекулярной массы остатка после термообработки носит экстремальный характер; величина минимального снижения молекулярной массы практически не зависит от температуры. Отличительным является лишь то, что с ростом температуры минимум вязкости достигается значительно быстрее.

В процессе висбрекинга роль давления невелика — повышенное давление лишь немного увеличивает пропускную способность установки. В соответствии с химизмом процесса пониженное давление способствует ускорению реакций, протекающих при термическом крекинге. Однако его поддерживают достаточно высоким (1,5-2,5 МПа) для проведения процесса в жидкой фазе. При появлении паровой фазы резко возрастают скорости образования коксоподобных веществ. Процессам термического крекинга, протекающим в жидкой фазе, соответствует тяжелое сырье — нефтяные остатки, тяжелые дистилляты. Если предусмотрено неглубокое разложение сырья, для снижения вязкости остатка в процессе висбрекинга, конечный продукт содержит небольшое количество легких фракций (тяжелая бензиновая и дизельная фракции).

Продукты процесса висбрекинга Полученный на установках висбрекинга газ характеризуется значительным содержанием метана и этана и умеренным содержанием непредельных (25-30%) и обычно используется после очистки от сероводорода в качестве топлива для собственных нужд. Выход газа на сырье составляет 1,5 -2,5%.

Вследствие олефинового характера бензинов, стабильность их низкая. С целью повышения октанового числа тяжелая часть бензина может направляться после предварительной гидроочистки от олефинов и серы на каталитический риформинг.

Легкая часть бензинов с октановым числом 80 по исследовательскому методу после очистки от сернистых соединений может добавляться в товарные бензины. Иногда весь бензин висбрекинга направляется на каталитический крекинг, где повышаются его стабильность и октановое число. Выход бензина на сырье составляет 3,5 -5,0% масс, содержание серы в нем 0,7-0,9%, в том числе меркаптановой – до 0,2%.

Газойль висбрекинга также не стабилен и под действием света и воздуха может окисляться, полимеризоваться. Поэтому при использовании газойлей в качестве моторных топлив требуется их гидроочистка. Выход легкого газойля на сырье составляет 4,5 -5,5% масс. при содержании серы 0,8-1,2 %.

В процессе висбрекинга за счет образования значительного количества газойлевых фракций (27% мас.), выкипающих в пределах 180-500 оС, вязкость получаемого котельного топлива снижается по сравнению с исходным сыреем более, чем в 6-10 раз. Одновременно снижается температура застывания на 6-10 о С. Одним из показателей, характеризующих качество остатка, является его стабильность. Под стабильностью обычно понимается способность топлива храниться длительное время без образования осадка (физическая нестабильность). Осадок образуется за счет выпадения асфальтенов, что может привести к нежелательным последствиям в процессе его перекачки, хранения и т. д. Стабильность котельного топлива зависит от целого ряда факторов: чем больше в исходном сырье асфальтенов, тем меньшая допустимая глубина превращения сырья висбрекинга; чем более ароматизирован продукт, тем выше устойчивость коллоидной системы против расслоения, и наоборот, продукты с высоким содержанием парафинов являются неустойчивыми системами, и асфалътены легко образуют отдельную фазу. Аналогичные закономерности наблюдаются не только в процессе висбрекинга.

Для остатка висбрекинга характерна и химическая нестабильность, в результате которой за счет протекания реакций полимеризации непредельных углеводородов его вязкость повышается при хранении.

На некоторых НПЗ вакуумные отгоны продуктов висбрекинга используются как компонент сырья для каталитического крекинга. Иногда остаток висбрекинга направляется на получение водорода или синтез-газа. И все же в основном остатки висбрекинга используются как котельное топливо или его компонент. Но в летний период реализация данного продукта затруднено в связи с сезонным снижением его потребления. Одним из вариантов использования остатка может быть вовлечение его в производство битума, потребность в котором в летний строительный сезон весьма высокая.

На рисунке 1.3 приведено комбинирование процессов висбрекинга, термического крекинга и вакуумной перегонки их тяжелых остатков.

Рис. 1.3 Принципиальная технологическая схема комбинированной установки термического крекинга – висбрекинга – вакуумной перегонки продуктов 1 – углеводородные газы, 2 кислая вода, 3 – бензиновая фракция, 4 – легкий газойль, 5 – водяной пар, 6 – газы разложения, 7 – вакуумный остаток.

Таким образом, процесс висбрекинга может включаться в схему НПЗ в виде самостоятельной установки и служить в основном для получения котельного топлива из тяжелых нефтяных остатков, или входить в состав комплексов глубокой переработки нефти.

В настоящее время пиролиз углеводородов является основным источником не только производства олефинов – этилена и пропилена, но и бутадиена, бутиленов, бензола, ксилолов, циклопентадиена, циклопентена, изопрена, стирола, нафталина, нефтеполимерных смол, сырья для производства технического углерода, растворителей, специальных масел.

В бензиновой фракции пиролиза присутствует до 30% (масс.) бензола, 6толуола, 2-2,5 % ксилолов, около 1 % стирола. Фракция С5, содержит до 30% циклопентадиена, включая димеры, и около 10% изопрена. Тяжелая смола (температура кипения 200С) имеет в своем составе нафталин и его гомологи, а также небольшое количество тетралина и конденсированных ароматических углеводородов. Кроме того, смола пиролиза содержит некоторое количество неароматических углеводородов, включая олефины и диены.

Получение ряда химических продуктов из смолы пиролиза успешно конкурирует с традиционными процессами их производства. Так, себестоимость бензола в 1,3 – 1,5 раза ниже, чем в каталитическом риформинге. За счет этого себестоимость этилена также снижается (на 20 – 30 %).

Основным сырьем процесса пиролиза являются этан, пропан, бутаны, содержащиеся в попутных и в нефтезаводских газах, газовые бензины и бензины прямой перегонки нефти, а также рафинат каталитического риформинга, остающийся после удаления ароматических углеводородов из катализата. В последнее время в связи с дефицитом и высокой стоимостью бензиновых фракций в качестве сырья пиролиза применяют также средние и тяжелые нефтяные фракции и даже сырую нефть.

Теоретические основы процесса пиролиза. Производство низших олефинов основано на термическом разложении углеводородного сырья с последующим низкотемпературным разделением полученных продуктов.

Все реакции, протекающие при пиролизе, можно разделить на первичные и вторичные.

Основная первичная реакция – разложение исходного углеводорода с образованием водорода, низших алканов, этилена, пропилена и других олефинов.

2) гидрирование и дегидрирование олефинов с образованием парафинов, диенов, ацетилена и его производных;

3) конденсация отдельных молекул с образованием более высокомолекулярных углеводородов, а также более стабильных структур (ароматических углеводородов, циклодиенов и др.).

Все эти реакции при пиролизе протекают одновременно, поэтому особенно важным становится создание таких условий, при которых вторичные реакции были бы сведены к минимуму.

Ненасыщенные углеводороды только при достижении достаточно высокой температуры становятся термодинамически более стабильны, чем соответствующие им парафины. Для этилена, например, эта температура составляет 750С.

В первом случае при расщеплении (крекинге) молекулы исходного парафина:

С(m+n)H2(m+n)+2 CmH2m + CnH2n+2 DGT = 75200 – 142T (кДж/моль) и во втором при дегидрировании:

СрH2р+2 CрH2р + H2 DGT =125400 – 142T (кДж/моль) Как известно, термодинамическая стабильность определяется температурой, при которой изменение энергии Гиббса G=H —TS (1) где Н — тепловой эффект реакции, Т — температура, S — изменение энтропии, становится равным нулю или отрицательным.

Обе реакции эндотермичны и протекают с увеличением объема. Чтобы сместить равновесие в сторону расщепления сырья и образования олефинов, необходимо увеличить температуру и снизить давление. Но если крекинг углеводородов происходит с заметной скоростью уже при температуре 500С, то вклад реакции дегидрирования в образование продуктов пиролиза становится ощутимым лишь начиная с 800–850С. По экономическим соображениям для достижения оптимального парциального давления углеводородов применяют не вакуум, а разбавление исходной смеси водяным паром. Последнее приводит к некоторым как положительным, так и отрицательным последствиям.

1. со снижением удельного количества тепла, необходимого для нагрева труб в реакторе за счет введения части энергии с водяным паром непосредственно в сырье;

3. с некоторым снижением коксообразования в ходе реакции С + Н2О = СО + Н2 (не играющим, однако, определяющей роли при температурах до 1000С);

4. со снижением коксоотложения за счет турбулизации потока углеводородов в реакционном змеевике;

5. с уменьшением вероятности протекания вторичных реакций, вследствие разбавления реакционной смеси.

К отрицательным последствиям относятся затраты энергии на нагрев до температуры реакции, рост инвестиций, связанных с необходимостью увеличения размеров печи и усложнения системы разделения продуктов пиролиза. Необходимое количество вводимого пара зависит в основном от молярной массы исходных углеводородов и лежит в интервале 0,25-1 тонн на тонну сырья соответственно для этана и тяжелых нефтяных фракций.

Итак, основная реакция пиролиза (особенно в случае использования в качестве сырья нефтяных фракций) – крекинг углеводородной цепи с образованием олефина и парафина. Ее первичные продукты могут претерпевать дальнейшее расщепление (вторичный крекинг). В конечном итоге получается смесь легких углеводородов, богатая олефинами. Дегидрирование соответствующих олефинов приводит к образованию ацетилена и его производных, а также диеновых углеводородов, обладающих высокой реакционной способностью. Последние в условиях пиролиза вступают в реакции циклизации. При дегидрировании из циклоолефинов получаются арены, в частности бензол, являющиеся, в свою очередь, предшественниками образования полициклических углеводородов и кокса. Протеканию последних реакций (значит и отложению кокса) благоприятствует повышение температуры до 900-1000С.

Другой нежелательный процесс – полимеризация ненасыщенных углеводородов. Она в условиях пиролиза практически не протекает. Эта реакция экзотермична и начинается лишь при понижении температуры. Быстрое преодоление температурной области, где она уже возможна, и скорость ее еще высока – основная задача стадии охлаждения (закалки) газов пиролиза.

С увеличением времени пребывания сырья в зоне высоких температур увеличивается вклад нежелательных последовательных превращений целевых продуктов. Поэтому для повышения избирательности (селективности) пиролиза надо уменьшать время контакта. При этом, однако, снижается глубина переработки сырья за проход, а значит, и выход целевых продуктов.

Не только выход продуктов пиролиза, но их состав являются функцией многих параметров, в первую очередь природы сырья и условий осуществления процесса.

Термическое разложение углеводородного сырья происходит по радикально-цепному механизму. Начальное зарождение цепи происходит под влиянием температуры при гомолитическом разрыве наиболее слабой С–С связи с образованием свободных радикалов, которые способны образовывать новый свободный радикал, отрывая атом водорода от молекулы исходного углеводорода.

• • СН3 + R-CH2-CH2–CH2-CH2–CH 2-CH2-CH3 CH4 + R-CH2-CH2–CH2-CH2–CH2-CH-CH3 или • • С2Н5 СН2=СН2 + Н, • Н + парафин Н2 + свободный радикал В общем случае образующиеся первичные радикалы с длинной цепью не устойчивы. Их стабилизация происходит в основном за счет расщепления связи С-С, находящейся в – положении к радикальному центру, что отвечает общему принципу наименьшего изменения структуры:

• • R-CH2-CH2-CH2-CH2-CH-CH2-CH3 R-CH2-CH2-CH2 + CH2=CH-CH2-CH3 Эта реакция – распада повторяется до тех пор, пока не образуется сравнительно устойчивый радикал – метильный или этильный, который, в свою очередь, становиться источником зарождения новой цепи. Вероятность образования тех или иных радикалов на стадии продолжения цепи зависит от строения атакуемой молекулы углеводорода. Отрыв атома водорода от третичного атома углерода происходит легче, чем от вторичного и, тем более, первичного атома.

В общем случае выход увеличивается с ростом содержания парафинов (нормального строения) в сырье, то есть зависит и от химического состава сырья.

Термическая стабильность углеводородов возрастает в ряду парафинынафтеныарены и уменьшается с ростом длины цепи.

Многообразие протекающих вторичных реакций затрудняет моделирование процесса, особенно при усложнении природы сырья и увеличении степени

9) СН3 + С2Н5 С3Н8 • 10) 2С2Н5 С4Н10 Приведенный механизм распада пропана соответствует составу продуктов только на начальных стадиях процесса.

Большое влияние на состав продуктов пиролиза оказывает температура.

При низких температурах, соответствующих процессу крекинга, проявляется большая роль реакций (За) и (4а) по сравнению с (Зб) и (4б), так как энергия разрыва связи С—Н у первичного углеродного атома больше, чем у вторичного. Соответственно образуется больше пропилена по реакции (6) и меньше этилена по реакции (7). Кроме того, при пиролизе углеводородов С4 и выше этильный радикал образуется не только на стадии инициирования, но и на стадии продолжения цепи. В этом случае состав продуктов пиролиза в значительной степени зависит от соотношения скоростей реакций (2) и (5). При низких температурах большую роль играет реакция (5), энергия активации которой составляет около 45 кДж/моль, а роль реакции (2), имеющей энергию активации 168 кДж/моль, значительно меньше. В результате образуется больше этана и меньше этилена. При высоких температурах, напротив, образуется больше этилена, а пропилена и этана меньше. Это объясняется тем, что в соответствии с уравнением Аррениуса, с ростом температуры в большей степени ускоряются реакции, которые имеют более высокую энергию активации, а именно (2), (Зб) и (4б).

Существенное значение для процесса пиролиза имеет стадия обрыва цепи.

Порядок реакции по исходному углеводороду зависит от того, которая из трех реакций обрыва цепи (8), (9) или (10) превалирует. Он может составлять 0,5, 1 или 1,5.

Причины торможения распада парафинов олефинами (пропиленом и изобутеном) объясняют двумя механизмами.

Для термического крекинга, где преобладает радикал •CH3 торможение объясняют, так называемым, аллильным механизмом.

Согласно ему радикал •СН3 отрывает атом водорода от пропилена или изобутилена с образованием малоактивного аллильного радикала:

12) СНЗ + СНЗ–С=СН2 СН4 + СН2–С=СН2 СН3 СН3 Аллильный радикал не способен продолжать цепь распада, вследствие чего замена радикала •СН3 аллильным приводит к торможению распада парафина. При температурах пиролиза торможение является следствием присоединения водорода к олефину с образованием колебательно-возбужденной частицы, которая распадается на этилен и метильный радикал (работы Р. А. Калиненко):

13) СНЗ–СН=СН2 + Н [СН3–СН2–СН2]• СН3–СН2–СН2 СН2=СН2 + СНЗ Торможение распада является следствием замены очень активного радикала Н• менее активным радикалом •СНЗ. Установлено также, что парафин ускоряет распад олефина за счет той же реакции (13).

В смесях парафинов с олефином наблюдается предел торможения, который соответствует содержанию 30 – 50% олефина в смеси. Это объясняется тем, что по мере увеличения количества олефина растет концентрация радикалов •СН3, которая компенсирует убыль радикалов Н•. Наиболее сильно торможение проявляется при пиролизе этана, так как цепь ведет радикал Н• (скорость реакции снижается в 7 – 10 раз). Для пропана скорости распада снижаются в 2 – 2,5 раза, для н-бутана в 1,2 – 1,3 раза. Это объясняется тем, что при распаде этих углеводородов цепь ведут радикалы Н• и •СН3. Кроме того, все углеводороды, кроме этана, образуют пропилен. Торможение распада пропана и нбутана является результатом взаимодействия пропилена, как с радикалом Н•, так и с радикалом СН3• по реакции (11). Изотопным методом Р. А. Калиненко было установлено, что при высоких температурах (800 – 840С) в смесях нбутана с пропиленом около 60 % пропилена реагирует по реакции (13) и 40 % — по реакции (11). По мере увеличения молярной массы парафина или олефина степень ингибирования снижается и практически перестает сказываться.

Выше были рассмотрены в основном реакции распада, наблюдаемые на начальных стадиях процесса, без учета вторичных реакций и реакций уплотнения, которые играют большую роль в процессе пиролиза. По мере углубления процесса в реакционной смеси появляется все больше продуктов уплотнения и кокса, мешающего нормальному осуществлению процесса. В реакциях уплотнения принимают участие олефины и ароматические углеводороды. В настоящее время отсутствует единая точка зрения на механизм образования высокомолекулярных углеводородов и кокса.

Предполагается, в частности, что кокс образуется в результате реакций полимеризации, дегидроциклизации и деструктивной поликонденсации, которые, в конечном счете, ведут к образованию сложных полициклических структур, обедненных водородом:

Тем не менее, считается что кокс, отлагающийся в реакторе пиролиза, может образовываться двумя путями:

А) гетерогенным разложением молекул углеводородов на стенке реактора или на частицах металла, извлеченных из металлической поверхности и остающихся на поверхности растущего слоя кокса;

Б) при реакциях присоединения в объеме реактора, которым особенно благоприятствуют полициклические ароматические углеводороды, содержащиеся в сырье (например, газойлевой фракции).

В пользу представления о двух различных путях образования кокса при пиролизе углеводородов свидетельствует, в частности, разнообразие типов и структур кокса, формирующегося при термическом разложении жидких и газообразных углеводородов. При температурах промышленного пиролиза – от 650 до 900С – может формироваться кокс трех типов, нитевидный ленточный (дендрит) или игольчатый, слоистый анизотропный, образующий прочную пленку, и аморфный (“пушистый”), изотропный, образующий относительно непрочную пленку черного цвета.

Количественное соотношение двух путей образования кокса зависит от условий ведения процесса (структура и парциальное давление паров исходных углеводородов, температура реакции, состояние стенок реактора и др.). Кокс, образованный каталитическими реакциями (нитевидный), очевидно, преобладает при относительно низких температурах и на ранних стадиях процесса. При более высоких температурах и значительных степенях превращения исходного сырья, по-видимому, возрастает значение конденсационного механизма (получается слоистый анизотропный и аморфный изотропный кокс), причем тип кокса зависит от парциального давления углеводородов, от свойств поверхности, на которой кокс отлагается, строения исходных углеводородов, температуры и ряда других факторов. С увеличением парциального давления углеводородов повышается доля образующегося аморфного кокса.

Технологические параметры процесса. Термодинамика и кинетика диктуют следующие условия проведения пиролиза:

––минимальное время охлаждения газов пиролиза, выходящих из реактора, для предотвращения нежелательной полимеризации олефинов.

Как известно пиролиз сырья осуществляется в змеевиках трубчатых печей при температуре 700-1000°С. Важнейший параметр процесса – температура – фактор, определяющий как степень разложения исходного вещества, так и распределение продуктов пиролиза. С увеличением температуры до 900оС повышаются выходы низших олефинов, метана и водорода и снижается выход алканов.

Другим важным параметром пиролиза является время пребывания (время контакта) пиролизуемых веществ в зоне реакции. Выход водорода и метана с увеличением времени пребывания непрерывно возрастают. Выход же этилена и некоторых других продуктов в зависимости от времени пребывания проходят через максимумы, характерные для каждой температуры в реакторе.

Таким образом, увеличение температуры пиролиза с одновременным соответствующим сокращением времени пребывания способствует достижению более высоких выходов целевых продуктов, в том числе этилена.

Существенное влияние на результаты пиролиза оказывает профиль распределения температур реагирующих продуктов по длине реакционного змеевика. Более интенсивный нагрев сырья в начале змеевика приводит к возрастанию выходов этилена, а при более интенсивном нагреве в конце увеличивается выход пропилена, бутенов, бутадиена 1-3, ароматических углеводородов и снижается выход этилена.

Важным фактором, влияющим на селективность пиролиза, является давление в зоне реакции, точнее – парциальное давление углеводородной части реагирующего потока. Этилен и другие низшие олефины образуются в результате первичных реакций первого кинетического порядка. Степень превращения сырья по этим реакциям от давления не зависит, но олефины реагируют дальше, превращаясь в продукты полимеризации или конденсации и степень их превращения по этим направлениям пропорциональна парциальному давлению. Снижение давления на выходе из реактора благоприятно влияет на выходы олефинов С4 и бутадиена 1-3. Выход этилена меняется мало, а выход метана снижается. Расчёты показывают, что оптимальное давление на выходе из реактора в среднем находится в пределах 160-200 кПа. Парциальное давление углеводородов в зоне реакции зависит также от перепада давления в потоке по длине реактора, который в свою очередь зависит от расхода сырья и его физических свойств, размеров и конструкции реактора.

Относительно лёгким и часто применяемым способом понижения парциального давления является разбавление углеводородного сырья водяным паром. С увеличением разбавления углеводородов водяным паром снижается коксообразование в реакторе. В то же время увеличение разбавления сырья паром приводит при равном расходе сырья к увеличению капитальных вложений в отделение печей пиролиза и закалочного охлаждения, расхода топлива на печи пиролиза.

Таким образом, от выбора конструкции реактора и режима в нём, обеспечивающего жёсткость и достаточную селективность зависят, как выходы целевых продуктов, так и экономические показатели работы всей установки.

