Виды нефтеперерабатывающих заводов

Установки от экстрасенса 700х170

Цель переработки нефти (Нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой её физическое разделение на фракции. Сначала промышленная нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей — этот процесс называется первичной сепарацией нефти [1] .

Нефть поступает на НПЗ (нефтеперерабатывающий завод) в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины, и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

    Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д. Облагораживающие: риформинг, гидроочистка, изомеризация и т. д. Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг — каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С [2] . В результате риформинга бензиновая фракция обогащается ароматическими соединениями, и октановое число бензина повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения индивидуальных ароматических углеводородов, таких как бензол, толуол и ксилолы.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки

Каталитический крекинг — процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит водородсодержащий газ, образующийся при риформинге бензиновых фракций. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изоп из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

Http://encyclopaedia. bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%9D%D0%B5%D1%84%D1%82%D0%B5%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0

В настоящее время из сырой нефти можно получить различные виды топлива, нефтяные масла, парафины, битумы, керосины, растворители, сажу, смазки и другие нефтепродукты, полученные путем переработки сырья.

Добытое углеводородное сырье (Нефть, Попутный нефтяной газ и Природный газ) на месторождении проходит долгий этап, прежде чем из этой смеси будут выделены важные и ценные компоненты, из которых впоследствии будут получены пригодные к использованию нефтепродукты.

Переработка нефти очень сложный технологический процесс, который начинается с транспортировки нефтепродуктов на нефтеперерабатывающие заводы. Здесь нефть проходит несколько этапов, прежде чем стать готовым к использованию продуктом:

подготовка нефти к первичной переработке первичная переработка нефти (прямая перегонка) вторичная переработка нефти очистка нефтепродуктов

Добытая, но не переработанная нефть, содержит различные примеси, например, соль, воду, песок, глина, частицы грунта, попутный газ ПНГ. Срок эксплуатации месторождения увеличивает обводнение нефтяного пласта и, соответственно, содержание воды и других примесей в добываемой нефти. Наличие механических примесей и воды мешает транспортированию нефти по нефтепродуктопроводам для дальнейшей ее переработки, вызывает образование отложений в теплообменных аппаратах и других емкостях, усложняет процесс переработки нефти.

Вся добытая нефть проходит процесс комплексной очистки, сначала механической, затем тонкой очистки.

На данном этапе также происходит разделение добытого сырья на нефть и газ в сепараторах нефти и газа.

Отстаивание в герметичных резервуарах на холоде или при подогреве способствует удалению большого количества воды и твердых частиц. Для получения высоких показателей работы установок по дальнейшей переработке нефти последнюю подвергают дополнительному обезвоживанию и обессоливанию на специальных электрообессоливающих установках.

Зачастую вода и нефть образуют труднорастворимую эмульсию, в которой мельчайшие капли одной жидкости распределены в другой во взвешенном состоянии.

    гидрофильная эмульсия, т. е. нефть в воде гидрофобная эмульсия, т. е. вода в нефти

Разность плотностей составляющих эмульсии позволяет легко расслаивать воду и нефть методом отстаивания при нагреве жидкости до 120-160°С под давлением 8-15 атмосфер в течение 2-3 часов. При этом не допускается испарение воды.

Эмульсия также может разделяться под действием центробежных сил в центрифугах при достижении 3500-50000 оборотов в минуту.

При химическом методе эмульсия разрушается путем применения деэмульгаторов, т. е. поверхностно-активных веществ. Деэмульгаторы имеют большую активность по сравнению с действующим эмульгатором, образуют эмульсию противоположного типа, растворяют адсорбционную пленку. Данный способ применяется вместе с электрическим.

В установках электродегидратора при электрическом воздействии на нефтяную эмульсию частицы воды объединяются, и происходит более быстрое расслоение с нефтью.