Технологическая схема узла пиролиза и первичного фракционирования. В данном курсе рассматривается только технологическая схема узла пиролиза и первичного фракционирования (рис. 1.4). Схема узла газоразделения подробно разбирается во время изучения дисциплины «Спецкурс ТПНГ».

Рис 1.4 Принципиальная технологическая схема установки пиролиза (без узла газоразделения): потоки 1 – вода, 2 – водяной пар, 3 – закалочное масло, 4 – пирогаз, 5 – подсмольная вода, 6 – приробензин, 7 – тяжелая смола пиролиза.

Современные тенденции развития процесса пиролиза. Методы снижения потребления топливно-энергетических ресурсов на установке К настоящему времени единственным освоенным и широко распространенным промышленным методом является пиролиз в трубчатых печах. Его качественное развитие направлено пока в основном по пути совершенствования существующей технологии. Однако, несмотря на достигнутый прогресс, связанный с изменением конструкции змеевика и конвекционной зоны печи, использованием современные закалочно-испарительных аппаратов (ЗИА), возможности этого процесса ограничены, особенно при использовании сырья, склонного к повышенному коксообразованию.

Первые печи пиролиза первоначально ничем не отличались от нагревательных печей нефтезаводских установок. Они имели два потока, змеевик был выполнен в виде настенного экрана. Это не могло обеспечить высокую теплонапряжённость поверхности труб из-за большой неравномерности подвода тепла. Кроме того, топливо в таких печах сжигалось в факельных горелках, при этом создавалось неуправляемое распределение температуры внутри печи, в результате чего возникали частые пережоги труб даже при невысоких температурах пиролиза. Для таких печей температура на выходе не превышала 720С, коэффициент теплопередачи внутри змеевика 650-750 Вт/(м2·К), а время пребывания потока составляло 2-3 с. В таких печах пиролизу подвергали, как правило, этан и другие углеводородные газы. Для того чтобы перейти на жидкое сырьё, необходимо было упорядочить сжигание топлива в печи. С этой целью были разработаны панельные горелки беспламенного горения, которые могут создавать сплошную излучающую поверхность. При размещении змеевика в середине топочной камеры на подвесках («ёлочках») удалось повысить коэффициент теплоотдачи в змеевике до 950-1050 Вт/(м2·К), однако время пребывания потока оставалось довольно большим 1,2-1,6 с.

Для того чтобы снизить время пребывания потока в змеевике и повысить теплонапряжённость, начали использовать трубы изготовленные методом центробежного литья из более жаростойких сталей (Х25Н20, Х25Н35). Поскольку эти трубы более хрупкие, то от горизонтальных змеевиков перешли к вертикальным, свободно висящим змеевикам (так же при вертикальном расположении труб практически нет застойных зон). Такую конструкцию змеевиков имеет печь SRT-I разработанная фирмой «Lummus». Змеевики печи SRT-I расположены однорядно в сравнительно узкой топочной камере, выше которой находится секционная конвекционная зона (рис. 1.5). Всего в топочной камере располагается 4 змеевика, выходы из которых попарно соединены для подачи пирогаза в ЗИА. В таких печах пиролизу подвергают как бензиновые фракции, так и рецикловый этан при температуре около 830°С. Перепад давления в змеевике составляет около 0,15 МПа, время пребывания потока в нём около 0,75с.

Рядом фирм разработаны печи с вертикальными двухрядно расположенными змеевиками («Selas», «KTI») [3]. Такие печи боле компактны, однако неравномерность облучения змеевиков в них выше. На рисунке 1.6 показано расположение змеевиков в топочной камере печи фирмы «Selas».

Рисунок 1.6 – Расположение змеевика в топочной камере печи пиролиза фирмы «Selas»:

Основные характеристики змеевика – диаметр, нагрузка по сырью, время пребывания потока в нём и температура стенки тесно связаны между собой.

При сокращении времени пребывания повышается температура стенки. Для её снижения необходимо увеличить удельную поверхность змеевика, то есть поверхность на единицу объема. Это достигается переходом на трубы малого диаметра или выполнением змеевика ветвящимся.

По пути уменьшения диаметра труб пошли такие фирмы как «Stone and Webster» (печь USC) и «Kellog» (многопоточная печь «Millisecond»). Их змеевики имеют внутренний диаметр труб менее 50мм, и представляют собой прямые трубы, соединённые на входе коллектором, через который поступает сырьё с паром. На выходе два потока объединяются и поступают в ЗИА типа «труба в трубе». Тем самым они обеспечивают малое время пребывания потока в змеевике от 0,03 до 0,15 с. На рисунке 1.7 представлена схема печи «Millisecond». К недостаткам таких печей относится неравномерность распределения потоков по змеевикам, расход сырья и пара не может измеряться для каждого потока отдельно (только для группы из 4-8 змеевиков), температура на выходе из каждого змеевика не измеряется. Трубы малого диаметра очень чувствительны к уменьшению сечения за счёт слоя кокса: резко увеличивается их сопротивление. Трудно провести выжиг кокса во всех трубах за короткое время из-за неравномерной закоксованности.

Такие фирмы как «Lummus» и «KTI» предпочли переход от змеевиков постоянного диаметра к разветвлённым. На рисунке 1.8 представлена эволюция змеевиков типа SRT фирмы «Lummus». Змеевик печи SRT-II состоит из труб трёх диаметров. Четыре параллельных потока, пройдя трубы малого диаметра, попарно объединяются и, пройдя трубы среднего диаметра, поступают в одну общую трубу. Общее время пребывания потока в таком змеевике составляет 0,6с. При этом выход этилена по сравнению с SRT-I увеличивается на 1,5 % (6% отн.) при сохранении выхода пропилена.

1- подовые горелки; 2- система ЗИА первой ступени; 3- дымовая труба; 4дымосос; 5- конвекционная зона; 6- многопоточный змеевик.

Змеевик печи SRT-III короче змеевика печи SRT-II за счёт меньшей длины труб большого диаметра и имеет трубы несколько меньшего диаметра, при этом выхода этилена увеличивается на 1,5 %, но выход пропилена снижается на 1 %. Змеевик SRT-IV состоит из труб четырёх диаметров. По сравнению с печью SRT-III он не даёт существенного сокращения времени реакции (0,35 против 0,4с), но имеет значительно большую поверхность на единицу объема змеевика, что обеспечивает достижение более высокой температуры при той же температуре стенки.

Фирма «KTI» так же сменила змеевик постоянного диаметра на разветвлённый, у которого выходная часть выполнена из труб несколько большего диаметра, чем входная (так называемый «конусный» змеевик). Это позволяет уменьшить сопротивление и чувствительность змеевика к коксованию. Разновидности змеевиков печей фирмы «KTI» представлены на рисунке 1.9.

Первый тип змеевика (GK-II) имел вначале два параллельных хода из 4-6 труб, которые после объединения переходят в две выходные трубы большего диаметра. Затем змеевики стали четырёхпоточными на входе и состоящими из труб трёх различных диаметров (GK-IV). Особенность печей фирмы «KTI» состоит в двухрядности расположения всего (однопоточного) или части (многопоточной) змеевика и подача пирогаза в ЗИА от восьми (для МК) или четырёх (для GK-II и GK-IV) змеевиков.

Очевидно, что наилучшим вариантом печи для пиролиза фракции гидрогенизата процесса «Гидроконвертор» с температурой начала кипения 340°C будет являться печь голландской фирмы «KTI», оборудованная восемью змеевиками типа GK-IV, позволяющими вести процесс пиролиза 21-24 т/ч тяжёлого сырья при температуре до 870°С, времени контактирования 0,35 с и давлении на выходе из змеевика 0,16 МПа. При этом обеспечивается выход этилена до 35 % (с учётом рецикла этана). Для переработки 78,5 т/ч сырья при разбавлении 60 % водяного пара установка должна иметь 78,5·1,6/216 печей для пиролиза фр.

При повышении температуры пиролиза до 870°С и сокращении времени реакции до 0,4 с и ниже температура дымовых газов на выходе из топочной камеры превышает 1050°С. Так как при этом дымовой газ несёт большое количество тепла то в конвекционную зону добавляется секция перегрева пара высокого давления.

Для повышения термического КПД печи пиролиза необходимо снижать температуру дымовых газов перед выбросом в атмосферу. Так при температуре его 100-120°С КПД печи может достигать 93-94 %, однако конечная температура дымовых газов ограничивается точкой росы. При этом дымовая труба за счёт естественной тяги не может создать необходимое разряжение, поэтому необходимо использовать дымососы.

Стены топочной камеры печи фирмы «KTI», где расположены горелки, ограждены металлическим листом. Воздух, проходя между ними и стеной топочной камеры, нагревается, и горячим (100°С) поступает в горелки, при этом расход топлива сокращается на 5 %. Как видно эта печь имеет мощную систему рекуперации тепла, позволяющую увеличить КПД до 95 %. Для контроля процесса и управления печью используется мощный электронно-вычислительный комплекс.

Как уже говорилось, пребывание продуктов пиролиза в зоне высоких температур приводит к уменьшению содержания в них целевых продуктов – олефинов и диенов – в результате их участия во вторичных реакциях конденсации и полимеризации. Поэтому необходимо осуществить быстрое охлаждение пирогаза (закалку) до температуры, при которой прекращаются нежелательные реакции.

Применение прямого впрыска воды увеличивает продуктовый поток и соответственно стоимость последующего его разделения и очистки воды, а тепло пирогаза при этом почти не утилизируется. Поэтому наибольшее применение получил второй способ с использованием закалочно-испарительных аппаратов (ЗИА), в которых быстрое охлаждение пирогаза осуществляется за счёт испарения воды с получением водяного пара высокого давления.

1) минимальное время пребывания пирогаза (0,01-0,03 с) от выхода из змеевика до момента достижения температуры, при которой прекращаются вторичные реакции;

2) минимальный перепад давления (до 0,03 МПа для чистой поверхности), что соответствует селективности пиролиза;

3) температуру стенки охлаждающей поверхности, превышающую температуру конденсации тяжёлых продуктов пиролиза, которая зависит от вида используемого сырья.

В настоящее время разработано большое количество различных конструкций ЗИА. Наиболее эффективной при переработке тяжёлого сырья в многопоточной печи является двухступенчатая закалочная схема. Первая ступень представляет собой ультраселективный закалочно-испарительный аппарат «USX»

Типа «труба в трубе» представленный на рисунке 1.10. Большой диаметр внутренней трубы (90-140 мм) обеспечивает незначительный перепад давления 0,01 МПа. Время пребывания пирогаза в зоне температур – от выхода из змеевика до прекращения реакции пиролиза – составляет менее 0,015с. Длина аппарата составляет 10-13 метров.

Каждый из восьми змеевиков печи фирмы «KTI» соединяется с одним аппаратом «USX» затем потоки объединяются в два, каждый из которых поступает в отдельный ЗИА второй ступени, представляющий собой кожухотрубчатый теплообменник с плавающей головкой и съёмным трубным пучком. Пирогаз поступает в трубное пространство ЗИА второй ступени снизу, что исключает забивку входной трубной решётки частицами кокса. Температура пирогаза на выходе из аппарата регулируется уровнем котловой воды в нём. Такая система позволяет получить не только высокие выходы целевых продуктов, но и рекуперировать максимальное количество тепла пирогаза.

Таким образом, сырьё (фракция гидрогенизата 340°С) насосом Н-1 забирается из резервуара Е-1 и подогревается в теплообменнике Т-1 за счёт тепла закалочного масла (ТСП). Подогретое до 120°С сырьё подаётся в верхний змеевик низкотемпературной конвекции печи пиролиза П-16 фирмы «KTI», где оно нагревается до 160°С. На выходе из верхней конвекционной зоны сырьё смешивается с водяным паром (1,2 МПа, 60 % от расхода сырья), поступает в зону высокотемпературной конвекции, где нагревается до 550°С. Далее поток поступает в зону радиации. Радиантная часть змеевиков выполнена в виде двухрядного вертикального экрана в которых происходит термическое разложение углеводородов по pадикально-цепному механизму при 870°С за счет тепла сжигаемого топливного газа и радиации боковых стен и свода печи. В качестве топлива на печах пиролиза используется предварительно подогретая метано-водородная фракция, поступающая из отделения газоразделения.

Этановая фракция-рецикл поступает из отделения газоразделения подогревается в теплообменнике до 60°С и поступает на пиролиз в такую же печь Пно меньшей производительности. Количество пара разбавителя составляет 50 % (масс.) от расхода этана. В печи П-16 расположено 8 змеевиков типа GK-IV, а в печи П-7 два змеевика.

Первая ступень закалки пирогаза происходит в аппарате типа «USX» для каждого змеевика отдельно. Температура пирогаза в аппарате «USX» снижается с 870°С до 500°С. Печи пиролиза П-16 имеют по два ЗИА второй ступени, а печь П-7 один. Пирогаз в ЗИА второй ступени охлаждается до 350°С.

Температура на выходе из ЗИА должна быть выше температуры конденсации самых тяжелых фракций смолы. В случае конденсации смолы произойдет быстрое закоксовывание, что приведет к сокращению цикла работы установки.

Время пребывания паров в ЗИА должно быть меньше 0,1 с, а в трансферной линии от печи к ЗИА несколько сотых секунды. Дозакалка продуктов пиролиза осуществляется в узле впрыска масла большим количеством тяжелого масла (тяжелой смолы пиролиза), также с целью предотвращения коксообразования конденсирующейся смолы. Благодаря созданию высокой скорости в трубопроводе вся конденсирующаяся тяжелая смола выносится в колонну первичного фракционирования.

Ингибирование коксоотложения в печах пиролиза не только увеличивает длительность пробега печей между очистками от кокса, но и позволяет ужесточить режим пиролиза, в результате чего сокращаются энергозатраты и расход сырья.

Основными путями снижения отложения кокса в реакторах пиролиза являются следующие:

– уменьшение парциального давления пиролизуемого сырья за счёт специальной конструкции змеевиков;

С целью защиты реакторов от отложения кокса необходимо изготавливать трубы из двухслойного металла. Металл внутреннего (защитного) слоя должен содержать не более 1,5 % Ni, до 40 % Cr, 2-5 % Si, до 5 % В, более 2 % Mn.

При добавлении в сырьё серы (в составе органического дисульфида) от 0,01 до 0,1 % отложение кокса на стенках реактора снизится в 4-20 раз. Добавляя в сырьё 0,1 % ПАВ (высокомолекулярные карбоновые кислоты) уменьшается в объёме концентрация и размер частиц – предшественников кокса.

Перспективные способы пиролиза. Необходимость расширения сырьевой базы, сокращения удельного расхода сырья, а также энергетических и материальных затрат заставляет вести поиск новых модификаций процесса, в основном рассчитанных на пиролиз тяжелых видов углеводородного сырья (мазут, вакуумный газойль, нефть).

– пиролиз в присутствии гетерогенных катализаторов (каталитический пиролиз);

– высокотемпературный пиролиз с использованием газообразных теплоносителей (водяного пара, дымового газа, водорода);

В ходе разработки каталитического пиролиза исследовано влияние большого числа гетерогенных и гомогенных катализаторов. В условиях гетерогенно-каталитического пиролиза происходит увеличение селективности процесса и степени превращения сырья (выхода этилена). Результаты многочисленных работ, выполненных ими, позволили выявить каталитическую активность ряда соединений: оксидов металлов переменной валентности, оксидов и алюминатов щелочных, щелочноземельных и редкоземельных металлов, а также некоторых алюмосиликатов. Обычно их наносят на носители, в качестве которых применяют пемзу, модификации оксидов алюминия и циркония, корунд, аморфные и кристаллические цеолиты. Так, например, применение ванадата калия (KVO3) на синтетическом корунде, оксидов индия и калия на пемзе позволяет почти на 10% увеличить выход этилена по сравнению с результатами термического пиролиза высокой жесткости при сохранении выхода пропилена на прежнем уровне. Процесс каталитического пиролиза осуществляют в обогреваемых вертикальных трубах печей специальной конструкции. Варьируя состав катализатора, можно значительно изменять выход бутадиена. На отдельных катализаторах было исследовано влияние природы сырья, а при пиролизе индивидуальных олефинов высказаны предположения о возможных вариантах механизма каталитического пиролиза. Установлена специфическая роль водяного пара, взаимодействующего с поверхностью катализаторов. На опытных установках проведено исследование влияния коксообразования на каталитическую активность и отработаны условия регенерации катализатора, способного работать до 200ч (количество водяного пара около 75% по массе). Расчеты показали высокую эффективность каталитического пиролиза, приводящего к снижению на 10-12% себестоимости низших олефинов.

В настоящее время центр исследований этого направления из России перемещается в Японию. В 1995 году там начата разработка нового проекта энергосберегающего способа получения этилена из нефти низкотемпературным каталитическим пиролизом с целью замены традиционного энергоемкого процесса. Полагая, что на его создание потребуется 10 лет, стоимость предстоящих работ оценили в 192 млн. долларов. Основой разработки остается выбор катализатора, отвечающего совокупности всех требований процесса, Переход от существующей технологии к каталитическому пиролизу позволит сэкономить 200 тыс. м3 топлива (30% энергозатрат) на 1 млн. тонн этилена.

В качестве гомогенных инициаторов первичных реакций пиролиза был исследован широкий круг соединений. Целью их применения являлось снижение жесткости процесса при сохранении (увеличении) селективности и выхода по этилену. По различным причинам одни из самых активных инициаторов – пероксид водорода (высокая стоимость добавки) и хлороводородная кислота (проблемы коррозии) не получили практического применеия. Отмечено положительное влияние некоторых кислородсодержащих органических соединений (кислоты, спирты, отходы различных производств, содержащие смеси этих и других окисленных углеводородов) на выход этилена, возрастающее с “утяжелением” исходного сырья.

Для уменьшения скоростей вторичных реакций и увеличения скорости газификации откладывающегося кокса в качестве добавок предложено применять органические и неорганические соединения S и Р, соли и гидроксиды некоторых металлов. К синергетическому эффекту (увеличение скорости и снижение коксообразования) приводит использование в качестве активизирующей добавки продуктов озонолиза определенных нефтепродуктов, включающих одновременно и серо – и кислородсодержащие фрагменты.

Другое направление — гидропиролиз, заключающийся в замене части водяного пара водородом. Роль водорода заключается в образовании радикалов

14) СНЗ+ H2 CH4+ Н Радикал •СН3 замещается более активным радикалом •Н. С реакцией (14) конкурирует реакция:

15) СН3+ RH СН4+ R Поэтому концентрация молекулярного водорода должна быть достаточно высокой. За счет реакции (13) при гидропиролизе возрастает выход этилена и снижается выход пропилена.

Кроме положительного влияния на скорость первичных реакций присутствие Н2 снижает степень коксообразования. Недостатки варианта гидропиролиза связаны с дополнительным расходом водорода и увеличением объема газообразных продуктов пиролиза, что приводит к ухудшению показателей стадии разделения пирогаза. С целью их устранения был предложен вариант поведения пиролиза в условиях повышенного давления водорода –– 2,0-2,5 МПа. При повышении давления водорода возрастает выход этана, а выход этилена за счет этого уменьшается. В жестких условиях при пиролизе бензинов выход этилена составляет около 40%, метана – 34%. Аналогичные результаты получены при подаче в зону пиролиза нафты или газойля водородсодержащих продуктов предварительно проведенного пиролиза этана.

Термоконтактный пиролиз возможен с использованием жидких, газообразных и твердых теплоносителей. Применение же для этой цели расплавов:

(некоторых металлов (свинец, висмут, кадмий, олово и др.) и их сплавов, солей (хлоридов, карбонатов и др.), а также шлаковых (оксидных) расплавов) имеет ряд достоинств. К ним относятся: высокоэффективная теплопередача, возможность переработки практически любых видов сырья, простота непрерывной эвакуации сажи и кокса из зоны реакции. Пиролиз в расплавах позволяет получать из широких нефтяных фракций этилен с высоким выходом (до 25% при пиролизе нефти). Значительный комплекс работ в этом направлении с изучением различных способов технологического оформления процесса выполнен советскими учеными. Исследованы различные способы контактирования углеводородов с теплоносителем: барботаж через слой расплава, переработка в дисперсии или пленке расплава. По способу подвода тепла возможен прямой контакт расплава со средой либо через стенку аналогично процессу пиролиза в трубчатых печах.

Основные проблемы пиролиза в расплавах связаны с необходимостью нагрева и циркуляции теплоносителя. С целью их решения проверен вариант пиролиза в трубчатых печах с дисперсионно-кольцевым течением расплава. За счет повышения теплонапряженности поверхности змеевика удалось значительно сократить его длину, а значит, и время пребывания в нем сырья до 0,05 с. Соответственно наблюдали и увеличение выхода этилена при пиролизе бензина с 28 до 41%. Применение расплавов металлов с температурой плавления 300С в некоторой степени упрощает технологию подвода тепла и разделения продуктов, однако не решает эту проблему в полной мере.

Также недостатком этого метода является нестабильность и коррозионная активность расплавов. Этот процесс недостаточно изучен и не применяется в промышленности Вариант пиролиза с использованием высоконагретых газообразных теплоносителей начали активно изучать еще в 60-х годах прошлого века. Первоначально использовали дымовые газы или их смесь с перегретым водяным паром преимущественно для получения ацетилена. Однако невысокие техникоэкономические показатели этого направления заставили отказаться от него, ориентируясь на перегретый до 1600-2000С водяной пар. При температуре 900-1200С (на выходе из адиабатического реактора) и времени пребывания 0,005 с из нефти получают пирогаз с высоким содержанием этилена (до 21%) и ацетилена (до 13%), а также жидкий продукт, предназначенный для производства графитовых материалов. Японская фирма “Kurecha Chemical Industry” в 1970 году начала эксплуатацию промышленной установки такого типа мощностью 100 тыс. тонн по перерабатываемой нефти. Дальнейшим развитием технологии этого процесса занимался консорциум японских фирм и “Union Carbide”.

Мощность опытных установок была доведена до 2000 т этилена в год, но запланированные сроки промышленной реализации проекта все время отодвигаются. Аналогична судьба и русского аналога, применявшего в качестве теплоносителя смесь водяного пара и водорода и предназначенного для пиролиза вакуумного газойля и мазута.

Появление перспективных вариантов каталитического, инициированного, водородного пиролиза пока не привело к кардинальному пересмотру сложившихся представлений. Зато достигнут значительный прогресс на стадии разделения, в результате которого стали доступными индивидуальные бутены, изо – и н-амилены, изопрен, дициклопентадиен, что может дать резкий толчок к развитию новых промышленных синтезов на их основе. Расширение сырьевой базы и спектра продуктов пиролиза, согласно большинству прогнозов, сохранит за ним ключевые позиции в нефтехимии и в реально обозримом будущем.

1 Куппер Т. А., Баллард У. П. Термический крекинг, легкий крекинг (висбрекинг), термический риформинг – новейшие достижения нефтехимии и нефтепереработки. М., “Химия”, 1965, 5-6, с.. 163.

2 Баллард У. П. Висбрекинг и термический крекинг нефтяных остатков.// Экспресс-информация. Серия “Химия и переработка нефти и газа”, М., ВИНИТИ, 1977, № 12, с. 16 3 Мухина Т. Н., Барабанов Н. Л. и др. Пиролиз углеводородного сырья. М.:

4 Черный И. Р. Производство мономеров и сырья для нефтехимического синтеза. М.: Химия, 1973, – 264 с.

Уже в ранний период развития химической науки были открыты и изучены удивительные явления — влияние на скорость химических превращений присутствия веществ, не принимающих в реакции видимого участия. К их числу относятся: воздействие оксидов азота на окисление диоксида серы в производстве серной кислоты, открытое французскими учеными Клеманом и Дезормом в 1806 г., превращение крахмала в сахар в присутствии разбавленных кислот или диастазы ячменного солода, обнаруженное в Германии Кирхгофом (1811-1814 гг.), разложение аммиака и разбавленных растворов пероксида водорода под действием многих твердых тел, изученное французским химиком Тенаром (1813-1818 гг.), окисление паров спирта, эфира и водорода при комнатной температуре в присутствии платины, открытое крупнейшим английским ученым Дэви (1817 г.) и немецким ученым Деберейнером (1821г.), образование эфира из спирта в присутствии серной кислоты, обнаруженное Митчерлихом в Германии (1833 г.), и многие другие.

Митчерлих впервые раскрыл общность этих явлений, названных им контактными реакциями. Почти одновременно, в 1835 г., была опубликована классическая работа выдающегося шведского химика Берцелиуса, в которой он предложил для рассматриваемых явлений новый термин — катализ (от греческого слова katalusiz – разрушение).

Со времени введения Берцелиусом в 1835 г. слова “катализ” этому понятию придавался различный смысл. Да и сейчас сохранились значительные расхождения в определении катализа. Феноменологически катализ можно опрелить как изменение скорости химических реакции под влиянием веществ – катализаторов, многократно вступающих в промежуточное химическое взаимодействие с участниками реакции и восстанавливающих после каждого цикла промежуточных взаимодействий свой химический состав.

Особенно существенно, что при катализе происходит промежуточное химическое взаимодействие катализатора с реагирующими веществами. Этим подчеркивается химическая сущность катализа и проводится четкая граница между явлениями катализа и явлениями изменения скорости химических реакций под влиянием различных физических факторов, например под влиянием инертных насадок, когда скорость реакции между компонентами, находящимися в газовой или жидкой фазе, повышается вследствие увеличения поверхности контакта между этими фазами.

Решающая роль химического взаимодействия с катализатором вытекает из специфичности действия катализаторов. Каталитическую активность нельзя рассматривать как универсальное свойство вещества и оценивать ее можно только по отношению к определенной реакции.

Многие катализаторы проявляют активность лишь в отношении одной или узкой группы реакций. Особенно специфично действие биологических катализаторов – ферментов. В большинстве случаев ферменты катализируют превращение лишь отдельных химических соединений среди большого числа сходных по строению и даже только одного из смеси изомеров, не вовлекая остальные в химическое превращение.

Наряду с этим некоторые катализаторы активны в отношении довольно широких групп реакций. Так, например, катализаторы кислой природы активны в отношении большого числа реакций изомеризации, гидролиза, дегидратации спиртов, алкилирования и многих других; катализаторы на основе металлического никеля ускоряют различные реакции гидрогенизации и т. д. Надо, однако, заметить, что и среди упомянутых выше типов катализаторов, активных в отношении больших групп реакций, наблюдаются значительные отличия в отношении превращения различных веществ. Наилучшими каталитическими свойствами для отдельных реакций обладают катализаторы определенного состава.

В соответствии с этим состав и химическое строение катализаторов чрезвычайно разнообразны.

В состав промышленных катализаторов входят в различных сочетаниях соединения почти всех элементов. Большинство катализаторов включает в свой состав несколько элементов. Они могут быть в элементной форме, как, например, многочисленные металлические катализаторы и активированный уголь, или в виде различных соединений, как сравнительно простых – оксиды, сульфиды, галогениды и др., так и весьма сложных, например комплексы металлов с органическими лигандами или такие многоатомные соединения белковой природы, какими являются ферменты.

Очень важной особенностью катализа является сохранение катализатором своего состава в результате промежуточных химических взаимодействий с реагирующими веществами. Катализатор не расходуется в процессе катализа. Количество реагирующего вещества, которое может испытать превращение в присутствии определенного количества катализатора, не ограничивается какимилибо стехиометрическими соотношениями и может быть очень большим.

Таким образом, явления катализа не связаны с изменением свободной энергии катализатора. Этим каталитические реакции коренным образом отличаются от индуцированных реакций, когда определенная химическая реакция ускоряется в результате протекания других реакций, химического превращения индуктора. Количество вещества, превращенного по индуцируемой реакции, зависит от количества израсходованного индуктора. При катализе такой зависимости нет.

Из этого не следует, что при течении каталитической реакции катализатор не претерпевает никаких изменений. Во многих случаях наблюдаются изменения структуры катализатора, а иногда и его состава в результате взаимодействия с примесями или даже основными компонентами реакционной смеси.

Характерным для катализа является то, что все эти изменения представляют собой побочные процессы, ни в коей мере не обусловливающие каталитическое действие.

В большинстве технических каталитических процессов небольшое количество катализатора способствует превращению весьма значительных количеств реагирующих веществ. Так, одна массовая часть катализатора вызывает превращения в производстве серной кислоты 104, при окислении нафталина во фталевый ангидрид 103, в производстве азотной кислоты окислением аммиака 106 мас. ч. реагирующего вещества.

Из того обстоятельства, что каталитическое действие не связано с изменением свободной энергии катализатора, однозначно вытекает невозможность смещения положения равновесия химической реакции под воздействием катализаторов.

Следовательно, вблизи состояния равновесия катализаторы должны в равной степени ускорять как прямую, так и обратную реакцию. При удалении от состояния равновесия это условие может и не выполняться.

Различают положительный катализ – увеличение скорости реакции под влиянием катализатора – и отрицательный катализ, приводящий к уменьшению скорости химического превращения. При положительном катализе промежуточное взаимодействие реагирующих веществ с катализатором открывает новый, более легкий реакционный путь. При отрицательном катализе, наоборот, взаимодействие с катализатором исключает один из возможных путей реакции, оставляя лишь более медленные, в результате чего реакция замедляется или даже полностью подавляется. Необходимо отметить, что распространенность и значение положительного катализа несоизмеримо больше, чем отрицательного.

Комиссия по терминологии ИЮПАК предложила исключить термин “отрицательный катализ”, объединив эти явления с другими видами замедления химических реакций под названием “ингибирование”. Поэтому в дальнейшем мы будем говорить только о положительном катализе, называя его просто катализом.

Этот процесс осуществляется также каталитически с помощью никелевых катализаторов. Таким образом, разработка более активного катализатора позволила существенно упростить технологическую схему.

В качестве еще одного примера можно привести каталитические процессы нефтепереработки. В 1920-е годы переработка нефти ограничивалась ректификацией и разложением при нагревании до высоких температур, так называемым термическим крекингом, без применения катализаторов. Только в конце 1930-х годов были сделаны первые попытки использовать для переработки нефти каталитические процессы.

Изобретатель каталитического крекинга французский инженер Гудри в докладе на II Международном конгрессе по катализу обратил внимание на то, что в обзоре Американского института нефти о состоянии и перспективах промышленности нефтепереработки, опубликованном в 1935 г., ни разу не упоминается слово “катализ”, а через несколько лет каталитические методы вызвали коренное преобразование этой отрасли промышленности. Эффективность применения катализа оказалась столь значительной, что за несколько лет в нефтеперерабатывающей промышленности произошла подлинная техническая революция, позволившая на основе применения катализаторов резко повысить как выход, так и качество получаемых моторных топлив, В настоящее время свыше 80% нефти перерабатывается с использованием каталитического крекинга, риформинга, гидрогенолиза сернистых соединений, гидрокрекинга и других каталитических процессов. В табл. 2.1 приведены важнейшие современные каталитические процессы нефтепереработки.

Таблица 2.1 Современные каталитические процессы нефтепереработки

Каталитический крекинг ранее осуществляли при температурах 670-770 К с использованием синтетических и природных алюмокремниевых, кремнемагниевых, алюмокремнециркониевых и других катализаторов кислотной природы. В последние годы широкое промышленное использование получили катализаторы на основе кристаллических синтетических цеолитов. Активность этих катализаторов, особенно содержащих оксиды редкоземельных элементов, значительно выше, чем аморфных алюмосиликатных катализаторов.

Применение катализаторов позволяет не только увеличить скорость образования углеводородов более низкой молекулярной массы, но и повысить выход ценных фракций по сравнению с термическим крекингом.

В результате образования коксоподобных отложений активность катализаторов в процессе крекинга быстро снижается, но может быть полностью восстановлена путем обжига в кислородсодержащей среде.

Особенно эффективным оказалось проведение крекинга в псевдоожиженном слое тонкодисперсного катализатора, позволяющее легко осуществлять циркуляцию катализатора через реактор и регенератор.

Каталитический крекинг является наиболее высокотоннажным промышленным каталитическим процессом. С его помощью в настоящее время перерабатывается свыше 300 млн т нефти в год, что требует ежегодного расхода около 300 тыс. т катализаторов.

Несколько позже, в 1950-х годах, в нефтеперерабатывающей промышленности начал широко использоваться каталитический риформинг. Ранее этот процесс осуществляли при температуре 740-790 К и давлении 1,5-4 МПа, применяя в качестве катализатора преимущественно платину, нанесенную на оксид алюминия, обработанный хлористым водородом для увеличения кислотных свойств. В настоящее время процесс проводится при 0,8-1,5 МПа благодаря использованию новых полиметаллических катализаторов.

В процессе риформинга протекают реакции дегидрирования нафтенов в ароматические углеводороды, циклизации парафинов и олефинов и изомеризации пятичленных циклических углеводородов в шестичленные.

В настоящее время каталитический риформинг используется для переработки более 200 млн т нефти в год. Его применение позволило не только повысить качество моторного топлива, но и вырабатывать значительные количества ароматических углеводородов для нужд химической промышленности.

Ценным побочным продуктом каталитического риформинга является водород. Появление дешевого водорода позволило широко использовать каталитическую гидроочистку нефтепродуктов, содержащих серу, с выделением ее в виде Н2S. Для этой цели могут применяться различные катализаторы гидрирования. Наибольшее распространение получили катализаторы, приготовляемые из оксидов кобальта и молибдена, нанесенных на оксид алюминия. Кроме того, перспективными катализаторами являются те же каталитические композиции, но с добавками цеолитов.

Условия проведения процесса зависят от свойств очищаемого сырья, но чаще всего лежат в пределах 600-680 К и 3-5 МПа. Гидроочистке подвергается ежегодно около 300 млн т нефтепродуктов. Этот процесс позволяет получать значительные количества серы, облегчает последующие каталитические процессы переработки нефти, а также уменьшает загрязнение атмосферы выхлопными газами при сжигании моторного топлива.

В последнее время значительное развитие получил процесс гидрокрекинга, при котором одновременно осуществляются реакции крекинга, изомеризации и гидроочистки. Применение катализаторов позволяет осуществлять этот процесс при 520-740 К, давлении около 5-15 МПа и получать значительный выход дизельного топлива с высоким цетановым числом. В качестве катализаторов используют сульфид вольфрама, смешанные вольфрам-никелевые сульфидные катализаторы на носителях, кобальт-молибденовые катализаторы на оксиде алюминия, с добавками Ni, Pt, Pd и других металлов на аморфных или кристаллических цеолитах.

Для улучшения качества бензинов служат процессы каталитической изомеризации с использованием платиновых и палладиевых катализаторов на различных носителях.

Из сказанного можно заключить, что каталитические методы занимают в настоящее время ведущее положение в нефтепереработке. Благодаря катализу ценность продуктов, получаемых из нефти, удалось повысить в несколько раз.

Отметим, что эта тенденция продолжается и сейчас. В связи с ростом цен на нефть становится крайне важным наиболее полно использовать все ее компоненты. Надо полагать, что рост стоимости нефти будет продолжаться, так как постепенно придется переходить к таким ее источникам, которые представляют большие трудности для эксплуатации. Поэтому крайне важно повышать степень извлечения из нефти ценных продуктов, что может быть достигнуто более широким применением совершенных катализаторов.

Надо признать, что глубина переработки нефти пока невелика, это обусловлено не столько техническими трудностями, сколько балансом нефтепродуктов, основную долю которых составляет котельное топливо. Экономически, во всяком случае в перспективе, это невыгодно. Необходимо резко повысить долю вторичных каталитических процессов нефтепереработки. Потребность в жидком котельном топливе должна компенсироваться использованием угля.

Более перспективной возможностью каталитических методов в нефтепереработке является отказ от свойственного современным процессам глобального превращения всех сложных соединений, находящихся в нефтях. Так, все сернистые соединения подвергаются гидрогенолизу с выделением сероводорода. Между тем многие из них представляют значительную самостоятельную ценность. То же справедливо в отношении азотсодержащих, металлокомплексных и многих других соединений. Очень важно было бы выделять эти вещества или подвергать их индивидуальным каталитическим превращениям с получением ценных продуктов. Примером может служить получение серосодержащих экстрагентов типа сульфоксидов и сульфонов, образующихся при каталитическом окислении сернистых соединений, содержащихся в нефтях и котельном топливе. Несомненно, что этим путем катализ позволит значительно повысить эффективность нефтепереработки.

Область применения катализа продолжает быстро расширяться, и перед исследователями возникают новые важные задачи. В связи с резким повышением стоимости нефти ведутся широкие разработки получения жидкого топлива из угля. За основу взяты старые каталитические методы, использовавшиеся в Германии во время второй мировой войны (рис. 2.1). Новым в методе гидрирования является экстракция органического вещества угля с получением тяжелого масла, подвергаемого далее каталитическому гидрированию под давлением.

Весьма перспективны и методы синтеза жидкого топлива из газа, состоящего из оксида углерода и водорода, получаемого путем газификации угля водяным паром. Метод Фишера-Тропша используется в настоящее время в ЮжноАфриканской республике. Недостатком его является то, что получаемый бензин состоит в основном из нормальных парафинов, обладает поэтому низким октановым числом и требует вторичной переработки. Дизельная же фракция при хороших топливных характеристиках обладает высокой температурой застывания, что исключает ее применение в условиях нашей страны.

Более интересен путь синтеза углеводородов, предложенный первоначально американской фирмой “Мобил”, через образование метанола и последующее его разложение на катализаторе, содержащем сверхвысококремнеземистый цеолит. Синтез метанола осуществляется при давлении 5-10 МПа на оксидном медьсодержащем катализаторе. Дегидратация метанола не требует повышенного давления и протекает через диметиловый эфир с образованием олефинов. Олефины на этом же катализаторе в результате перераспределения водорода образуют смесь изопарафинов и ароматических углеводородов. Выход бензиновой фракции может быть доведен до 60-70% при октановом числе 90Дизельная фракция в этих условиях составляет около 10% и имеет хорошие качества по цетановому числу и температуре застывания.

Возможен также вариант получения углеводородов из синтез-газа, минуя стадию выделения метанола. Степень превращения синтез-газа в метанол ограничивается обратимостью реакции и в современных установках не превышает 4% за цикл. Применение полифункциональных катализаторов, осуществляющих как синтез метанола, так и его превращение в углеводороды, позволяет значительно увеличить превращение за цикл и существенно упростить процесс.

Этот метод положительно отличается от классического процесса ФишераТропша качеством получаемого бензина и очень малым образованием метана, но в отличие от процесса фирмы “Мобил” требует при его проведении повышенного давления – 3-5 МПа.

Изложенные методы получения углеводородов как через метанол, так и прямым путем с помощью полифункциональных катализаторов могут быть использованы для производства жидкого топлива из природного газа. Такие производства целесообразно создавать вблизи крупных газовых месторождений для облегчения транспорта горючего, так как трубопроводы для перемещения жидкого топлива много дешевле, чем для перемещения газа. Кроме того, они полезны для обеспечения жидким топливом многих отдаленных районов, располагающих газом, транспорт жидкого топлива к которым затруднен.

В ближайшие годы, несомненно, получит широкое распространение применение твердых катализаторов для сжигания топлива. В настоящее время топливо сжигается в основном в факельных печах при температуре 1470-1870 К с низким коэффициентом полезного использования тепла. Предложен способ сжигания топлива в каталитическом реакторе в псевдоожиженном слое катализатора с одновременным отводом тепла для требуемых целей. Благодаря присутствию катализатора, сжигание топлива осуществляется достаточно полно без избытка воздуха при достаточно низкой температуре – 670-970 К. Тепловая напряженность реакционного объема много больше, чем в факельных топках, что позволяет в несколько раз сократить размеры и массу установок. Пониженная температура горения исключает образование вредного оксида азота. На основе каталитических генераторов тепла могут быть созданы малогабаритные паровые котлы, аппараты для подогрева воды, испарения нефтяных фракций в процессах нефтепереработки, для термической обработки, диспергирования и активации твердых материалов, сушки порошковых материалов, для адсорбционно-контактной сушки зерна, сельскохозяйственных продуктов и материалов, чувствительных к перегревам, и для других целей.

Широкой областью применения катализа становится обезвреживание выбросов промышленности и транспорта. Уже в настоящее время надежно решена задача каталитического сжигания оксида углерода и большинства органических соединений в газовых выбросах промышленных предприятий. Принципиально решена проблема каталитического восстановления оксидов азота, в том числе и селективного восстановления аммиаком в смесях, содержащих кислород.

Существенно сложнее задача обезвреживания выхлопных газов автотранспорта вследствие различия условий, необходимых для восстановления оксидов азота и полного окисления органических соединений и оксида углерода.

Значительные трудности создает изменчивость состава выхлопных газов, зависящая от условий работы автотранспорта. Тем не менее, разработаны каталитические очистители, позволяющие почти полностью очищать выхлопные газы от оксида углерода и органических соединений и в значительной степени снижать концентрацию оксидов азота.

Еще более трудной задачей является каталитическая очистка сточных вод. В последнее время удалось достигнуть определенных успехов в очистке сточных вод некоторых производств от фенолов, сернистых соединений и других вредных компонентов путем применения в качестве катализаторов комплексов некоторых переходных металлов, а также комплексных катализаторов, закрепленных на носителях.

Значительное развитие каталитические методы получат и в решении продовольственной проблемы. Кроме производства удобрений, катализ будет играть существенную роль в производстве незаменимых аминокислот для улучшения кормов в животноводстве, гербицидов, инсектофунгицидов и других препаратов, необходимых для растениеводства. Катализ является важнейшим методом осуществления в промышленности химических превращений. В настоящее время около 80% всей химической продукции изготовляется каталитическим путем. Эта доля быстро возрастает по мере усложнения химических превращений, осваиваемых промышленностью. Среди новых производств доля каталитических процессов превышает 90%. От развития катализа в значительной степени зависит прогресс химической и других отраслей промышленности.