Добытая нефть есть смесь нафтеновых, парафиновых, ароматических углеводов, которые имеют разный молекулярный вес и температуру кипения, и сернистые, кислородные и азотистые органические соединения. Первичная переработка нефти заключается в разделении подготовленной нефти и газов на фракции и группы углеводородов. При перегонке получают большой ассортимент нефтепродуктов и полупродуктов.

Суть процесса основана на принципе разности температур кипения компонентов добытой нефти. В результате сырье разлагается на фракции – до мазута (светлые нефтепродукты) и до гудрона (масла).

    однократным испарением многократным испарением постепенным испарением

При однократном испарении нефть нагревается в подогревателе до заданной температуры. По мере нагрева образуются пары. При достижении заданной температуры парожидкостная смесь поступает в испаритель (цилиндр, в котором пар отделяется от жидкой фазы).

Процесс многократного испарения представляет собой последовательность однократных испарений при постепенном повышении температуры нагрева.

Перегонка постепенным испарением представляет собой малое изменение состояния нефти при каждом однократном испарении.

Основные аппараты, в которых проходит перегонка нефти, или дистилляция, – это трубчатые печи, ректификационные колонны и теплообменные аппараты.

В зависимости от типа перегонки трубчатые печи делятся на атмосферные печи АТ, вакуумные печи ВТ и атмосферно-вакуумные трубчатые печи АВТ. В установках АТ осуществляют неглубокую переработку и получают бензиновые, керосиновые, дизельные фракции и мазут. В установках ВТ производят углубленную переработку сырья и получают газойлевые и масляные фракции, гудрон, которые в последствии используются для производства смазочных масел, кокса, битума и др. В печах АВТ комбинируются два способа перегонки нефти.

Процесс переработки нефти принципом испарения происходит в ректификационных колоннах. Там исходная нефть с помощью насоса поступает в теплообменник, нагревается, затем поступает в трубчатую печь (огневой подогреватель), где нагревается до заданной температуры. Далее нефть в виде парожидкостной смеси входит в испарительную часть ректификационной колонны. Здесь происходит деление паровой фазы и жидкой фазы: пар поднимается вверх по колонне, жидкость стекает вниз.

Вышеперечисленные способы переработки нефти не могут быть использованы для выделения из нефтяных фракций индивидуальных углеводородов высокой чистоты, которые впоследствии станут сырьем для нефтехимической промышленности при получения бензола, толуола, ксилола и др. Для получения углеводородов высокой чистоты в установки перегонки нефти вводят дополнительное вещество для увеличения разности в летучести разделяемых углеводородов.

Полученные компоненты после первичной переработки нефти обычно не используются в качестве готового продукта. На этапе первичной перегонки определяются свойства и характеристики нефти, от которых зависит выбор дальнейшего процесса переработки для получения конечного продукта.

В результате первичной обработки нефти получают следующие основные нефтепродукты:

    углеводородный газ (пропан, бутан) бензиновая фракция (температура кипения до 200 градусов) керосин (температура кипения 220-275 градусов) газойль или дизельное топливо (температура кипения 200-400 градусов) смазочные масла (температура кипения выше 300 градусов)остаток (мазут)

В зависимости от физико-химический свойств нефти и от потребности в конечном продукте происходит выбор дальнейшего способа деструктивной переработки сырья. Вторичная переработка нефти заключается в термическом и каталитическом воздействии на нефтепродукты, полученные методом прямой перегонки. Воздействие на сырье, то есть содержащиеся в нефти углеводороды, меняют их природу.

Топливный способ переработки применяется для получения высококачественных автомобильных бензинов, зимних и летних дизельных топлив, топлив для реактивных двигателей, котельных топлив. При данном методе используется меньшее количество технологических установок. Топливный метод представляет собой процессы, в результате которых из тяжелых нефтяных фракций и остатка получают моторные топлива. К данному виду переработки относят каталитический крекинг, каталитический риформинг, гидрокрекинг, гидроочистка и другие термические процессы.

При топливно-масляной переработке наряду с топливами получают смазочные масла и асфальт. К данному виду относятся процессы экстракции и деасфальтизации.