Реализация многих термодинамически возможных и экономически выгодных процессов, получение новых продуктов, осуществление более совершенных технологических схем, использование доступных сырьевых ресурсов – все это перспективные задачи для поиска новых и совершенствования уже используемых катализаторов.

Упомянутые примеры охватывают очень малую долю применяемых в промышленности каталитических процессов. Однако и из них отчетливо вытекают некоторые общие выводы.

1. Катализ позволяет интенсифицировать химические превращения, включая и такие реакции, которые без катализатора не протекают с заметной скоростью.

2. Катализаторы позволяют направлять химическое превращение в сторону образования определенного, желаемого продукта из ряда возможных.

3. В реакциях, приводящих к образованию высокомолекулярных продуктов, с помощью вариации свойств катализаторов можно регулировать строение получаемого вещества и благодаря этому свойства конечных материалов.

4. Катализ – явление специфичное. Нет веществ, которые обладали бы каталитическими свойствами в общей форме. Для каждой реакции должен использоваться свой особый катализатор.

Изменение энергии вдоль пути реакции представлено на рис. 2.2. Физическая адсорбция (точка II) протекает с большой скоростью без энергии активации и приводит к равновесному покрытию поверхности катализатора. С повышением температуры равновесное покрытие уменьшается, и начиная с определенной температуры может непосредственно осуществляться хемосорбция.

Хемосорбция реагирующего вещества осуществляется через активированный комплекс (точка 1), энергия которого превышает энергию реагирующего вещества, т. е. в большинстве случаев характеризуется определенной энергией активации. Величина энергии активации (Е2) определяет скорость хемосорбции.

При хемосорбции (точка III) происходит смещение электронной плотности, приводящее к ослаблению или разрыву некоторых связей в молекуле реагирующего вещества и образованию новых связей с поверхностными атомами твердого катализатора. Эти изменения могут в определенных случаях приводить к уменьшению энергии активации превращения реактанта в хемосорбированные продукты реакции (IV) через активированный комплекс (2). Энергия активации (Е2) характеризует скорость этого этапа и зависит от рода химического превращения и природы реактанта и катализатора, определяющих строение и энергию продукта хемосорбции.

Десорбция продуктов реакции также связана с энергией активации (Е3), тем большей, чем выше теплота хемосорбции продуктов реакции. Десорбция физически адсорбированных продуктов реакции требует энергии активации, равной теплоте их физической адсорбции, которая много ниже теплоты хемосорбции, и поэтому покрытие поверхности катализатора физически адсорбированными продуктами реакции всегда очень близко к равновесному.

Скорости стадий хемосорбции, химического превращения и десорбции характеризуются различными значениями энергии активации в зависимости от природы катализатора и реагирующего вещества. Следует отметить, что предэкспоненциальные множители разных стадий различны, и нельзя поэтому утверждать, что всегда наиболее медленной будет стадия с самым высоким энергетическим пиком. Так, в рассматриваемом случае мономолекулярной реакции скорость хемосорбции Скорость химического превращения Скорость десорбции Здесь f1#, f2#, f3# – суммы состояний активированных комплексов; fA, fK, fX, fY – суммы состояний реагирующего вещества в газовой фазе, участков на поверхности катализатора, на которых осуществляется хемосорбция, хемосорбированных молекул реактанта и хемосорбированных молекул продукта; Е — энергия активации; [А] — концентрация реагирующего вещества в газовой фазе, моль/см3; [К] – число свободных участков, отнесенное к 1 см3 газовой фазы;

[X] – то же, для участков, занятых хемосорбированными молекулами реагирующего вещества; [Y] – то же, для участков, занятых хемосорбированными молекулами продукта.

Если К, X, Y и активированные комплексы локализованы на поверхности и обладают только колебательными степенями свободы, то значения fK, fX, fY, fi# близки к 1.

Тогда соотношения скоростей стадий, отнесенных к одному участку поверхности, участвующему в реакции, Сумма состояний многоатомной молекулы в газовой фазе (fA) лежит в пределах 1026-1029. Концентрация А зависит от его давления и температуры.

При атмосферном давлении и температуре 500 К [А] = 1,6 • 1020. Для этих условиях RT In ([А]/fA) лежит в пределах 50-75 кДж/моль.

На эту величину E1 должна быть меньше Е2 и Е3, для того чтобы скорость хемосорбции, отнесенная к одному свободному участку поверхности (w1/[K]), была бы близка к соответствующим скоростям второй (w2/[X]) и третьей (w3/[Y]) стадий.

Если при некоторой температуре w1/[K] имеет тот же порядок, что w2/[X] и w3/[У], то при повышении температуры первая величина станет меньше остальных и стадия хемосорбции будет лимитирующей. При этом снизятся наблюдаемая энергия активации и стационарная концентрация X.

В предельном случае стабильное хемосорбированное состояние реактанта может не возникать и взаимодействие с твердым катализатором ограничится образованием одного активированного комплекса с участием катализатора, превращение которого приведет сразу к продуктам реакции и освобождению участка поверхности катализатора. Соответствующий путь каталитической реакции изобразится линией I—4—VI на рис. 2.2.

В проведенном анализе предполагалась необратимость всех стадий. В случае обратимости быстрые стадии будут приводить к достижению равновесных концентраций промежуточных продуктов. Так, например, если стадии хемосорбции реактанта и десорбции продуктов протекают быстрее стадии химического превращения и приводят к достижению равновесных значении [Хi]p и [Yi]p по отношению к концентрациям в газовой фазе, то скорость реакции (*) При малых величинах равновесных покрытий где qA – теплота хемосорбции реактанта; [К]0 – общее число участков на поверхности катализатора, на которых может происходить хемосорбция А, отнесенное к 1 см3 газовой фазы, Подставив значение [X]p в (*), находим т. е. скорость реакции при постоянном ЕA возрастает с увеличением теплоты хемосорбции, определяющей равновесное покрытие.

Сопоставляя реакционный путь с участием твердого катализатора (линия I–II–1–III–2–IV–3–V–VI на рис. 2.2) с энергией активации без катализатора (линия I–5–VI на рис. 2.2), иногда вводят понятие теплоты адсорбции активированного комплекса, понимая под ней разность энергий активированного комплекса некаталитической реакции и одного из активированных комплексов той же реакции в случае гетерогенного катализа. В рассмотренном выше случае мономолекулярной реакции с лимитирующей стадией химического превращения и равновесием хемосорбции теплота адсорбции активированного комплекса равна уменьшению энергии активации каталитической реакции по сравнению с реакцией без участия катализатора. Для той же реакции в случае быстрой и необратимой хемосорбции реактанта уменьшение энергии активации при осуществлении реакции по каталитическому пути равно разности теплот хемосорбции активированного комплекса и реактанта. Надо заметить, что понятие теплоты адсорбции активированного комплекса носит формальный характер и неплодотворно. Так, в рассматриваемом случае мономолекулярной реакции реакционный путь проходит через три энергетических максимума. Неясно, который из них надо рассматривать как продукт активированного комплекса некаталитической реакции, тем более что каждый из них в определенных случаях может отвечать лимитирующей стадии.

В случае бимолекулярных реакций гетерогенного катализа возможно несколько реакционных путей. Так, например, реакция А+ВР может осуществляться через стадии хемосорбции обоих компонентов, при предварительной хемосорбции только одного компонента и путем образования активированного комплекса стадии химического превращения из молекул реактантов газовой фазы и катализатора без их предварительной хемосорбции. Энергетическая схема первого случая представлена на рис. 2.2 Аадс, Вадс, Радс – хемосорбированные реактанты и продукты.

Для осуществления стадии химического превращения хемосорбированные реактанты должны располагаться рядом на поверхности катализатора или достаточно быстро именять свое положение путем поверхностной диффузии или в результате обратимост хемосорбции. Если эти процессы протекают с большой скоростью и покрытие поверхности хемосорбированными реактантами велико, то этому пути отвечает наибольша величина предэкспоненциального множителя в выражении для скорости реакции. Рассмотренный вариант протекания бимолекулярной реакции часто называют “механизмом Лэнгмюра— Хиншелвуда”. На рис. 2.3 десорбция продуктов реакции npeдставлена протекающей через один активированный комплекс 4; вообще говоря, десорбция каждого продукта характеризуется отдельной величиной энергии активации, различной для разных продуктов.

Энергетическая схема изобразится линией, аналогичной линии I–1–2–3– VI (см рис. 2.2) для мономолекулярной реакции. Подвижность хемосорбированного реактанта не имеет значения, но величина предэкспоненты может быть меньше, так как один из реактантов участвует в образовании активированного комплекса химического превращения из газовой фазы.

Еще меньше величина предэкспоненты при третьем варианте, когда активированный комплекс химического превращения образуется с участием газообразных молекул обоих компонентов:

Здесь [ ] – свободный активный участок поверхности катализатора, на котором возможно протекание реакции по третьему варианту.

Во многих случаях бимолекулярные реакции гетерогенного катализа протекают по еще более сложным схемам в результате диссоциативной хемосорбции реактантов, многократных превращений реагирующих веществ с выделением промежуточных продуктов в газовую фазу, взаимодействия промежуточных продуктов с реактантами и т. п. Это часто приводит к разнообразию конечных продуктов и сложным кинетическим закономерностям реакций гетерогенного катализа.

Катализаторы – это вещества, возбуждающие химические реакции или ускоряющие их протекание, при этом остающиеся неизменными и не входящие в состав конечных продуктов. Они являются неотъемлемой частью любого каталитического процесса и позволяют снижать энергию активации химических реакций.

Подбором оптимального состава катализатора можно регулировать соотношение скоростей целевых и побочных реакций, добиваясь наибольшей эффективности процесса. Проведение реакций в присутствии катализаторов позволяет также существенно снизить температуру их протекания. Однако следует помнить, что, если с точки зрения термодинамики какая-либо реакция невозможна, то осуществить ее в присутствии катализаторов также нельзя.

Под свойствами катализатора понимают селективность, активность, стабильность и характеристику его пористой структуры.

Селективностью (или избирательностью) катализатора называют его способность ускорять только одну или несколько из ряда термодинамически вероятных целевых химических реакций в данных условиях и для данных сырьевых компонентов.

Http://pdf. knigi-x. ru/21fizika/68154-1-uchrezhdenie-obrazovaniya-polockiy-gosudarstvenniy-universitet-tehnologiya-pererabotki-nefti-gaza-processi-gl. php

ТЕХНОЛОГИЯ ГЛУБОКОЙ ПЕРЕРАБОТКИ НЕФТЯНОГО СЫРЬЯ В ЭЛЕКТРОРАЗРЯДНОМ РЕАКТОРЕ ПРИ СВЕРХКРИТИЧЕСКИХ УСЛОВИЯХ

Инвестиционный проект предусматривает инвестиции в технологию углублённой переработки нефтяного сырья, позволяющую значительно увеличить степень конверсии нефтяных фракций в низкомолекулярные углеводороды – топливный газ и бензино-дизельные фракции и снизить выбросы в окружающую среду. Установка по переработке нефтепродуктов занимает небольшие рабочие площади и может устанавливаться на мобильной платформе.

Предлагаемая технология имеет низкие инвестиционные, энергетические и эксплуатационные затраты.

Технология переработки нефтяного сырья защищена патентом “Способ непрерывного осуществления электрохимической реакции в суб – и сверхкритических флюидах”. Проект технологии переработки нефтепродуктов также содержит “ноу-хау”.

Проект предполагает создание установки для переработки нефтяного сырья (в том числе тяжёлой нефти) в электроразрядном реакторе при сверхкритическом давлении. Реализация инвестиционного проекта ставит достижение следующих основных целей:

    определение эффективности и экономических показателей процесса; освоение промышленной технологии переработки нефтяного сырья; продажа технологии переработки нефтяного сырья.

Для решения поставленных целей в первую очередь требуется решить задачу освоения технологии переработки нефтяного сырья.

В рамках данного этапа выполняются работы по проектированию, закупке, монтажу и наладке технологического оборудования, использующегося в процессе переработке нефтяного сырья.

2. Освоение инновационной технологии переработки нефтяного сырья

Этап предполагает пилотные испытания новой технологии, изучение кинетических закономерностей, уточнение технологических параметров на основе экспериментальных данных, определение экономических и финансовых показателей процесса.

Данный этап подразумевает проектирование промышленной установки по переработки нефтяного сырья, разработка технологической документации.

Главной задачей нефтеперерабатывающей промышленности является углубление переработки нефти, которая в настоящее время составляет от 50   % до 75   %. Геологические запасы высоковязкой нефти и битумов в России составляют от 6 до 75 млрд. тонн.

Цель проекта – разработка экономически эффективной технологии переработки высоковязкой нефти с высоким выходом целевых продуктов.

При добыче тяжёлой высоковязкой нефти возникает проблема её транспортировки и дальнейшей переработки. В настоящее время перерабатывать тяжелую нефть по классической схеме нерентабельно.

Предлагаемая технология основана на одностадийном электрохимическом воздействии на высокомолекулярные углеводороды при сверхкритических условиях, инициирующем термический крекинг без использования катализаторов.

Технологическая схема установки включает насос высокого давления, электроразрядный реактор, источник питания, редуцирующее устройство и сепаратор.

В качестве источника питания электроразрядного реактора используется высокочастотный генератор постоянного тока. Электрохимическую инициацию осуществляют за счёт прямого контакта потока нефти с плазменным образованием, по существу при субкритическом давлении флюида. Плазма образуется при протекании разряда через трубчато-щелевое межэлектродное пространство электроразрядного реактора, пятно дуги которое при увеличении тока равномерно заполняет весь кольцевой промежуток по всей длине зоны разряда. Изотермическая плазма является высокоэнтальпийным теплоносителем и, кроме того, источником большого числа активных частиц с высокой энергией. Стабилизация электрической дуги производится под действием собственного магнитного поля.

Протекание разряда через трубчато-щелевое межэлектродное пространство электроразрядного реактора и одновременный кратковременный импульс пониженного давления потока инициируют электрогидравлический удар, выбрасывающий кумулятивные струйки, которые создают условия для образования множества парогазовых пузырьков кавитационной смеси. В пространстве между пузырьками возникают интенсивные микротечения с высокими мгновенными значениями локальных скоростей и ускорений.

Электрогидравлический удар в зоне разряда вызывает сложный комплекс синергетических воздействий: электромагнитное излучение, ударные и акустические волны, световое и ультрафиолетовое излучение. В зоне разряда создаются достаточно большие гидродинамические возмущения и мощное сдвиговое поле, при этом значительно уменьшается диффузионное сопротивление, препятствующее переносу реагентов через межфазную поверхность контакта соприкосновений.

В зоне разряда электроразрядного реактора, по существу, сохраняется энергетический баланс между выделением тепла от источника тока и его поглощением потоком смеси в условиях значительного уровня турбулентности. Это достигается за счёт того, что практически вся мощность, подводимая к питающему электроду, расходуется на проведение химической реакции без значительного индукционного периода.

Дальнейшее взаимодействие полученной кавитационной смеси осуществляют во взаимосвязанной с зоной разряда зоне реакции электроразрядного реактора при сверхкритическом давлении флюида, по существу в адиабатических условиях. При скоростном истечении исходного реагента пятно плазменного образования перемещается по поверхности электрода из кольцевого трубчато-щелевого межэлектродного пространства в зону реакции, где при резком снижении скорости кавитационной смеси, под действием повышенного давления и сил поверхностного натяжения происходит мгновенное коллапсирование (схлопывание) парогазовых кавитационных пузырьков (их конденсация), находящихся в метастабильном состоянии. В моменты адиабатического сжатия и схлопывания происходит мгновенное разрушение оболочек кавитационных пузырьков с выделением импульса энергии, при этом температура импульса может составлять десятки тысяч градусов, а давление в точке схлопывания может достигать тысяч мегапаскалей. При этом создаются зоны в сверхкритическом флюиде с достаточно высокой плотностью свободной поверхностной энергией и повышенной химической активностью, под действием которых молекулы переходят в возбужденное состояние, чрезвычайно усиливается реакционная способность веществ, возрастают процессы диссоциации и разложения молекул. Энергия диссоциации связи C-H колеблется в зависимости от молекулярной массы и структуры молекулы, в пределах 322-435   кДж/моль, энергия диссоциации связи С-С – 250-348 кДж/моль.

Известно, что наиболее эффективным будет воздействие, сконцентрированное в неустойчивых точках структуры вещества, таких как межфазные поверхности при фазовых превращениях. В предлагаемой технологии интенсификация химической реакции достигается также за счёт концентрированного энергетического воздействия именно при межфазных превращениях за небольшой промежуток времени, что позволит максимально высвободить внутреннюю энергию вещества.

Процесс сопровождается возбуждением акустических колебаний широкого спектра частот и амплитуд, что дополнительно создаёт вихревые пульсации (ударные волны). В случае ударных волн эффект кавитации наиболее интенсивно развивается у свободной поверхности, т. е. у границ раздела нефть-парафин-водород, волновые сопротивления которых сильно отличаются.

Таким образом, при мгновенном коллапсировании оболочек парогазовой кавитационной смеси в сверхкритическом флюиде в результате взрывного электроразрядного воздействия происходит разложение нефтяных фракций.

После взаимодействия реакционную смесь резко сбрасывают через редуцирующее устройство в сепаратор с меньшим давлением, где за счет резкого снижения плотности реакционной смеси происходит её мгновенное охлаждение. При дросселировании потока под действием начальных возмущений происходит распад струи на мелкие капли, который интенсифицирует быстрое испарение низкокипящих компонентов. Топливный водородсодержащий газ выводится из верхней части сепаратора, а жидкая фаза – из нижней части.

По предложенной технологии осуществляется углублённая переработка тяжелых, высокосернистых и высокопарафинистых нефтепродуктов, нефтешламов, отработанных масел и тяжелых остатков нефтеперерабатывающих производств. Применяя электроразрядное воздействие можно получить из тяжелой нефти 20-30 % бензина и 40-50   % дизельного топлива. Выход светлых продуктов можно регулировать параметрами технологического процесса. Возможна ступенчатая очистка компонентов нефтяных фракций.

Технология переработки сырой тяжелой нефти позволит снизить содержание серы и смолистых веществ, увеличить содержание светлых (топливных) фракций и её безопасную транспортировку по трубопроводам. Обработанная нефть содержит примерно в два раза больше топливных фракций, чем исходный продукт, кроме того, уменьшается её плотность и кинематическая вязкость.

Перспективно строительство небольших перерабатывающих производств, непосредственно приближенных к потребителю и оптимально удовлетворяющих его требованиям.

Производительность пилотной установки составляет   1   м 3 /ч. Для достижения необходимой мощности устанавливают параллельно несколько аналогичных установок

Сотрудничество может быть оформлено в виде лицензионного соглашения.

Http://www. sciteclibrary. ru/rus/catalog/pages/11386.html

По результатам многочисленных исследований и разработок ниже приведен доклад на VI конгресс нефтегазопромышленников России “Нефтегазовый комплекс – реальность и перспективы”, 25 мая 2005 г. Уфа.

Для российской нефтеперерабатывающей промышленности основной проблемой является малая глубина переработки нефти. Создана технология глубокой (до 87-92%) переработки тяжелого нефтяного сырья в светлые дистиллятные топлива с получением в остатке неокисленных битумов, пеков либо низкозастывающих котельных топлив.

Углубление переработки нефти с достигнутых 70-73% до среднеевропейских 85-90%, является актуальной экономической и технической проблемой для нефтеперерабатывающей отрасли России (см. рис. 1). Единственно возможный путь увеличения выработки высоколиквидных светлых нефтепродуктов – строительство новых и модернизация существующих производств для глубокой переработки мазута и гудрона.

Рис. 1. Достигнутая в 2005 г. глубина переработки нефти в разных странах

В качестве вторичных процессов, позволяющих значительно повышать глубину переработки нефти, на американских и западноевропейских заводах предпочитают процессы с наименьшей капиталоемкостью: замедленное коксование нефтяных остатков и висбрекинг мазутов и гудронов, а также значительно более дорогие процессы каталитического крекинга и гидрокрекинга вакуумных газойлей и мазутов.

Мазут, по мнению авторов доклада, должен быть исключен из ассортимента товарной продукции российских НПЗ и стать сырьем для дальнейшей глубокой переработки. Исходя из данной концепция, создана отечественная технология, позволяющая значительно углубить переработку нефти гораздо более дешевым путем, чем закупка капиталоемких комплексов [1].

Основная задача в разработке новых термических процессов состоит в увеличении конверсии термостабильных высокомолекулярных углеводородов в низкомолекулярные углеводороды – газоводистиллятные продукты (топливный газ и бензино-дизельные фракции) с возможностью минимизации выхода высококонденсированных остаточных продуктов.