Наибольшее разнообразие нефтепродуктов получается в результате нефтехимической переработки. В связи с этим используется большое число технологических установок. В результате нефтехимической обработки сырья вырабатываются не только топлива и масла, но и азотные удобрения, синтетический каучук, пластмассы, синтетические волокна, моющие средства, жирные кислоты, фенол, ацетон, спирт, эфиры и другие химикалии.

При каталитическом крекинге используется катализатор для ускорения химических процессов, но в то же время без изменения сути этих химических реакций. Суть крекинг-процесса, т. е. реакции расщепления, заключается в прогоне нагретых до парообразного состояния нефтей через катализатор.

Процесс риформинга применяется в основном для производства высокооктанового бензина. Данной переработке могут подвергаться только парафиновые фракции, кипящие в пределах 95-205°С.

При термическом риформинге фракции первичной переработки нефти подвергаются воздействию только высокой температуры.

При каталитическом риформинге воздействие на исходные фракции происходит как температурой, так и с помощью катализаторов.

Данный метод переработки заключается в получении бензиновых фракций, реактивного и дизельного топлива, смазочных масел и сжиженных газов за счет воздействия водорода на высококипящие нефтяные фракции под воздействием катализатора. В результате гидрокрекинга исходные нефтяные фракции проходят также гидроочистку.

Гидроочистка заключается в удалении серы и других примесей из сырья. Обычно установки гидроочистки совмещают с установками каталитического риформинга, так как в результате последнего выделяется большое количество водорода. В результате очистки качество нефтепродуктов повышается, уменьшается коррозия оборудования.

Процесс экстракции заключается в разделения смеси твердых или жидких веществ при помощи растворителей. В используемом растворителе хорошо растворяются извлекаемые компоненты. Далее проводится депарафинизация для снижения температуры застывания масла. Получение конечного продукта заканчивается гидроочисткой. Данный метод переработки применяется для получения дистдизельного топлива и извлечении ароматических углеводородов.

В результате деасфальтизации из остаточных продуктов дестиляции нефти получаются смолисто-асфальтеновые вещества. В последствии деасфальтизат используется для производства битума, применяется в качестве сырья для каталитического крекинга и гидрокрекинга.

Для получения нефтяного кокса и газойлевых фракций из тяжелых фракций перегонки нефти, остатков деасфальтизации, термического и каталитического крекинга, пиролиза бензинов используют процесс коксования. Данный вид переработки нефтепродуктов заключается в последовательном протекании реакций крекинга, дегидрирования (выделение водорода из сырья), циклизации (образование циклической структуры), ароматизации (увеличение ароматических углеводородов в нефти), поликонденсации (выделение побочных продуктов, таких как, вода, спирт) и уплотнения для образования сплошного "коксового пирога". Летучие продукты, выделяющиеся в процессе коксования, подвергают процессу ректификации, чтобы получить целевые фракции и их стабилизировать.

Процесс изомеризации заключается в превращении из исходного сырья его изомеров. Подобные превращения приводят к получении бензинов с высоким октановым числом.

Путем введения в соединения алкиновых групп получают высокооктановые бензины из углеводородных газов.

Следует отметить, что в процессе переработки нефти и для получения конечного продукта используется весь комплекс нефтегазовых и нефтехимических технологий. Сложность и разнообразие готовых продуктов, которые можно получить из добытого сырья, определяют и разнообразность нефтеперерабатывающих процессов.