Преобразование компонентов исходного сырья в реакционные продукты происходит в результате последовательно-параллельных реакций, протекающих главным образом, по радикально-цепному механизму. Протекающие деструктивные процессы эндотермичны и требуют подвода значительного количества тепла, что осуществляется нагревом до достаточно высоких (480-500°С) температур. Однако, подвод энергии в низкопотенциальном виде за счет повышения температур стенок греющих элементов, не позволяет избирательно воздействовать на нужные стадии процесса термолиза – наряду с ускорением процессов деструкции, ускоряются и процессы, приводящие к нежелательному закоксовыванию оборудования.

В основе разработанной нами технологии, получившей название “Висбрекинг-ТЕРМАКАТ®”, лежит еще более мягкий термический крекинг, интенсифицированный кавитационно-акустическим воздействием на реакционные среды [3].

Суть новой технологии – в использовании кавитационно-акустического воздействия как технологического приема, позволяющего осуществлять селективное воздействие на отдельные группы углеводородов и стадии термолиза, подводя к реакционной массе дополнительную энергию в высокопотенциальном виде. Подвод энергии осуществляется методом кавитационно-акустического воздействия, вносящим изменения в гидродинамику и дисперсионную стабильность жидких сред, что по-разному влияет на разные стадии процесса – заметно интенсифицирует одни (деструкцию) и резко замедляет другие (коксообразование).

Эффективность такого технологического приема обоснована научными разработками [4] – звукохимия давно составляет серьезный и самостоятельный раздел химии [5,6]. Сонолюминесценция (свечение), наблюдаемая нами при гидродинамической кавитации [7], свидетельствует о наличии в жидкости весьма высокоэнергетических явлений, оказывающих влияние на протекание химических реакций. Поток энергии, передаваемой реакционной среде при кавитационном воздействии за счет кинетической энергии движения стенок кавитационных пузырьков весьма велик и свечение свидетельствует о достижении необходимой интенсивности кавитационно-акустического воздействия. Эффективность воздействия такова, что процессы деструкции проходят на 60-80°С ниже, чем при классическом крекинге. Термолиз идет практически вне области коксообразования.

Кавитационные пузырьки, генерируемые при оптимальном избыточном давлении не только инициируют радикальный механизм процессов деструкции, но и интенсифицируют испарение легких фракций, испаряемость которых при максимальной кривизне поверхности неисчислимо большего количества пузырьков (минимальных размерах) на 12% выше, чем на обычной поверхности раздела фаз жидкость-пар.

Кавитационно-акустическое воздействие на реакционную среду, примененное в новой технологии [8], сохраняет агрегативную устойчивость реакционной среды даже при высокой концентрации асфальтенов. Цепочка химических превращений “парафины à нафтены à ароматические углеводороды à смолы à асфальтены à карбены à карбоиды (кокс)” прерывается нами на стадии образования оптимального количества асфальтенов. Это позволяет достичь, с одной стороны, большой глубины превращения углеводородов тяжелого нефтяного сырья в светлые нефтепродукты, а с другой стороны, получить в качестве остаточного продукта концентрированный коллоидный раствор смол и асфальтенов – идеальную основу для производства неокисленных битумов различных марок.

Обоснованность приведенных рассуждений экспериментально подтверждена кавитационно-акустическим термолизом различных видов нефтяного сырья. Наибольшая глубина отбора светлых бензино-дизельных дистиллятов достигается при переработке первичных мазутов. Переработка по новой технологии вакуумных остатков (гудронов) не позволяет достичь максимально возможной глубины переработки – в силу повышенной концентрации асфальтенов, процессы термополиконденсации превалируют на деструктивными.

Принципиальная постадийная поточная схема процесса “Висбрекинг-ТЕРМАКАТ®” приведена на рис. 3.

Потенциал выработки светлых продуктов и их качество зависит, прежде всего, от структурно-группового состава исходного сырья. Опыт переработки более, чем 60 видов сырья нефтяного происхождения (см. табл. 1 и 2) показывает, что процесс ГПМ также универсален по видам перерабатываемого сырья – переработке подлежат практически любые виды тяжелого нефтяного сырья: прямогонные мазуты, полугудроны, вакуумные газойли, тяжелые и битуминозные нефти, а также остатки легких сырых нефтей и газовых конденсатов, и даже отработанные масла и нефтешламы.

Потенциал отбора светлых продуктов (бензино-дизельных фракций), равно как и остаточных продуктов (битумов) существенно зависит от ароматичности и сернистости сырья. Так, при переработке первичных сернистых мазутов выход светлых дистиллятных продуктов составляет 55-60%, достигая 88-92% при переработке парафинистых газоконденсатных мазутов и газойлей.

Бензиновые фракции, вырабатываемые по процессу, по основным физико-химическим свойствам как и бензины висбрекинга соответствуют автомобильным бензинам А-80 (ОЧ ММ), дизельные фракции – низкозастывающим сортам дизельных топлив. Относительно низкая окислительная стабильность дистиллятных фракций, характерная для продуктов термического происхождения из-за повышенного содержания в них непредельных соединений, может быть доведена до требований нормативов как в условиях НПЗ – за счет вторичной переработки фракций в смеси имеющихся дистиллятных потоков, так и на малотоннажных установках – путем компаундирования с антиокислительными присадками, а также с родственными продуктами первичного происхождения.

Качество неокисленных остаточных продуктов весьма высоко, соответствует ТУ и ГОСТам, и зачастую превосходит их требования. Так, неокисленные дорожные битумы, вырабатываемые из высокосернистого сырья, характеризуются уникальным комплексом термомеханических свойств – высокой дуктильностью в сочетании с повышенной температурой размягчения и низкой температурой хрупкости.

Http://www. termakat. ru/srp/science. php

Процессы первичной переработки нефти, к которым относятся прямая перегонка под атмосферным давлением (получение топливных дистиллятов и мазута) и под вакуумом (получение масляных дистиллятов, гудрона), основываются на законах физического разделения нефти на узкие фракции. Полученные при атмосферной перегонке светлые нефтепродукты при их дополнительной вторичной обработке с помощью каталитических процессов облагораживания (изомеризация, риформинг, гидроочистка) обеспечивают выработку различных моторных топлив — автомобильных бензинов, реактивных и дизельных топлив. Масляные дистилляты подвергаются различным процессам облагораживания по соответствующим поточным схемам НПЗ топливно-масляного профиля.

При сжигании остатков атмосферной перегонки, выкипающих выше 350-36(ГС, в виде котельных топлив, нефть перерабатывается по неглубокому варианту. Цены на остатки первичной переработки нефти на мировом рынке значительно ниже, чем на светлые нефтепродукты (автобензины, дизельные и реактивные топлива). Неглубокая переработка нефти становится экономически невыгодной для производителя и, год от года, эта тенденция будет прогрессировать, чему есть ряд причин. Во-первых, разведка, бурение скважин и добыча нефти в труднодоступных районах связаны с постоянным возрастанием материальных и трудовых затрат, а следовательно, и цен на нефть. В связи с этим, чтобы сделать переработку выгодной, надо из каждой тонны нефти получить больше ценных качественных продуктов — моторных топлив, сырья для нефтехимического синтеза (НХС), тем самым углубить переработку нефти, свести к минимуму выпуск низкосортных малоценных продуктов, каковыми являются высокосернистые остатки первичной перегонки нефти — мазуты, входящие в состав котельных топлив. Во-вторых, важно рационально использовать имеющиеся природные ресурсы, которые являются невосполнимыми. В связи с этим при имеющихся ресурсах необходима такая организация переработки нефти, при которой удовлетворение потребностей народного хозяйства происходит не за счет увеличения добычи нефти, а за счет более глубокой ее переработки.

Экономические расчеты показывают, что добыча и переработка каждой новой тонны нефти по неглубокому варианту в настоящее время обходится в три раза дороже, чем если бы то же количество нефтепродуктов было получено за счет внедрения процессов углубленной переработки нефти. Инвестиции в процессы, углубляющие переработку нефти, за счет выпуска более ценных и высококачественных продуктов и сокращения выработки высокосернистых остатков первичной переработки нефти окупаются в течение 3-5 лет.

В настоящее время в США, странах Западной Европы и Японии глубина переработки нефти достигает 86-95% .

В России и странах СНГ среднеотраслевой уровень глубины переработки нефти значительно ниже и составляет 60-65% из-за недостаточного объема вторичных процессов глубокой переработки нефти.

Глубокая переработка нефти обеспечивается переработкой тяжелых нефтяных фракций (вакуумных Газойлей) и остатков первичной перегонки нефти.

Применение деструктивных процессов крекинга за счет расщепления молекул исходного тяжелого сырья при температурах 450-550 С позволяет резко повысить выработку светлых нефтепродуктов и газов разложения.

Широкое внедрение процессов термического, каталитического крекинга, а также гидрокрекинга тяжелых нефтяных фракций и остатков прямой перегонки нефти, т. е. их деструктивной, вторичной переработки, дает возможность значительно углубить переработку нефти и, следовательно, увеличить производство различных ценных нефтепродуктов, в первую очередь моторных топлив, не привлекая для этого дополнительные ресурсы нефти. В настоящее время на Киришском НПЗ создается комплекс, включающий комбинированную установку гидрокрекинга под высоким давлением водорода, а в последующие годы и установку каталитического крекинга, что позволит в ближайшем будущем повысить глубину переработки нефти с 47 до 70% и более и вывести предприятие по этому показателю на мировой уровень.

– термический крекинг нефтяных остатков при атмосферном давлении (коксование);

Эти процессы характеризуются высокими температурами — от 450 до 1200° С. Направленность их различна. Так, первая из названных разновидностей процесса — Термический крекинг под давлением — для относительно легких видов сырья (мазутов прямой перегонки, вакуумных газойлей) проводится под давлением от 2 до 4 МПа, температуре 450-51 ОС с целью производства газа и жидких продуктов (в частности бензиновых фракций). Этот процесс утратил свое значение благодаря развитию каталитического крекинга. В настоящее время термический крекинг сохранился для переработки тяжелых нефтяных остатков вакуумной перегонки и направлен преимущественно на получение котельного топлива за счет снижения вязкости исходного сырья. При этом также получается некоторое количество газа и бензиновых фракций. Остальные фракции сохраняются в составе остаточного продукта. Эта разновидность термического крекинга носит название "висбрекинг" и проводится в мягких условиях (температура 450-470’С, давление 2,0-2,5 МПа). Степень конверсии сырья при этом не глубокая.

Термический крекинг нефтяных остатков при давлении до 0,5 МПа и температуре 450-550 С (коксование) проводится в направлении концентрирования асфальто-смолистых веществ в твердом остатке — коксе — и одновременного получения при этом бензиновых и газойлевых фракций — продуктов более богатых водородом, чем исходное сырье.

Пиролиз — это наиболее жесткая форма термического крекинга, проводимого с целью получения газообразных непредельных углеводородов, в основном этилена и пропилена для нефтехимического синтеза. При этом в качестве побочных продуктов образуется некоторое количество ароматических углеводородов — бензола, толуола и более тяжелых. Пиролиз осуществляется при температуре 700-800"С и выше.

Поскольку пиролиз в нефтепереработке составляет незначительный удельный вес, в настоящей книге будут рассмотрены дваосновных направления термического крекинга: 1) термический крекинг под давлением и его разновидность — висбрекинг, и 2) процесс коксования нефтяных остатков.

Как уже было сказано, важную роль в схемах отечественных и зарубежных НПЗ играет процесс неглубокого термического креинга — висбрекинг. Суммарные мощности этих установок в транах Западной Европы оцениваются в 5,6%, в США (с традиционно высокой степенью глубины переработки нефти, где одним из основных процессов переработки остатков является замедленное коксование) — • -1% .

В настоящее время в России в стадии строительства, проектирования новых и расширения действующих находятся 12 установок общей мощностью 46,2 тыс. м 3 /сут при общем объеме переработки нефти 168 млн. т/год. Висбрекинг является одним из самых дешевых процессов переработки тяжелого сырья.

Требуемая степень превращения сырья может быть достигнута при проведении процесса по двум вариантам:

– высокая температура и малая продолжительность пребывания — висбрекинг в трубчатой печи;

– умеренная температура и большая продолжительность пребывания — висбрекинг с выносной необогреваемой камерой (так называемая сокинг-секция).

Повышение температуры или времени реакции ведет к увеличению жесткости процесса, что вызывает рост выхода газа и бензина и снижает вязкость крекинг-остатка. Жесткость процесса определяется временем пребывания сырья, приведенным к 420"С (время 1000 с при 420°С эквивалентно 300 с при 450"С).

В производственных условиях жесткость процесса висбрекинга и, следовательно, степень превращения ограничивается стабильностью (склонностью к осадкообразованию) крекинг-остатка и скоростью закоксовывания труб. Конверсия в процессе, направленном только на понижение вязкости, составляет 6-7% мае., при производстве максимального количества дистиллятных фракций — 8-12% мае. Следует отметить, что в последнем случае конверсия может достигать и даже превышать 20% при условии, если остаток висбрекинга находит специальное применение на конкретном НПЗ (в качестве сырья для производства вяжущих и агломерирующих агентов, нефтезаводского топлива, сырья коксования, для производства битумов и т. д.).

– производство остаточного топлива с одновременным снижением его вязкости и температуры застывания;

– производство максимального количества газойля — сырья для последующих процессов конверсии, например, для каталитического крекинга, гидрокрекинга, получения технического углерода.

Наиболее существенное влияние на результаты висбрекинга оказывают следующие факторы: характеристика сырья, температура процесса, продолжительность пребывания сырья в печи и реакционной камере, рабочее давление в печи.

В настоящее время каталитический крекинг является самым распространенным процессом глубокой переработки нефти. Основное назначение каталитического крекинга — переработка газойлевых фракций 350-560 С с целью получения бензиновых фракций с октановым числом не менее 76-78 по моторному методу, а также значительного количества дизельных фракций, которые хотя и уступают по качеству прямогонным дизельным фракциям, но могут являться одним из компонентов при приготовлении товарных дизельных топлив. При каталитическом крекинге образуется также значительное количество газов с большим содержанием бутан-бутиленовой фракции, на базе которой производится высокооктановый компонент товарных автобензинов — алкилбензин, или алкилаг. Таким образом, каталитический крекинг — это процесс, позволяющий при его реализации в схеме завода топливного профиля значительно снизить объемы остатков атмосферной перегонки и углубить переработку нефти.

В настоящее время самый высокий процент использования процессов каталитического крекинга характерен для нефтеперерабатывающей промышленности США и Канады. Так, уже по состоянию на начало 1988 г. каталитический крекинг в США составил около 33% по отношению к первичной переработке нефти, а доля всех процессов, направленных на углубление, включая коксование и гидрокрекинг, — более 46% .

Идея применения катализаторов для осуществления крекинга в более мягких температурных условиях, чем термический крекинг, появилась давно – в конце 19, начале 20-го века. Но широкое развитие этот процесс получил при использовании, вместо природных, синтетических алюмосиликатных и, особенно, цеолитсодержащих катализаторов.

Ниже приведены основные этапы развития каталитического крекинга в нефтеперерабатывающей отрасли.

Непрерывно циркулирующий в системах катализатор последовательно проходит через стадии: каталитического крекинга сырья, десорбции адсорбированных на катализаторе углеводородов, окислительной регенерации с целью выжига образовавшегося в результате крекинга кокса (восстановления активности) и возврата регенерированного катализатора в зону каталитического крекинга сырья.

В условиях каталитического крекинга нефтяных фракций термодинамически вероятно протекание значительного числа разнообразных реакций, среди которых определяющее влияние на результаты процесса оказывают реакции разрыва углеродной связи, перераспределение водорода, ароматизации, изомеризации, разрыва и перегруппировки углеводородных колец, конденсации, полимеризации и коксообразования.

Катализатор, применяемый в процессе каталитического крекинга, является одним из главных составляющих процесса, от которого зависит эффективность его проведения. На первых этапах развития процесса каталитического крекинга использовались природные глины. На смену им пришли синтетические аморфные алюмосиликаты, которые в настоящее время повсеместно заменяются на кристаллические алюмосиликаты или цеолитсодержащие катализаторы. Химический состав алюмосиликатного катализатора можно выразить формулой А12О3 • 4 Si 02 • Н20 + пН2О. Эти вещества обладают кислотными свойствами, и чем более проявляются эти свойства, тем активнее становится катализатор. Механизм реакций при каталитическом крекинге заключается в возникновении на поверхности катализатора при его контакте с сырьем промежуточных продуктов, так называемых карбоний-ионов, образующихся в результате взаимодействия кислотного центра с углеводородом.

Основным компонентом алюмосиликатных катализаторов является окись кремния, содержание активной окиси алюминия составляет 10-25%. От химического состава катализатора зависят его свойства. Так, в случае повышения содержания А1203 увеличивается стабильность катализатора, т. е. его способность длительное время сохранять свою активность. Однако на его активность влияют и другие примеси: железо, ванадий, никель, медь,— которые способствуют реакциям дегидрирования, конденсации, усиленному образованию водорода и кокса.

Для катализатора решающее значение имеют его структура и поверхность. В связи с большой пористостью катализаторы обладают большой поверхностью — 150-400 м 2 /г. Активность внутри пористой поверхности зависит от диаметра пор. Если диаметр пор меньше среднего диаметра молекул сырья, то активная поверхность катализатора, образованная этими порами, будет использована не полностью для крекирования сырья. В то же время продукты разложения будут проникать в эти поры, дополнительно контактировать с активными центрами поверхности, разлагаться, образуя газ и кокс, уменьшая выход целевой продукции. Поэтому для каталитического крекинга применяются широкопористые катализаторы со средним радиусом пор от 50 до 100А. Современные катализаторы крекинга содержат в своем составе от 3 до 20% цеолита, равномерно распределенного в матрице, в качестве которой используются природные или синтетические алюмосиликаты. Преобладающей формой цеолитсодержащего катализатора являются микросферические шарики со средним диаметром частиц около 60 мкм — для установок с псевдоожиженным слоем и 3-4 мм — для установок с движущимся слоем катализатора.

Цеолиты, используемые в составе катализаторов, придают им высокую активность и селективность, способствуют повышению стабильности, особенно в условиях высокотемпературного воздействия пара и воздуха при регенерации, придают необходимые размеры входным окнам во внутренние полости, что способствует бол ee эффективному использованию всей пористой активной поверхности катализатора. При производстве цеолитсодержащих катализаторов таким требованиям отвечают цеолиты типа X и Y. Матрица, в качестве которой применяют синтетический аморфный алюмосиликат, природные глины с низкой пористостью и смесь синтетического аморфного алюмосиликата с глиной (полусинтетическая матрица), выполняет в цеолитсодержащих катализаторах ряд важных функций, а именно: обеспечивает стабилизирующее воздействие и оптимальный предел активности, так как цеолиты в чистом виде из-за их чрезмерной активности не могут использоваться на современных установках; создает оптимальную вторичную пористую структуру, необходимую для диффузии реагирующей смеси сырья к активному цеолитному центру и вывода продуктов реакции в газовую фазу в циклах крекинга и регенерации. Кроме того, в цикле регенерации матрица забирает часть тепла от цеолитного компонента, тем самым не допуская излишнего воздействия на него температуры. Наконец от матрицы зависит обеспечение заданной формы самого катализатора и его механические прочностные свойства.

На современных нефтеперерабатывающих заводах мира гидрокрекинг является главнейшей составляющей глубокой переработки нефти. Гидрокрекинг — процесс переработки различных нефтяных дистиллятов (реже остатков) под давлением водорода при умеренных температурах на бифункциональных катализаторах, обладающих гидрирующими и кислотными свойствами. Гидрирующие свойства катализатора позволяют получать без образования кокса продукты, во многом сходные с продуктами каталитического крекинга, но значительно менее ароматизированные, очищенные от серы и азота и не содержащие непредельных соединений.

Под воздействием давления водорода, температуры и катализатора в процессе гидрокрекинга протекают реакции гидрогенолиза гетероорганических соединений азота, серы и кислорода, гидрирования полиароматических структур, раскрытия нафтеновых колец, деалкилирования циклических структур, расщепления парафинов и алкильных цепей, изомеризации образующихся осколков, насыщения водородом разорванных связей. Превращения носят последовательно-параллельный характер и обуславливаются природой соединений, молекулярной массой, энергией разрываемых связей, каталитической активностью катализатора и условиями процесса.

– легкий гидрокрекинг под давлением водорода от 5 до 10 МПа, степень превращения 50-60%;

– глубокий гидрокрекинг под высоким давлением водорода от 10 до 20 МПа, степень конверсии 90% . Эта модификация процесса в последние десятилетия ХХ-го столетия получила широкое развитие. При конверсии сырья 90% и более обеспечивается высокий выход продуктов: бензиновой, керосиновой и дизельной фракций, практически свободных от серы и азота.