Http://gazovik-pgo. ru/cat/articles/pererabotka_nefti/

Для транспортирования продуктов по трубопроводам нужны насосные и компрессорные станции. Эти станции обычно электрически изолируются от протяженных магистральных трубопроводов, имеющих катодную защиту. Требуемые для них железобетонные фундаменты гораздо меньше, чем фундаменты на электростанциях и на нефтеперерабатывающих заводах. Однако поскольку трубы на этих станциях подвергаются опасности коррозии вследствие образования коррозионного элемента с фундаментами, для них рекомендуется локальная катодная защита.  [c.294]

Трубопровод длиной 241 км соединяет нефтеперерабатывающие заводы Гавра с Парижем. Его пропускная способность 3,5 млн. т в год. По нему перекачиваются нефтепродукты на 30 нефтебаз, расположенных в районе Парижа.  [c.158]

Одной из основных операций, направленных на повышение надежности сварных соединений, является термическая обработка. Этот вид обработки сварных соединений трубопроводов и корпусных конструкций широко применяют при монтаже предприятий нефтехимической, нефтеперерабатывающей, энергетической, химической и других отраслей народного хозяйства. На заводах термическую обработку выполняют в стационарных термических печах, а в монтажных условиях обычно осуществляют местную термическую обработку сварных соединений трубопроводов и корпусных конструкций, когда нагреву подвергается сварной шов и прилегающие к нему участки основного металла на ограниченной ширине. В некоторых случаях корпусные конструкции или участки трубопроводов подвергают полной термической обработке, заключающейся в нагреве всей конструкции или участка трубопровода вместе со сварными соединениями.  [c.205]

Http://mash-xxl. info/info/495067/

Ни один завод не может вырабатывать всю номенклатуру нефтепродуктов, в которых нуждаются близлежащие потребители. Это связано с тем, что современные установки и производства проектируются на большую производительность, т. к. в этом случае они более экономичны. Недостающие нефтепродукты завозятся с НПЗ, расположенных в других регионах.

3. топливно-нефтехимический с глубокой переработкой нефти и производством нефтехимической продукции;

На заводах первых двух типов вырабатывают в основном различные виды топлива. При неглубокой переработке нефти получают не более 35 % светлых нефтепродуктов, остальное – топочный мазут. При глубокой переработке соотношение обратное. Это достигается применением вторичных методов переработки нефти каталитического крекинга, коксования, гидрокрекинга и др.

На заводах топливно-нефтехимического типа вырабатывают не только топлива, но и нефтехимические продукты. В качестве сырья используют либо газы, получаемые при глубокой переработке нефти или бензиновые и керосино-дизельные фракции первичной перегонки нефти.

На заводах топливно-масляного типа наряду с топливами вырабатывают широкий ассортимент масел, парафины, битум и другие продукты.

Заводы энергонефтехимического типа строят при ТЭЦ большой мощности или вблизи нее. На таких заводах в процессе перегонки нефти отбирают бензиновые, керосиновые и дизельные фракции, а мазут направляют на ТЭЦ в качестве топлива. Полученные фракции светлых нефтепродуктов используют в качестве сырья для нефтехимического производства.

В настоящее время, средняя глубина переработки нефти в России – 50 % топлива, 50% мазута. Большинство НПЗ в России обладают значительными резервами углубления переработки нефти.

Для государства важно не количество добытой нефти а глубина переработки. Более 50 % мазута, производимого в России отправляется в экспорт по очень низким ценам, следовательно, снижение его производства не вызовет дефицита в стране. Снижение доли мазута оправдано уменьшением потребления мазута в Европе, введения новых норм ЕС (европейский стандарт) на содержание серы до 1%. 98% мазута, производимого в России этим нормам не соответствует, следовательно можно ожидать снижение экспортных цен на этот продукт, В 2004 году был введен в эксплуатацию комплекс глубокой переработки мазута на базе гидрокрекинга. Пермский НПЗ – 3 млн 520 тыс тон в год.