– большая гибкость, позволяющая вести процесс с разной степенью конверсии и направленностью с учетом сезонных колебаний спроса на бензин, реактивные и дизельные топлива;

– возможность использования широкого ассортимента сырья, порою трудно крекируемого в процессе каталитического крекинга;

– небольшое количество серо – и азотсодержащих соединений в продуктах процесса;

– высокая экологическая чистота процесса. К началу 1999 г. в мировой нефтеперерабатывающей промышленности на установках гидрокрекинга перерабатывалось 201 млн. т сырья, львиная доля этого объема (более 88,5%) приходилось на США. Страны Азиатско-Тихоокеанского региона перерабатывали 36,7 млн. т/год, Западной Европы —33,9 млн. т/год, Ближнего и Среднего Востока — 28,2 млн. т и только на Восточную Европу и страны СНГ приходилось 7,8 млн. т. Причем в России и в странах СНГ этот процесс практически не внедрен.

Основными зарубежными фирмами-разработчиками этого процесса в настоящее время являются "Юнокал", UOP, Shevron. В Советском Союзе много разработок по гидрокрекингу как низкого, так и высокого давления принадлежат ВНИИНП.

В качестве сырья гидрокрекинга используются вакуумные дистилляты широкого фракционного состава, а также остатки сернистых нефтей. Могут использоваться дистилляты и остатки вторичного происхождения (висбрекинга, коксования, термического и каталитического крекингов), однако в сырье ограничивается содержание металлов (никеля и ванадия) — менее 1 ррт, азота — не более 0,12% мае. Коксуемость этого сырья не должна превышать 0,03% мае. Рассмотрим сущность процесса гидрокрекинга. Процесс гидрокрекинга под высоким давлением, или глубокий гидрокрекинг, осуществляется на бифункциональных катализаторах, содержащих в качестве гидрирующих компонентов металлы VI и VII групп таблицы Менделеева, чаще всего в виде оксидов и сульфидов молибдена, никеля, кобальта, ванадия. Крекирующая и расщепляющая функция катализатора обуславливается кислотными центрами носителя, в качестве которого используются окись алюминия или алюмосиликаты. Аморфные алюмосиликаты используются для производства средних дистиллятов, цеолитсодержащие — при получении максимума бензиновых фракций. Процесс идет в среде высокоочищенного водорода при давлении до 20 МПа. В этом процессе происходит одновременное расщепление молекул углеводородной части сырья и их гидрирование. Отличительной чертой процесса является получение продуктов значительно меньшей молекулярной массы, чем исходное сырье. В этом отношении процесс гидрокрекинга имеет некоторое сходство с каталитическим крекингом

П. Г. Баннов. Процессы переработки нефти. – М.: ЦНИИТЭнефтехим, 2001. – 415с.

С. А. Ахметов. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. – 672 с.

В. Д. Рябов. Химия нефти и газа. – М.: Издательство “Техника”, ТУМА ГРУПП, 2004. – 288 с.

И. Л. Гуревич. Технология переработки нефти и газа: Ч.1. – М.: Химия, 1972. – 360с.

Http://works. doklad. ru/view/Hh1-7IFHyh4/2.html

Обсуждается проблема увеличения глубины переработки нефти на нефтеперерабатывающих заводах России за счет развития деструктивных процессов переработки тяжелых нефтяных остатков, которые характеризуются повышенным содержанием металлов и асфальтенов. Приводится классификация основных типов нефтяных остатков и рассмотрены основные деструктивные и недеструктивные способы их переработки, достоинства и недостатки этих способов.

In article the problem of increase in depth of oil refining at oil refining factories of Russia at the expense of development of destructive processes of processing of the heavy oil rests, which are characterized by the raised maintenance of metals and asphaltenes is discussed. Classification of the basic types of the oil rests is resulted and the basic destructive and nondestructive ways of their processing, merits and demerits of these ways are considered.

А. Ф. Ахметов (член.-корр. АН РБ, д. т.н., проф., зав. каф.), Ю. В. Красильникова (асп.)

Деметаллизация тяжелых нефтяных остатков – основная проблема глубокой переработки нефти

Уфимский государственный нефтяной технический университет, кафедра технологии нефти и газа 450062, г. Уфа, ул. Космонавтов, 1; тел. (347) 2431535, e-mail: tng@mail. ru

Removal of metals from the heavy oil rests – the basic problem of deep oil refining

Ufa State Petroleum Technological University 1, Kosmonavtov Str, 450062 Ufa, Russia; ph. (347) 2431535, e-mail: tng@mail. ru

Обсуждается проблема увеличения глубины переработки нефти на нефтеперерабатывающих заводах России за счет развития деструктивных процессов переработки тяжелых нефтяных остатков, которые характеризуются повышенным содержанием металлов и асфальтенов. Приводится классификация основных типов нефтяных остатков и рассмотрены основные деструктивные и недеструктивные способы их переработки, достоинства и недостатки этих способов.

Ключевые слова: асфальтены; глубина переработки нефти; тяжелый нефтяной остаток; удаление металлов.

In article the problem of increase in depth of oil refining at oil refining factories of Russia at the expense of development of destructive processes of processing of the heavy oil rests, which are characterized by the raised maintenance of metals and asphaltenes is discussed. Classification of the basic types of the oil rests is resulted and the basic destructive and nondestructive ways of their processing, merits and demerits of these ways are considered.

Key words: depth of oil refining; the heavy oil rests; removal of metals; asphaltenes.

Наибольшая доля топлива, производимого на нефтеперерабатывающих заводах, вырабатывается на установках каталитического крекинга, каталитического риформинга и гидрокрекинга. Основными требованиями, предъявляемыми к сырью для этих процессов, являются отсутствие металлов и смолисто – асфальтеновых веществ.

В настоящее время Россия — ведущий в мире производитель и экспортер мазута. В 2004 г. увеличение производства мазута и развитие первичной переработки было вызвано введением благоприятной дифференцированной экспортной пошлины на светлые и темные нефтепродукты. По данным на 1 мая 2009 г. экспортная пошлина на нефть составляла 137.7, на светлые нефтепродукты — 105.1, а на темные — 56.6 долл./т. Одновременное сокращение потребления мазута в России привело к увеличению его экспорта, что оказалось нерентабельным. Возникла необходимость переработки мазута.

Тенденция к снижению потребления мазута в качестве топлива в мире вызвана его заме-

Ной природным газом, ужесточением экологических требований — запретом в странах ЕС потребления мазута с содержанием более 1% серы, а также экономическим аспектом — набор продуктов, полученных из мазута, имеет гораздо более высокую стоимость, чем сам мазут.

По мере углубления переработки нефти в производстве топочных мазутов будут происходить следующие изменения: потребление

Если в настоящее время основную массу мазута составляют остатки атмосферной перегонки, с удовольствием закупаемые западными компаниями, то в будущем мазуты будут представлять собой смесь остатков каталитического крекинга, висбрекинга, асфальта деасфальти-зации и тяжелых дистиллятных фракций вторичных процессов. Как продукт для экспорта, они будут представлять меньший интерес и будут реализовываться на внутреннем рынке 2.

Кроме нерационального использования нефтяного сырья, сжигание топлива приводит к загрязнению окружающей среды, что ухудшает экологическую обстановку. При горении топлива в топках котельных установок ТЭЦ в атмосферу выбрасывается токсичные соединения металлов: за полный жизненный цикл ТЭЦ количество выведенного с мазутом V2O5 составляет 19.2 тыс. т и 51% от него (до 50 г/т мазута) уносится с дымовыми газами. V2O5 относится к первому классу опасности вредных для человека веществ: его среднесуточная ПДК равна 0.002 мг/м3 3. Поэтому проблема переработки мазута является важной задачей российской нефтепереработки. В настоящее время в России сложилась глубина переработки не более 71.5%, в то время, как в странах Западной Европы — 85%, а в США — 95% 4.

На зарубежных заводах остаточные продукты нефти, в том числе и гудрон, подвергаются, как правило, дальнейшей переработке с получением дополнительного количества светлых нефтепродуктов.

Концентрация металлов и смолисто-ас-фальтеновых веществ в тяжелых нефтяных остатках в 2—4 раза выше, чем в нефти. Металлы в них представлены в основном ванадием и никелем, которые находятся в виде металлоор-ганических соединений непорфиринового характера, а меньшая их часть — в виде металло-порфириновых комплексов (25% от общего содержания металлов в остатке). Термическая устойчивость свободных порфиринов сравнительно умеренная, однако с введением в их молекулу металла она возрастает, что требует более высокую температуру для их разрушения.

Существует прямая зависимость содержания ванадия и никеля в нефтяных остатках от количества серы и азота в них (рис. 3, 4) 5. В высокосернистых остатках порфирины представлены в основном комплексами с ванадием, в малосернистых — с никелем.

Наиболее доступным способом подготовки сырья для каталитических и гидрогенизацион-ных процессов является вакуумная перегонка, в результате которой получают остаток — гудрон, в котором концентрируются металлы и смоли-сто-асфальтеновые вещества. В России гудрон является сырьем для производства котельных топлив. Для получения товарного котельного топлива его компаундируют с дистиллятными фракциями или подвергают висбрекингу с целью снижения его вязкости. Таким образом, производство мазута в России является основным способом выделения металлов и смолисто-асфальтеновых веществ из нефти.

Рис. 3. Зависимость содержания ванадия в остатках от серы в нефти

Рис. 4. Зависимость содержания никеля в остатках от содержания серы в нефти

Переработка тяжелых нефтяных остатков с высоким содержанием металлов и асфальте-нов значительно затрудняет их использование в процессах каталитического крекинга и гидрокрекинга, так как приводит к необратимой дезактивации катализаторов. Образующиеся при переработке неорганических соединений ванадия ванадаты натрия также способствуют интенсивному золовому заносу и высокотемпературной коррозии поверхностей оборудования, снижению срока службы турбореактивных, дизельных и котельных установок, газовой коррозии активных элементов газотурбинных двигателей 6.

Сырье с высоким содержанием металлов и асфальтенов может быть переработано в деструктивных и сольвентно-адсорбционных процессах. В результате этого большинство металлов и асфальтенов переходят в остаточные продукты, такие, как асфальт, кокс, крекинг-остатки, а оставшаяся часть является сырьем каталитического крекинга и гидрокрекинга (табл. 1).

По содержанию металлов и асфальтенов тяжелые нефтяные остатки нефти сгруппированы в четыре основных типа, характеризующиеся следующими показателями (табл. 2) 5.

Выделяют два основных способа переработки тяжелых нефтяных остатков: первый — прямая каталитическая или термическая обработка с получением целевых продуктов; второй — предварительная деметаллизация и затем дальнейшая их переработка. Рассмотрим, в каких процессах целесообразно перерабатывать тяжелые нефтяные остатки нефти различных типов (табл. 3).

Остатки I типа перерабатываются в процессах гидрокрекинга со стационарным двойным слоем катализатора и каталитического крекинга лифт-реакторного типа с пассивацией металлов и отводом тепла в регенераторах.

Остатки II, III типа перерабатывают в процессе гидрокрекинга со стационарным слоем катализатора только после предварительной деасфальтизации и смешения деасфальти-зата с вакуумным газойлем, а также в процессе каталитического крекинга с двухступенчатым регенератором и отводом избытка тепла без предварительной подготовки, но при повышенном расходе металлостойкого катализатора и с пассивацией отравляющего действия металлов сырья.

Остатки IV типа используются в процессах только после предварительной деметалли-зации.

Непосредственно остаточное сырье всех типов можно переработать в таких процессах, как флексикокинг, флюидкокинг, замедленное коксованиие, висбрекинг и деасфальтиза-ция. Однако процессы флексикокинга и флю-идкокинга получили ограниченное распространение вследствие больших капитальных и эксплуатационных затрат.

Тяжелые нефтяные остатки, отнесенные к типу I и II, пригодны для получения продукта с содержание серы до 0.2—0.3 %, тип III до 0.5-0.7 %, тип IV – 0.7-1.0 % 5.

В табл. 4 приведен материальный баланс процессов, перерабатывающих тяжелые нефтяные остатки.

В случае раздельной переработки вакуумного дистиллята и гудрона количество наиболее трудноперерабатываемого сырья сокращается не менее, чем в 2 раза по сравнению с вариантом переработки мазута.

Однако, ни один из используемых в настоящее время процессов переработки тяжелых нефтяных остатков с высоким содержанием металлов не обладает абсолютным преимуществом, так как жестко привязан к составу сырья и конкретным условиям, прежде всего экономическим.

Как основное достоинство термических процессов переработки тяжелых нефтяных остатков следует отметить меньшие, по сравнению с каталитическими процессами, капитальные вложения и эксплуатационные затраты, а также их сырьевую уникальность, прежде всего по отношению к коксуемости и содержанию металлов перерабатываемого сырья. Главный недостаток – низкое качество получаемых продуктов, а для процессов термического крекинга и висбрекинга еще и ограниченная глубина превращения. Для повышения эффективности этих 2-х процессов можно рассмотреть вариант реконструкции установок с перепрофилированием их на технологию замедленного коксования.

Процесс замедленного коксования – один из самых распространенных методов переработки тяжелых нефтяных остатков с высоким содержанием в них металлов. Степень деме-таллизации в этом процессе достигает 95-98 %. Однако, главным препятствием для повсеместного внедрения процессов коксования является большой выход (до 30% на сырье, 15% на нефть) кокса с 5-7 % серы и большим количеством тяжелых металлов и золы, что мешает использовать его для производства электродных изделий.

Классификация основных процессов деструктивной переработки тяжелых нефтяных остатков 7,8

Способ удаления Экстракционный Адсорбционный Каталитический Гидрогенизационный Термический Комбинированный

Суть удаления Удаление металлов в составе смолисто-асфальтеновых веществ, отделяемых от нефтяного сырья с помощью коагулянтов Выделение металлов из нефтяного сырья с помощью адсорбентов, дополняемое термообработкой Разрушение металлсодержащих соединений в присутствии расщепляющего катализатора и осаждение металлов на нем Разрушение металлсодержащих соединений гидрогенизационной переработкой и осаждение металлов на катализаторе Термическое разрушение металлосо-держащих соединений и концентрирование металлов в остатках термолиза, в коксе Разрушение металлсодержащих соединений гидрогенизационной переработкой без катализатора

Название процесса Деасфальтизация растворителями Адсорбционная очистка Селективная очистка Адсорбционно-каталитическая очистка Каталитический крекинг Гидроочистка Гидрокрекинг Висбрекинг Термический крекинг Замедленное коксование Термоконтактный крекинг без газификации кокса (флюид-кокинг) и с газификацией кокса (флексикокинг) Гидровисбрекинг Гидрококсование Гидропиролиз Донорно-сольвентный крекинг

Степень превращения сырья с н. к. >350 °С, %мас. 0-50 0-50 До 80 До 90 5-75 20-90

Типы ТНО Остаток Содержание металлов (У+1Ч1), г/т Содержание асфальтенов, %

Продукты Замедленное коксование Флюидкокинг Флексикокинг Деасфальтизация Висбрекинг + Вакуумная перегонка Гидрокрекинг

Значительно более высокие параметры выхода и качества дистиллятных продуктов и газа характерны для каталитических и гидрокаталитических процессов. Однако им присущи значительные как капитальные, так и эксплуатационные затраты, связанные с большим расходом катализатора и водорода. Кроме того, они приспособлены к переработке лишь сравнительно благоприятного по содержанию гетеропримесей, металлов и коксуемости сы-

Рья, в этих процессах можно переработать тяжелые нефтяные остатки только после предварительной деметаллизации, сольвентными, адсорбционными процессами и термоадсорбционными процессами. Однако сольвентные процессы характеризуются высокой энергоемкостью, повышенными эксплуатационными и капитальными затратами, они приводят к образованию еще более тяжелого асфальтового остатка, чем гудроны. Термоадсорбционные процессы

Компания Вис-бре-кинг Каталитический крекинг Гидрокрекинг Кок-сование Деас-фаль-тиза-ция

* с микросферическим катализатором (1А/1М, ГК-3, Г-43-107, 43-103); ** 11 установок с шариковым катализатором (43-102).

В последнее время наблюдается тенденция к разработке процессов промежуточного типа между термическими и каталитическими, так называемых гидротермических процессов, таких как гидропиролиз, гидрококсование, гидровисбрекинг, донорно-сольвентный крекинг, однако они ограничены глубиной конверсии, но лишены ограничений в отношении содержания металлов в тяжелых нефтяных остатках 8.

Как видно из табл. 5, ведущие страны мира — США и Япония довели мощности процесса коксования до 16.2 и 23.4 % соответственно от первичной переработки, в России же пока на долю этого процесса приходится 2.5% (табл. 6).

На Уфимской группе заводов глубина переработки достигает 90%, что соответствует мировым показателям. Такой уровень обеспечен во многом наличием в Уфе мощной научно-исследовательской и проектной базы в лице УГНТУ, ИНХП и Башгипронефтехим по работам, в которых выполнены реконструкции и строительство основных установок глубокой переработки нефти. Произведены реконструкции установок висбрекинга на всех заводах уфимской группы, установки деасфальтиза-ции остатков в сверхкритических условиях на ОАО «Уфанефтехим», установки замедленного коксования ОАО «Новойл», а также строительство замедленного коксования на ОАО «Уфанефтехим». Однако основным процессом, радикально повышающим глубину переработки нефти и на уфимской группе заводов, является процесс замедленного коксования.

Этот процесс является единственным доступным способом, позволяющим переработать нефтяные остатки любых типов и дополнительно получать сырье для каталитических и гидроге-низационных процессов.

2. Галиев Р. Г., Хавкин В. А., Данилов А. М. // Мир нефтепродуктов.- 2009.- №2.- С. 3.

3. Гарифзянов Г. Г., Гарифзянова Г. Г. // Химия и технология топлив и масел.- №4.- 2006.-С. 24.

4. Хавкин В. А., Галиев Р. Г., Гуляева Л. А., Пугач И. А. // Мир нефтепродуктов.- 2009.-№3.- С. 15.

5. Берг Г. А., Хабибуллин С. Г. Каталитическое гидрооблагораживание нефтяных остатков.-Л.: Химия, 1986.- 192 с.

8. Валявин Г. Г., Суюнов Р. Р., Ахметов С. А., Валявин К. Г. Современные и перспективные термолитические процессы глубокой переработки нефтяного сырья.- С.-Пб.: Недра, 2010.- 223 с.

11. Хавкин В. А., Гуляева Л. А., Виноградова Н. Я., Шмелькова О. И. // Мир нефтепродуктов.-

12. Капустин В. М., Чернышева Е. А. // Мир нефтепродуктов.- 2009.- №9-10.- С. 20.

13. Султанов Ф. М. Энергосберегающая технология сольвентной деасфальтизации нефтяных остатков: Дис. . докт. техн. н.- Уфа, 2007.- 313 с.

Http://cyberleninka. ru/article/n/demetallizatsiya-tyazhelyh-neftyanyh-ostatkov-osnovnaya-problema-glubokoy-pererabotki-nefti

Нефть представляет собой подвижную маслянистую горючую жидкость легче воды от светло-коричневого до черного цвета со специфическим запахом.

С позиций химии нефть – сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах «среднестатистической» нефти. Менее всего колеблется элементный состав нефтей: 82,5-87% углерода; 11,5-14,5% водорода; 0,05 – 0,35, редко до 0,7% кислорода; до 1,8% азота и до 5,3, редко до 10% серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. ч. металлы (Са, Mg, Fe, Al, Si, V, Ni, Na и др.).

Поскольку нефть и нефтепродукты представляют собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности, температурой кипения при данном давлении. Принято разделять нефти и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты принято называть фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постепенно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения (н. к.) и конца кипения (к. к.). При исследовании качества новых нефтей (т. е. составлении технического паспорта нефти) фракционный состав их определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками (например, на АРН-2 по ГОСТ 11011-85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура – выход фракций в % масс, (или %

Об.). Отбор фракций до 200°С прово-дится при атмосферном давлении, а более высококипящих – под вакуумом во избежание термического разложения. По принятой методике от начала кипения до 300°С отбирают 10-градусные, а затем 50-градусные фракции до температуры к. к. 475 – 550°С. Таким образом, фракционный состав нефтей (кривая ИТК) показывает потенциальное содержание в них отдельных нефтяных фракций, являющихся основой для получения товарных нефтепродуктов (автобензинов, реактивных и дизельных топлив, смазочных масел и др.). Для всех этих нефтепродуктов соответствующими ГОСТами нормируется определенный фракционный состав. Нефти различных месторождений значительно различаются по фракционному составу, а следовательно, по потенциальному содержанию дистиллятов моторных топлив и смазочных масел. Большинство нефтей содержит 15 -25% бензиновых фракций, выкипающих до 180°С, 45 – 55% фракций, перегоняющихся до 300 – 350°С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350°С). Так, самотлорская нефть содержит 58% светлых, а в нефти месторождения Серия (Индонезия) их содержание достигает 77%. Газовые конденсаты Оренбургского и Карачаганакского месторождений почти полностью (85 – 90%) состоят из светлых. Добываются также очень тяжелые нефти, в основном состоящие из высококипящих фракциий. Например, в нефти Ярегского месторождения (Республика Коми), добываемой шахтным способом, отсутствуют фракции, выкипающие до 180°С, а выход светлых составляет всего 18,8%. Подробные данные о фракционном составе нефтей бывшего СССР имеются в четырехтомном справочнике «Нефти СССР».

Эти углеводороды составляют основную часть нефти. Обычно содержание алканов в нефтях колеблется от 20 до 50%. Некоторые нефти, (называемые слабопарафинистые или беспарафинистые, содержат не более 1-2% этих углеводородов, другие могут содержать до 80% этих углеводородов, и они носят название парафинистых нефтей.

Моноциклические нафтены представлены в нефтях в основном производными циклопентана и циклогексана. Производные низших циклов в нефтях не найдены; в небольших количествах в некоторых нефтях найдены производные высших циклоалканов. Кроме моноциклических нафтенов, нефти содержат бициклические, три циклические и полициклические углеводороды. Обычно содержание нафтенов в различных нефтях составляет 30-50%. Однако в некоторых нефтях (слабопарафинистые и беспарафинистые) может быть до 80% нафтенов.

Этот тип углеводородов слабо представлен в нефтях. Обычно нефти содержат 15-20% аренов. В некоторых нефтях их содержание может достигать 35%. Кроме ароматических углеводородов ряда бензола, в нефтях содержатся производные полициклических аренов. Отдельную группу составляют углеводороды смешанного строения. Молекулы таких углеводородов содержат ароматические и нафтеновые кольца и парафиновые цепи.

Эти соединения представлены в основном фенолами, жирными’ кислотами и нафтеновыми кислотами. Кислоты содержатся главным образом в средних нефтяных погонах в количестве 1—2%. Азотистые соединения

Эти вещества представлены в нефтях в основном гетероциклическими соединениями.

В нефтях содержатся меркаптаны, сульфиды, дисульфиды, гетероциклические сернистые соединения

Эти вещества по своей природе представляют собой многокольчатые соединения, содержащие нафтеновые, ароматические циклы и гетероциклы с атомами кислорода, азота и серы. Содержание этих соединений в нефтях может изменяться от нескольких процентов до 10—40% (в случае смолистых нефтей).

К этим веществам относится иода до (4%) и различные минеральные соли, которые находятся в растворенном в воде состоянии. В нефтях также содержатся соли различных металлов и органических кислот, называемых нефтяными, металлы, входящие в состав некоторых комплексных соединений, а также сера и сероводород.

Кроме перечисленных, в нефтях найдены вещества, которые, как доказано в настоящее время, образовались из продуктов животного и растительного происхождения. Эти вещества получили название «биологических меток» или «биомаркеров», так как указывают на связь нефти с живой природой. К «биологическим меткам» относятся, например, следующие группы веществ.

В высококипящих фракциях нефти, имеющих температуру кипения юрядка 450-500°С (300-320’С при 6—8 мм рт. ст.) содержатся веществa, присутствие которых в этих фракциях вызывает вращение плоскости и поляризации поляризованного луча света. Было установлено, что такие соединения относятся к полициклическим нафтеновым углеводородам (3—5 и более циклов в молекуле). Эти оптически активные соединения не могли образоваться путем превращения углеводородов нефти, так как при синтезе соединений с асимметрическим углеродным атомом всегда образуется рацемическая смесь, не обладающая оптической активностью. Поэтому предполагают, что оптически активные соединения перешли в нефть из органического вещества вымерших десятки и сотни миллионов лет назад живых организмов. Таким веществом может быть, например, содержащийся в живых организмах холестерин.

Холестерин вращает плоскость луча поляризованного света влево (против часовой стрелки). Интересно отметить, что продукты превращения холестерина являются правовращающими. Так, из нефтей выделен холестан — углеводород, структура которого соответствует структуре холестерина и который является правовращающим.

Оптическая активность органических соединений с точки зрения термодинамики является маловероятным состоянием, так как это состояние требует повышенной свободной энергии.

Процессы в природе стремятся к уменьшению свободной энергии. Однако для очень сложных оптически активных соединений процесс образования рацемической смеси с минимумом свободной энергии является крайне медленным процессом (хотя он протекает). Примером служит уменьшение оптической активности нефтей с увеличением их геологического возраста.

Это разветвленные алканы, молекулы которых содержат повторяющееся углеводородное звено, углеродный скелет которого соответствует структуре изопрена:

Установлено, что эти углеводороды могли образоваться из фитола — непредельного спирта изопреноидной структуры, являющегося составной частью хлорофилла.

Порфирины являются производными гетероциклического соединения пиррола. В виде комплексов с металлами они входят в состав гемина — красящего вещества крови и в состав хлорофилла. В нефтях найдены как свободные порфирины, так и комплексы порфиринов с металлами (ванадий, никель).

Химическая классификация нефтей строится в зависимости от преобладания в них углеводородов различных рядов. При химической классификации нефти иногда учитывается содержание гетероатомных соединений. Предложен ряд методов химической классификации нефтей. В 1967 г. А. Э. Конторович с сотрудниками предложили классификацию, которая строится в соответствии с групповым углеводородным составом фракции нефти, выкипающей при 250-300 С, т. е. содержанием в этой фракции аренов, нафтенов и алканов1

. В зависимости от преобладания в этой фракции углеводородов одного ряда (выше 50%) нефти делятся на 3 основных типа:

— нефти грозненские парафинистые, сураханская, некоторые румынские нефти Западной Украины, Татарии, Самотлора, полуострова Мангышлак;

— эмбенские, некоторые бакинские (нефть месторождения Грязевая Сопка), калифорнийские нефти США;

— нефть месторождения Чусовские Городки, майкопская, нефти Зондских островов.

При содержании во фракции 250-300°С более 25% углеводородов других рядов нефти относят к смешанному типу: метано-нафтеновый, нафтено-метановый, ароматическо-нафтеновый и т. д. В этих названиях первым ставится название углеводородов с меньшим содержанием. Наиболее распространенными являются нефти метано-нафтеновые п нафтено-метановые. Ак. А. Петров подразделяет все нефти на 4 типа (А1

) в зависимости от концентрации алканов, разветвленных алканов, нафтенов во фракции нефти 200-430°С. Нефти первых двух типов А1

Характеризуются высокой концентрацией н-алканов и изопренанов; нефти типа Б1

Кроме химической, имеется технологическая классификация нефти, в соответствии с которой нефти подразделяются на ряд классов в зависимости от таких характеристик, как содержание серы, содержание фракций, выкипающих до 350-

Процессы первичной переработки нефти, к которым относятся прямая перегонка под атмосферным давлением (получение топливных дистиллятов и мазута) и под вакуумом (получение масляных дистиллятов, гудрона), основываются на законах физического разделения нефти на узкие фракции. Полученные при атмосферной перегонке светлые нефтепродукты при их дополнительной вторичной обработке с помощью каталитических процессов облагораживания (изомеризация, риформинг, гидроочистка) обеспечивают выработку различных моторных топлив — автомобильных бензинов, реактивных и дизельных топлив. Масляные дистилляты подвергаются различным процессам облагораживания по соответствующим поточным схемам НПЗ топливно-масляного профиля.

При сжигании остатков атмосферной перегонки, выкипающих выше 350-36(ГС, в виде котельных топлив, нефть перерабатывается по неглубокому варианту. Цены на остатки первичной переработки нефти на мировом рынке значительно ниже, чем на светлые нефтепродукты (автобензины, дизельные и реактивные топлива). Неглубокая переработка нефти становится экономически невыгодной для производителя и, год от года, эта тенденция будет прогрессировать, чему есть ряд причин. Во-первых, разведка, бурение скважин и добыча нефти в труднодоступных районах связаны с постоянным возрастанием материальных и трудовых затрат, а следовательно, и цен на нефть. В связи с этим, чтобы сделать переработку выгодной, надо из каждой тонны нефти получить больше ценных качественных продуктов — моторных топлив, сырья для нефтехимического синтеза (НХС), тем самым углубить переработку нефти, свести к минимуму выпуск низкосортных малоценных продуктов, каковыми являются высокосернистые остатки первичной перегонки нефти — мазуты, входящие в состав котельных топлив. Во-вторых, важно рационально использовать имеющиеся природные ресурсы, которые являются невосполнимыми. В связи с этим при имеющихся ресурсах необходима такая организация переработки нефти, при которой удовлетворение потребностей народного хозяйства происходит не за счет увеличения добычи нефти, а за счет более глубокой ее переработки.

Экономические расчеты показывают, что добыча и переработка каждой новой тонны нефти по неглубокому варианту в настоящее время обходится в три раза дороже, чем если бы то же количество нефтепродуктов было получено за счет внедрения процессов углубленной переработки нефти. Инвестиции в процессы, углубляющие переработку нефти, за счет выпуска более ценных и высококачественных продуктов и сокращения выработки высокосернистых остатков первичной переработки нефти окупаются в течение 3-5 лет.

В настоящее время в США, странах Западной Европы и Японии глубина переработки нефти достигает 86-95% .

В России и странах СНГ среднеотраслевой уровень глубины переработки нефти значительно ниже и составляет 60-65% из-за недостаточного объема вторичных процессов глубокой переработки нефти.

Глубокая переработка нефти обеспечивается переработкой тяжелых нефтяных фракций (вакуумных Газойлей

Применение деструктивных процессов крекинга за счет расщепления молекул исходного тяжелого сырья при температурах 450-550 С позволяет резко повысить выработку светлых нефтепродуктов и газов разложения.

Широкое внедрение процессов термического, каталитического крекинга, а также гидрокрекинга тяжелых нефтяных фракций и остатков прямой перегонки нефти, т. е. их деструктивной, вторичной переработки, дает возможность значительно углубить переработку нефти и, следовательно, увеличить производство различных ценных нефтепродуктов, в первую очередь моторных топлив, не привлекая для этого дополнительные ресурсы нефти. В настоящее время на Киришском НПЗ создается комплекс, включающий комбинированную установку гидрокрекинга под высоким давлением водорода, а в последующие годы и установку каталитического крекинга, что позволит в ближайшем будущем повысить глубину переработки нефти с 47 до 70%

И более и вывести предприятие по этому показателю на мировой уровень.

– термический крекинг нефтяных остатков при атмосферном давлении (коксование);

Эти процессы характеризуются высокими температурами — от 450 до 1200° С. Направленность их различна. Так, первая из названных разновидностей процесса — термический крекинг под давлением

И проводится в мягких условиях (температура 450-470’С, давление 2,0-2,5 МПа). Степень конверсии сырья при этом не глубокая.

Термический крекинг нефтяных остатков при давлении до 0,5 МПа и температуре 450-550 С (коксование)

Проводится в направлении концентрирования асфальто-смолистых веществ в твердом остатке — коксе — и одновременного получения при этом бензиновых и газойлевых фракций — продуктов более богатых водородом, чем исходное сырье.

— это наиболее жесткая форма термического крекинга, проводимого с целью получения газообразных непредельных углеводородов, в основном этилена и пропилена для нефтехимического синтеза. При этом в качестве побочных продуктов образуется некоторое количество ароматических углеводородов — бензола, толуола и более тяжелых. Пиролиз осуществляется при температуре 700-800"С и выше.

Поскольку пиролиз в нефтепереработке составляет незначительный удельный вес, в настоящей книге будут рассмотрены дваосновных направления термического крекинга: 1) термический крекинг под давлением и его разновидность — висбрекинг, и 2) процесс коксования нефтяных остатков.

Как уже было сказано, важную роль в схемах отечественных и зарубежных НПЗ играет процесс неглубокого термического креинга — висбрекинг. Суммарные мощности этих установок в транах Западной Европы оцениваются в 5,6%, в США (с традиционно высокой степенью глубины переработки нефти, где одним из основных процессов переработки остатков является замедленное коксование) — • -1% .

В настоящее время в России в стадии строительства, проектирования новых и расширения действующих находятся 12 установок общей мощностью 46,2 тыс. м3

/сут при общем объеме переработки нефти 168 млн. т/год. Висбрекинг является одним из самых дешевых процессов переработки тяжелого сырья.

Требуемая степень превращения сырья может быть достигнута при проведении процесса по двум вариантам:

– высокая температура и малая продолжительность пребывания — висбрекинг в трубчатой печи;

– умеренная температура и большая продолжительность пребывания — висбрекинг с выносной необогреваемой камерой (так называемая сокинг-секция).

Повышение температуры или времени реакции ведет к увеличению жесткости процесса, что вызывает рост выхода газа и бензина и снижает вязкость крекинг-остатка. Жесткость процесса определяется временем пребывания сырья, приведенным к 420"С (время 1000 с при 420°С эквивалентно 300 с при 450"С).

В производственных условиях жесткость процесса висбрекинга и, следовательно, степень превращения ограничивается стабильностью (склонностью к осадкообразованию) крекинг-остатка и скоростью закоксовывания труб. Конверсия в процессе, направленном только на понижение вязкости, составляет 6-7% мае., при производстве максимального количества дистиллятных фракций — 8-12% мае. Следует отметить, что в последнем случае конверсия может достигать и даже превышать 20% при условии, если остаток висбрекинга находит специальное применение на конкретном НПЗ (в качестве сырья для производства вяжущих и агломерирующих агентов, нефтезаводского топлива, сырья коксования, для производства битумов и т. д.).

– производство остаточного топлива с одновременным снижением его вязкости и температуры застывания;

– производство максимального количества газойля — сырья для последующих процессов конверсии, например, для каталитического крекинга, гидрокрекинга, получения технического углерода.

Наиболее существенное влияние на результаты висбрекинга оказывают следующие факторы: характеристика сырья, температура процесса, продолжительность пребывания сырья в печи и реакционной камере, рабочее давление в печи.

В настоящее время каталитический крекинг является самым распространенным процессом глубокой переработки нефти. Основное назначение каталитического крекинга — переработка газойлевых фракций 350-560 С с целью получения бензиновых фракций с октановым числом не менее 76-78 по моторному методу, а также значительного количества дизельных фракций, которые хотя и уступают по качеству прямогонным дизельным фракциям, но могут являться одним из компонентов при приготовлении товарных дизельных топлив. При каталитическом крекинге образуется также значительное количество газов с большим содержанием бутан-бутиленовой фракции, на базе которой производится высокооктановый компонент товарных автобензинов — алкилбензин, или алкилаг. Таким образом, каталитический крекинг — это процесс, позволяющий при его реализации в схеме завода топливного профиля значительно снизить объемы остатков атмосферной перегонки и углубить переработку нефти.

В настоящее время самый высокий процент использования процессов каталитического крекинга характерен для нефтеперерабатывающей промышленности США и Канады. Так, уже по состоянию на начало 1988 г. каталитический крекинг в США составил около 33% по отношению к первичной переработке нефти, а доля всех процессов, направленных на углубление, включая коксование и гидрокрекинг, — более 46% .

Идея применения катализаторов для осуществления крекинга в более мягких температурных условиях, чем термический крекинг, появилась давно – в конце 19, начале 20-го века. Но широкое развитие этот процесс получил при использовании, вместо природных, синтетических алюмосиликатных и, особенно, цеолитсодержащих катализаторов.

Ниже приведены основные этапы развития каталитического крекинга в нефтеперерабатывающей отрасли.

Непрерывно циркулирующий в системах катализатор последовательно проходит через стадии: каталитического крекинга сырья, десорбции адсорбированных на катализаторе углеводородов, окислительной регенерации с целью выжига образовавшегося в результате крекинга кокса (восстановления активности) и возврата регенерированного катализатора в зону каталитического крекинга сырья.

В условиях каталитического крекинга нефтяных фракций термодинамически вероятно протекание значительного числа разнообразных реакций, среди которых определяющее влияние на результаты процесса оказывают реакции разрыва углеродной связи, перераспределение водорода, ароматизации, изомеризации, разрыва и перегруппировки углеводородных колец, конденсации, полимеризации и коксообразования.

Катализатор, применяемый в процессе каталитического крекинга, является одним из главных составляющих процесса, от которого зависит эффективность его проведения. На первых этапах развития процесса каталитического крекинга использовались природные глины. На смену им пришли синтетические аморфные алюмосиликаты, которые в настоящее время повсеместно заменяются на кристаллические алюмосиликаты или цеолитсодержащие катализаторы. Химический состав алюмосиликатного катализатора можно выразить формулой А12

О. Эти вещества обладают кислотными свойствами, и чем более проявляются эти свойства, тем активнее становится катализатор. Механизм реакций при каталитическом крекинге заключается в возникновении на поверхности катализатора при его контакте с сырьем промежуточных продуктов, так называемых карбоний-ионов, образующихся в результате взаимодействия кислотного центра с углеводородом.

Основным компонентом алюмосиликатных катализаторов является окись кремния, содержание активной окиси алюминия составляет 10-25%. От химического состава катализатора зависят его свойства. Так, в случае повышения содержания А12

Увеличивается стабильность катализатора, т. е. его способность длительное время сохранять свою активность. Однако на его активность влияют и другие примеси: железо, ванадий, никель, медь,— которые способствуют реакциям дегидрирования, конденсации, усиленному образованию водорода и кокса.

Для катализатора решающее значение имеют его структура и поверхность. В связи с большой пористостью катализаторы обладают большой поверхностью — 150-400 м2

/г. Активность внутри пористой поверхности зависит от диаметра пор. Если диаметр пор меньше среднего диаметра молекул сырья, то активная поверхность катализатора, образованная этими порами, будет использована не полностью для крекирования сырья. В то же время продукты разложения будут проникать в эти поры, дополнительно контактировать с активными центрами поверхности, разлагаться, образуя газ и кокс, уменьшая выход целевой продукции. Поэтому для каталитического крекинга применяются широкопористые катализаторы со средним радиусом пор от 50 до 100А. Современные катализаторы крекинга содержат в своем составе от 3 до 20%

Цеолита, равномерно распределенного в матрице, в качестве которой используются природные или синтетические алюмосиликаты. Преобладающей формой цеолитсодержащего катализатора являются микросферические шарики со средним диаметром частиц около 60 мкм — для установок с псевдоожиженным слоем и 3-4 мм — для установок с движущимся слоем катализатора.

Цеолиты, используемые в составе катализаторов, придают им высокую активность и селективность, способствуют повышению стабильности, особенно в условиях высокотемпературного воздействия пара и воздуха при регенерации, придают необходимые размеры входным окнам во внутренние полости, что способствует болee эффективному использованию всей пористой активной поверхности катализатора. При производстве цеолитсодержащих катализаторов таким требованиям отвечают цеолиты типа X и Y. Матрица, в качестве которой применяют синтетический аморфный алюмосиликат, природные глины с низкой пористостью и смесь синтетического аморфного алюмосиликата с глиной (полусинтетическая матрица), выполняет в цеолитсодержащих катализаторах ряд важных функций, а именно: обеспечивает стабилизирующее воздействие и оптимальный предел активности, так как цеолиты в чистом виде из-за их чрезмерной активности не могут использоваться на современных установках; создает оптимальную вторичную пористую структуру, необходимую для диффузии реагирующей смеси сырья к активному цеолитному центру и вывода продуктов реакции в газовую фазу в циклах крекинга и регенерации. Кроме того, в цикле регенерации матрица забирает часть тепла от цеолитного компонента, тем самым не допуская излишнего воздействия на него температуры. Наконец от матрицы зависит обеспечение заданной формы самого катализатора и его механические прочностные свойства.

На современных нефтеперерабатывающих заводах мира гидрокрекинг является главнейшей составляющей глубокой переработки нефти. Гидрокрекинг — процесс переработки различных нефтяных дистиллятов (реже остатков) под давлением водорода при умеренных температурах на бифункциональных катализаторах, обладающих гидрирующими и кислотными свойствами. Гидрирующие свойства катализатора позволяют получать без образования кокса продукты, во многом сходные с продуктами каталитического крекинга, но значительно менее ароматизированные, очищенные от серы и азота и не содержащие непредельных соединений.

Под воздействием давления водорода, температуры и катализатора в процессе гидрокрекинга протекают реакции гидрогенолиза гетероорганических соединений азота, серы и кислорода, гидрирования полиароматических структур, раскрытия нафтеновых колец, деалкилирования циклических структур, расщепления парафинов и алкильных цепей, изомеризации образующихся осколков, насыщения водородом разорванных связей. Превращения носят последовательно-параллельный характер и обуславливаются природой соединений, молекулярной массой, энергией разрываемых связей, каталитической активностью катализатора и условиями процесса.

– легкий гидрокрекинг под давлением водорода от 5 до 10 МПа, степень превращения 50-60%;

– глубокий гидрокрекинг под высоким давлением водорода от 10 до 20 МПа, степень конверсии 90% . Эта модификация процесса в последние десятилетия ХХ-го столетия получила широкое развитие. При конверсии сырья 90% и более обеспечивается высокий выход продуктов: бензиновой, керосиновой и дизельной фракций, практически свободных от серы и азота.

– большая гибкость, позволяющая вести процесс с разной степенью конверсии и направленностью с учетом сезонных колебаний спроса на бензин, реактивные и дизельные топлива;

– возможность использования широкого ассортимента сырья, порою трудно крекируемого в процессе каталитического крекинга;

– небольшое количество серо – и азотсодержащих соединений в продуктах процесса;

– высокая экологическая чистота процесса. К началу 1999 г. в мировой нефтеперерабатывающей промышленности на установках гидрокрекинга перерабатывалось 201 млн. т сырья, львиная доля этого объема (более 88,5%) приходилось на США. Страны Азиатско-Тихоокеанского региона перерабатывали 36,7 млн. т/год, Западной Европы —33,9 млн. т/год, Ближнего и Среднего Востока — 28,2 млн. т и только на Восточную Европу и страны СНГ приходилось 7,8 млн. т. Причем в России и в странах СНГ этот процесс практически не внедрен.