Http://studopedia. info/1-106000.html

Экологические проблемы, имеющие в настоящее время глобальный социальный характер, наиболее ярко проявились в нефтеперерабатывающей отрасли, где огромная энергонасыщенность предприятий, образование и выбросы вредных веществ создают не только техногенную нагрузку на окружающую среду, но и общественно-политическую напряженность в обществе. Постоянно интенсифицируются технологии, вследствие чего такие параметры как температура, давление, содержание опасных веществ, достигают критических величин. Растут единичные мощности аппаратов, количество находящихся в них опасных веществ. Многие виды продукции нефтеперерабатывающих заводов с передовой технологией, обеспечивающей комплексную переработку сырья и состоящей из сотен позиций взрывоопасны и пожароопасны или токсичны. Перечисленные особенности современных объектов нефтепереработки обусловливают их потенциальную экологическую опасность. Экономическая целесообразность расположения нефтеперерабатывающих предприятий приводит к повсеместному созданию индустриальных комплексов в местах проживания населения.

Ущерб промышленных технологий НПЗ для окружающей среды можно охарактеризовать риском, характер и масштабы которого зависят от типа и объемов потребляемых нефти и топлива, способов их использования, уровня технологии системы безопасности и эффективности проведения работ по уменьшению загрязнений. Гигиеническая значимость этих производств очень высока потому, что сама нефть и процесс ее переработки включают сотни химических веществ, присутствующих одновременно в различных комбинациях между собой, сочетаниях с другими неблагоприятными факторами; нефть и нефтепродукты обладают комплексным воздействием на организм, т. е. поступают в организм через все входные ворота; и, наконец, нефть и все ее производные, способны проникать и поражать все аспекты окружающей среды, всю среду обитания: воздух, воду, почву, трансформируются во все живые и неживые объекты в природе. Все это создает полное экологическое неблагополучие, ухудшение стандартов жизни, всех санитарно-гигиенических норм, что не может не отразиться на состоянии здоровья рабочих этих предприятий и населения регионов, где размещены объекты перерабатывающей промышленности. Состояние здоровья людей должно быть главным показателем социальной эффективности, а создание здоровой среды обитания, обеспечивающей социальное, физическое и психическое благополучие человека, должно стать главной концепцией дальнейшего развития общества.

Поэтому одной из важнейших проблем нефтедобывающей и нефтеперерабатывающей отраслей промышленности является проблема охраны производственной и окружающей среды. Нефтеперерабатывающуюпромышленность в настоящее время вполне справедливо относят к тем отраслям народного хозяйства, которые в наибольшей степени ответственны за здоровье населения.

В связи с этим важными являются анализ влияния на среду обитания предприятий нефтеперерабатывающего комплекса. Таким образом, тема дипломного проекта является актуальной.

Целью данного дипломного проекта является анализ влияния на среду обитания нефтеперерабатывающих предприятий на примере ОАО «Уфанефтехим».

– выполнить эколого-экономические расчеты воздействия загрязнения на окружающую среду и человека.

ОАО «Уфанефтехим» расположена в северной промышленной зоне города Уфы республики Башкортостан. Завод введен в эксплуатацию в 1957 году и является топливным с долей нефтехимических процессов. Рельеф окружающей местности средне холмистый. Преобладающее направление ветра в течение года но району – южное и юго-западное.

Основными источниками загрязнения атмосферы являются организованные источники (дымовые трубы) и неорганизованные источники (выбросы с установок за счет не герметичности аппаратов, оборудования, от резервуарных парков, очистных сооружений).

Загрязнение атмосферного воздуха происходит на всех этапах технологического процесса переработки нефти и ее компонентов.

Сточные воды образуются, как правило, не от изолированных производственных процессов или агрегатов, а являются совокупностью потоков, собираемых от предприятия в целом [30].

Выбросы в атмосферу на различных этапах технологического процесса

Установки ЭЛОУ. Сырая нагретая нефть в смеси с деэмульгатором и водой под действием переменного электромагнитного поля обезвоживается и обессоливается.

Основными источниками выбросов вредных примесей в атмосферу являются неорганизованные источники (за счет не герметичности аппаратов, оборудования) и организованные – вентвыбросы из помещений насосных[30].

На данном этапе технологического процесса в атмосферу выделяются вредные примеси испарений легких фракций нефти (бензин нефтяной и сероводород)[1].