Основными зарубежными фирмами-разработчиками этого процесса в настоящее время являются "Юнокал", UOP, Shevron. В Советском Союзе много разработок по гидрокрекингу как низкого, так и высокого давления принадлежат ВНИИНП.

В качестве сырья гидрокрекинга используются вакуумные дистилляты широкого фракционного состава, а также остатки сернистых нефтей. Могут использоваться дистилляты и остатки вторичного происхождения (висбрекинга, коксования, термического и каталитического крекингов), однако в сырье ограничивается содержание металлов (никеля и ванадия) — менее 1 ррт, азота — не более 0,12% мае. Коксуемость этого сырья не должна превышать 0,03% мае. Рассмотрим сущность процесса гидрокрекинга. Процесс гидрокрекинга под высоким давлением, или глубокий гидрокрекинг, осуществляется на бифункциональных катализаторах, содержащих в качестве гидрирующих компонентов металлы VI и VII групп таблицы Менделеева, чаще всего в виде оксидов и сульфидов молибдена, никеля, кобальта, ванадия. Крекирующая и расщепляющая функция катализатора обуславливается кислотными центрами носителя, в качестве которого используются окись алюминия или алюмосиликаты. Аморфные алюмосиликаты используются для производства средних дистиллятов, цеолитсодержащие — при получении максимума бензиновых фракций. Процесс идет в среде высокоочищенного водорода при давлении до 20 МПа. В этом процессе происходит одновременное расщепление молекул углеводородной части сырья и их гидрирование. Отличительной чертой процесса является получение продуктов значительно меньшей молекулярной массы, чем исходное сырье. В этом отношении процесс гидрокрекинга имеет некоторое сходство с каталитическим крекингом

1. П. Г. Баннов. Процессы переработки нефти. – М.: ЦНИИТЭнефтехим, 2001. – 415с.

2. С. А. Ахметов. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. – 672 с.

3. В. Д. Рябов. Химия нефти и газа. – М.: Издательство “Техника”, ТУМА ГРУПП, 2004. – 288 с.

4. И. Л. Гуревич. Технология переработки нефти и газа: Ч.1. – М.: Химия, 1972. – 360с.

Http://www. litsoch. ru/referats/read/333176/

ГБПОУ «ГК г. Сызрани»

Для поддержания конкурентоспособности предприятий продукции нефтепереработки углубление переработки нефти, требуются строительство процессов по переработки тяжелых остатков.

В работе детально описываются возможные процессы переработки нефтяных остатков, смоделированы различные конфигурации комплексов по переработке остатков на основе таких процессов как:

Рассмотрены перспективы технического перевооружения Акционерного общества «Сызранский нефтеперерабатывающий завод» (АО «СНПЗ») и определен наиболее привлекательный комплекс переработки тяжелых нефтяных остатков для условий предприятия.

Современный мировой баланс потребления нефтепродуктов свидетельствует о росте спроса на качественные моторные топлива. В то же время возрастание в общем объёме переработки доли тяжёлых и высокосернистой нефти приводит к снижению выхода легких и средних дистиллятов и ухудшению их качества. Поэтому перспективы развития нефтеперерабатывающей промышленности требуют углубленной переработки и рационального использования нефтяных остатков.

Недостатком технологий существующих производств является отсутствие глубокой комплексной переработки тяжелых нефтяных остатков (ТНО). Практически на всех НПЗ России гудрон подвергается висбрекингу с выработкой котельного топлива. Производство нефтяных битумов на большинстве НПЗ осуществляется методом окисления нефтяных остатков. Недостатком этого являются значительные расходы воздуха и образование трудноутилизируемых отходов.

На данный момент в России существуют следующие наиболее острые проблемы:

Ужесточение налоговой политики в отношении выпуска темных нефтепродуктов,

Высокая капиталоемкость установок переработки углеводородного сырья.

Современный уровень развития научных разработок и технологических процессов позволяет получать из нефтяных остатков широкую гамму товарных нефтепродуктов, а также ценные углеродные продукты на базе высококачественного нефтяного кокса. Ведущая роль в решении этой проблемы отводится гидрогенизационным каталитическим процессам, позволяющим за счет деметаллизации, удаления серы и насыщения водородом подготовить нефтяные остатки для их дальнейшей переработки. Такие процессы характеризуются высокой гибкостью, хорошим качеством получаемых продуктов. Однако в качестве недостатков можно отметить необходимость высоких инвестиций (жесткие условия процесса, сложное аппаратурное оформление, необходимость наличия водородной установки и сложных систем катализаторов).

В мировой практике для переработки тяжелых нефтяных остатков в светлые дистиллятные продукты (бензиновые и дизельные фракции) наиболее часто используются:

Каталитический крекинг или гидрокрекинг после предварительной деасфальтизации и деметаллизации,

Все эти процессы осуществляются при высоких давлениях от 3,5 до 30 МПа и температурах до 460 ° С в присутствии специально приготовленного донора водорода и с исключительно большим расходом дорогих катализаторов.

В соответствии с программой инновационного развития нефтепереработки основными задачами, поставленными руководящей компанией перед АО «СНПЗ» являются:

Выполнение требований технического регламента и выпуск топлив класса Евро-5 для полного обеспечения российских потребителей и сбыта за рубежом;

Увеличение глубины переработки нефти, снижение доли производства мазута.

На АО «Сызранском нефтеперерабатывающем заводе» проводится масштабная программа модернизации. Предприятие уже перешло (по техническому регламенту это стало обязательным с 1 января 2016 года) на выпуск автомобильного топлива экологического стандарта Евро-5. Это позволит увеличить глубину переработки нефти и повысить промышленную и экологическую безопасность.

Согласно плану указанного в «паспорте программы инновационного развития ОАО «НК «Роснефть» одним из ключевых результатов реализации программы будет внедрение новых технологий.

В настоящее время на АО «СНПЗ» строится огромное количество производственных объёктов:

Для АО «СНПЗ» введение данных установок в технологическую цепочку позволит увеличить ряд производственных показателей таких как выпуск автобензинов АИ-92 на 394 тыс. т./год и АИ-95 на 320,8 тыс. т./год; выпуск дизельного топлива увеличится на 114,6 тыс. т./год эти продукты будут соответствовать перспективным классам топлив классу ЕВРО-5. Увеличится глубина переработки на 13%.

Анализ позиций АО «СНПЗ» среди предприятий нефтеперерабатывающей отрасли Российской федерации показан на рис. 1.

Модернизация производства в стране приведет к увеличению глубины переработки нефти, выхода светлых нефтепродуктов, а следовательно увеличится количество автобензина, дизельного топлива и реактивного топлива.

Выход светлых нефтепродуктов компаний после модернизации к 2018 г.

Результаты данного анализа показывают, что АО «СНПЗ» нуждается в дальнейшей модернизации производства. В противном случае предприятие может оказаться не конкурентно способным. Исходя из этого в своей работе мы ставим перед собой задачу по дальнейшему развитию предприятия, а именно: определить наиболее рентабельный для АО «СНПЗ» технологический процесс по глубокой переработки ТНО.

Объём гудрона получаемого на АО «СНПЗ» составляет 1760 тыс. т./год. На данный момент гудрон перерабатывается следующим образом:

1400 на установках ТК-3 и ТК-4 для производства котельного топлива.

На предприятии планируется увеличить конец кипения вакуумного газойля до 560 о С в следствии данной операции объём гудрона для его глубокой переработки уменьшится, а объём вакуумного газойля возрастет на 400 тыс. т./год.

Данное количество ВГО невозможно вовлекать в установку каталитического крекинга FCC т. к. по плану производства загрузка по сырью данной установки составит 110%.

Сейчас технологии переработки остатков представлены множеством процессов такими как:

Одним из преуспевающих компаний в реализации технологии замедленного коксования является компания Conoco Philips, которая стала первой, кто ввел данный процесс в мировое производство в 1950 г. в Понка-Сити, штат Оклахома США. На установке замедленного коксования помимо кокса получают газы, бензиновую фракцию и газойлевые дистилляты.

Образующиеся газы коксования или направляют на ГФУ (для извлечения пропан-пропиленовой и бутан – бутиленовой фракции) или используют в качестве технологического топлива. Бензиновые фракции имеют невысокие октановыми числа (около 60 по моторному методу) и имеют низкую химическую стабильность (за счет непредельных соединений) и содержат до 0,5 % маc. серы. Поэтому получаемые бензиновые, а также дизельные фракции необходимо гидрооблагораживать для получения качественного топлива. Кроме того, коксовые дистилляты могут быть использованы как компоненты газотурбинного и судового топлив или в качестве сырья каталитического или гидрокрекинга, для производства малозольного электродного кокса, термогазойля.

Сырьем установки являются вакуумные остатки, остатки установок легкого гидрокрекинга, атмосферные остатки, тяжелый газойль каталитического крекинга, гидроочищенные остатки, природные битумы и битумы остаток SDA и ROSE (сольвентаная деасфальтизация). Примеси металлов, серы и азота влияют на качество получаемой продукции.

Принцип установки замедленного коксования заключается в процессах термического крекинга, конденсации и полимеризации углеводородного сырья. В результате образуются водород, широкий спектр легких углеводородов, бензин, средние и тяжелые дистилляты, а также кокс. В зависимости от технологии образуется кокс 3 видов:

Топливный кокс применяется в качестве печного топлива, а также в качестве получения цемента.

Прокаленный анодный кокс имеет высокую электропроводность, что отразилось в его применении в алюминиевой и сталелитейной промышленности.

Игольчатый кокс – ключевое сырье для производства графитированных электродов, применяемых в электросталеплавлении для передачи в высокомощные электродуговые печи электричества и создания температуры, достаточной для расплавления лома и производства стали.

Режим работы коксовой камеры составляет 48 часов: 24 часа коксовая камера заполняется коксом, и в течение 20-22 часов осуществляется выгрузка кокса из коксовых камер при помощи струи воды под высоким давлением (до 14 МПа). Технологические сх емы установок замедленного коксования включают в себя следующие основные блоки:

Нагревательный (сюда относится конвекционная секция печи установки, нижняя секция ректификационной колонны, где происходит нагрев продуктами коксования, радиантная секция печи);

Реакционный (представляет собой две/четыре полые камеры, работающие попеременно, где непосредственно происходит процесс замедленного коксования тяжёлых нефтяных остатков);

Фракционирующий (разделение полученных лёгких фракций коксования: газ, бензин, газойль);

Блок механической обработки кокса, его выгрузки, сортировки и транспортировки.

Легкий и тяжелый газойли для улучшения их качества необходимо отправлять на установку гидроочистки дизельных топлив;

Кокс, до 25 % от сырья, содержит большое количество серы и поэтому не может классифицироваться как товарный продукт.

При росте глубины переработки до 87 % выход светлых нефтепродуктов оставляет желать лучшего.

Следовательно строительство установки замедленного коксования не решит ситуацию выпуска качественной продукции, необходимо строительство комплекса замедленного коксования.

Флексикокинг представляет собой процесс термоконтактного крекинга, совмещённый с газификацией кокса. Назначением процесса термоконтактного крекинга (ТКК) является получение дистиллятов, богатых ароматическими углеводородами, и газа, содержащего до 50 % (об.) непредельных углеводородов. Бензин получаемый в процессе имеет октановое число 60 – 65 и содержит 1000-1200 ppm серы.

Фракция 180-360 должна подвергаться гидроочистке, а вакуумный газойль может являться сырьем гидрокрекинга.

Процесс ведется при температуре 400-550 о С и давлении 0,3 МПа. Технологической схемой предусмотрена подача сырья в реактор с кипящим слоем циркулирующего кокса, где оно подвергается термическому крекингу и образует пары продуктов реакции и кокс. Все продукты, кроме кокса выводят из реактора в виде паров, после чего они конденсируются и направляются на ректификацию. Кокс из реактора поступает в нагреватель, где выделяется углеводородный газ. Циркулирующий горячий газ из нагревателя возвращается в реактор, а основной поток кокса направляют в газификатор. Здесь 96% кокса газифицируется в присутствии водяного пара и воздуха.

Выход жидких продуктов несколько выше, чем при замедленном коксовании;

Переработка практически любых поддающихся перекачке углеводородов;

Малоценный кокс – сырье для получения дешевого нефтезаводского топлива ( Flexicoking ).

Непрерывный процесс (низкая численность персонала; стабильная эксплуатация;

Отсутствие технологических циклов нагрева и охлаждения оборудования);

Получаемый синтезгаз в количестве 912 тыс. т.год предлагается облагораживать на установке GTL (газификация синтез – газа по методу Фишера-Тропша). Процесс характеризуется высоким давлением до 25 МПа, что и сказывается на капитальных затратах её строительства.

С комплексом Flexicoking глубина переработки нефти составит 91.5%, т. е. +13.5%. Выход светлых нефтепродуктов увеличится до 80%.

Каталитический крекинг RFCC – Residue Fluid Catalytic Cracking технология с более чем 60-летним опытом промышленной эксплуатации.

Особенностью данного процесса является конструкция с двухступенчатой регенерацией и минимальная величина дельта-кокс. Процесс применяется для превращения высокомолекулярных углеводородов в более легкие и ценные продукты.

Сырье может поступать на установку RFCC в различных формах: от гидроочищенных вакуумных газойлей до необработанного высокоароматичного нижнего продукта колонн атмосферной перегонки. Сырье может также представлять собой смесь продуктов других установок, например нефтяного вакуумного газойля с вакуумным газойлем коксования, нижним продуктом колонн вакуумной перегонки, деасфальтизатом.

Исторически так сложилось что, главной целью процесса было производство бензина, дистиллята и олефинов. RFCC может производить до 52% бензина каталитического крекинга с октановым числом 92 п. (исследовательским методом).

В получаемом бензине содержится 0,29 % сернистых соединений. Данный бензин не может соответствовать техническому регламенту и требует облагораживания с сохранением октанового числа. Для этого при расчете данного комплекса должна быть включена установка сорбционной очистки от сернистых соединений S-sorb. Нужно сказать, что при каталитическом крекинге остаточного сырья образуется большое количество кокса до 10,8% мас.

Комплекс каталитического крекинга RFCC имеет ряд проблем с компаундированием бензина после селективной гидроочистки имеет ОЧ 90 п. по (испытание моторным методом) и содержит 42% ароматических соединений, в связи с чем невозможно вовлекать весь объем бензина RFCC в товарный автобензин.

3.4. Технология Veba Comba Cracker (VCC).

При прогнозируемых высоких ценах на сырую нефть и низких ценах на природный газ гидрокрекинг суспензионной фазы становится более предпочтительным вариантом гидрогенизации остатков нефтепереработки.

Принципы гидрокрекинга суспензионной фазы по сути позволяют преодолеть ограничения, существующие для технологий со стационарным и кипящим слоем, и обеспечивают существенно более высокую степень конверсии остатка. Отходов у производства не будет. Это будет НПЗ будущего. Плюсами данной установки служат:

Технология VCC компании KBR – единственная технология, показавшая способность перерабатывать широкий спектр видов сырья – остатков нефтепереработки.

Технология VCC показала конверсию на уровне 95% и выше для различных видов сырья.

Технология VCC использует простую технологическую схему с использованием оборудования традиционного для нефтеперерабатывающих предприятий класса. Внутренние устройства в реакторе отсутствует, и кинетические и гидродинамические свойства обеспечиваются за счет уникальных технологий проектирования, позволяющих поддерживать высокий уровень конверсии.

Технология отработана на пилотных установках, разработаны и выданы исследовательские данные для выполнения техникоэкономических расчетов промышленной установки для ОАО «Танеко» (г. Нижнекамск).

Технология «VEBA COMBI CRACKER» является оригинальным процессом, включающим в себя 4 последовательных реактора гидрокрекинга. Первые три реактора за счет запатентованной технологии позволяют превращать низкокачественный гудрон или любую битумную нефть в чистую «синтетическую» нефть или в чистый вакуумный газойль.

Четвертый реактор – классический гидрокрекинг, он способен конвертировать вакуумный газойль в нафту, керосин и дизель. При этом качество керосина и дизеля получается не ниже требований стандартов ЕВРО-5. Важно, что это не комплекс установок, а одна единая установка крупнотоннажной мощности.

Установка VCC уникальна в своем роде для её строительства не требуется строить большой комплекс технологических объектов. В состав мини комплекса войдут установка производства серы, установка производства водорода и установка VCC с реактором гидрокрекинга ВГО.

Особенностью всех существующих в мире технологий гидрогенизационной переработки является применение каталитических систем с нанесенными на носитель каталитическими активными элементами. Структура таких катализаторов накладывает ограничения на качество перерабатываемого сырья, в частности по содержанию каталитических ядов (тяжелые металлы) и асфальто – смолистых веществ.

В целях решения данной проблемы была разработана новейшая, не имеющая аналогов в мировой практике технология гидроконверсии тяжелого нефтяного сырья (Т кип.>500°C), позволяющая повысить глубину переработки нефти до 90-92% по сравнению с традиционными для нефтепереработки в России 70%.

Процесс осуществляется в проточной установке при Т=440-460°С, Р=6,5-7,5 МПа в присутствии наноструктурированного катализатора нового типа, формирующегося непосредственно в реакционной среде «In Situ» из прекурсора. Основными продуктами процесса являются углеводороды С5-С10 – высококачественные компоненты моторных топлив, фракция С1-С4 и вакуумные газойлевые фракции, являющиеся ценным сырьем для нефтехимии. Технология отработана на пилотных установках, разработаны и выданы исследовательские данные для выполнения техникоэкономических расчетов промышленной установки для ОАО «Танеко» (г. Нижнекамск).

Нанесенные на различные пористые носители – алюмосиликатный, цеолитный, углеродный и др., имеющие форму шара, сферы, таблетки, черенков и т. д. — активные каталитические центры располагаются на поверхности и в порах носителей. В условиях процесса термокаталитической деструкции тяжелых остатков поверхность и поры носителя покрываются высокомолекулярными (асфальто – смолистыми) компонентами сырья и образующимися в процессе продуктами уплотнения, что сопровождается блокированием активных каталитических центров и быстрой дезактивацией катализатора. Ввиду невозможности эффективного решения поставленной задачи путем применения традиционных процессов и катализаторов, был разработан принципиально новый подход к созданию каталитических систем и способам введения их в процесс.

Гидроконверсия остаточного сырья на нано – размерных катализаторах может использоваться как составная часть блока атмосферной и вакуумной перегонки при строительстве нового НПЗ, а также в виде отдельного блока при реконструкции существующего НПЗ. В последнем случае аппаратурное оформление данной технологии практически совпадает с аппаратурным оформлением обычного процесса гидропереработки гудрона. При этом может быть несколько вариантов включения предлагаемого процесса в схему такого завода. Так, при углублении переработки в условиях дефицита нефти, существующие блоки атмосферной и вакуумной перегонки могут быть использованы для разделения продуктов гидроконверсии.

Технология гидроконверсии тяжелых нефтяных остатков, содержащих большое количество серы, ванадия, никеля, асфальто – смолистых веществ осуществляется в аппаратах под давлением водорода 6–10 МПа при температурах 440–460 о С. При сравнительно мягких условиях в процессе гидроконверсии достигается высокая конверсия исходного сырья (90–95 %) и обеспечивается высокий выход дистиллятных фракций. Получаемый вакуумный остаток практически весь срабатывается на стадии регенерации катализатора и извлечения ванадия и никеля. Реализация на отечественных НПЗ нового процесса позволит резко обогнать развитые страны по качеству и глубине переработки нефти и выдвинет нашу страну в лидеры в данной области на десятилетия вперед.

В ходе проектной работы были проработаны различные варианты модернизации АО «СНПЗ» с целью реализации глубокой переработки нефти.

Наиболее рентабельными считаем технологии VCC компании KBR и гидроконверсию ИНХС РАН. Применение этих процессов позволит уменьшить количество получаемых мазутов и темных нефтепродуков – 5 % массовых.

Технологии VCC компании KBR и гидроконверсия ИНХС РАН являются привлекательными по объёму неконвертируемого остатка;

Технологии VCC гидроконверсии имеют возможность производить из неконвертируемого остатка топливный пеки;

Технология VCC позволит получить дизельное топливо VCC с цетановым числом 49, содержанием серы 10 pmm;

В технологическую схему VCC возможно включить реактор гидрокрекинга ВГО;

Технология ИНХС РАН предусматривает строительство установки гидрокрекинга ВГО (вакуумный газойль);

Нестабильный курс рубля к иностранной валюте влияет на закупку оборудования.

Http://infourok. ru/proektnaya-rabota-buduschee-rossii-v-glubokoy-pererabotke-nefti-1027422.html

Добавить комментарий