Обезвоженная и обессоленная нефть нагревается и разделяется на фракции в ректификационных колоннах, как при повышенном давлении, так и при вакууме.

Источниками выбросов являются дымовые трубы технологических печей, не герметичность технологического оборудования (неорганизованные источники) и производственные помещения насосных.

Перечень вредных веществ дополнительно включает дымовые газы: (метан, ангидрид сернистый, углерода оксид, азота оксид и диоксид, зола мазутная в пересчете на ванадий, бенз(а)пирен, сероводород.

Печи АВТ-1, АВТ-2, АВТ-3, АВТ-4 оборудованы форсунками для сжигания газов разложения, содержащих сероводород. После эжекторов с вакуумных колонн К-5 данное устройство снижает содержание сероводорода в выбросах, переводя его в ангидрид сернистый.

– Висбрекинг. Осуществляется технологический крекинг тяжелых остатков нефти при умеренной температуре, при которой распадаются преимущественно тяжелые углеводороды. С уменьшением вязкости гудронов – выработка компонента мазута.

Источниками выделения вредных примесей являются технологические печи и неплотности технологического оборудования, поэтому перечень вредных веществ не изменяется [6].

– Установка деасфальтизации. Деасфальтизацию проводят в экстракционных колоннах. В противотоке жидкий пропан растворяет в себе масляную часть гудрона. В экстрактном растворе получают деасфальтизированное масло, в рафинатном – асфальт. Сырье – гудрон. Продукт – деасфальтизат и асфальтосмолистые вещества.

Источниками выбросов являются насосные, которые пронормированы по бутану и бензину и дымовые трубы технологических печей.

– Установка УСРПГ. Сбор, компремирование «жирных газов» установки АВТ с последующей ректификацией образовавшегося газового конденсата с получением «сухого» газа и деэтанизированной головки.

– Установка производства нефтяных битумов. Установка предназначена для получения нефтяных дорожных вязких битумов, а также различных связующих нефтяных (брикетин-1, брикетин-3, НБС-1). В состав установки входят блок окисления и блок налива готовой продукции. Газы окисления, отработанный воздух и не сконденсированная часть отгона подаются в печь дожига газов окисления, топливо – экстракт фенольной очистки. В перечень вредных веществ добавляются меркаптаны, которые пронормированы по «н-пропантиолу», и фенол.

Http://www. refbzd. ru/viewreferat-1695-1.html

К общезаводскому хозяйству (ОЗХ) современных НПЗ и НХЗ относятся объекты приема и хранения сырья, приготовления из компонентов товарной продукции, хранения и отгрузки товарной продукции; ремонтно-механическая база; складское хозяйство; объекты, предназначенные для снабжения воздухом, водородом, инертным газом, топливом; вспомогательные службы (факельное хозяйство, газоспасательная служба, пожарная охрана, медицинская служба и служба питания). В более широком смысле в ОЗХ включают также объекты энергоснабжения, водоснабжения, канализации, очистных сооружений.

Объекты ОЗХ занимают большую часть территории предприятия, а стоимость их строительства превышает 40% от общей стоимости заводов.

Состав объектов ОЗХ зависит от профиля предприятия, его технологической схемы. Например, на заводах топливно-масляного профиля заметное место принадлежит узлам приготовления товарных масел, приема многочисленных присадок со стороны, хранения и затаривания твердых парафинов и т. д. Эти объекты на заводах топливного профиля отсутствуют.

Сырье поставляется на НПЗ и НХЗ по магистральным трубопроводам, железной дороге и, в незначительной степени, водным (танкеры, баржи) и автомобильным (автоцистерны) транспортом.

Трубопроводный транспорт нефти и нефтехимического сырья. Трубопроводным транспортом в нашей стране перевозится около 80% сырой нефти и 8% нефтепродуктов. Общая протяженность нефтепроводов и нефтепродуктопроводов на конец 1980 г. составила 69,7 тыс. км. Средняя дальность перекачки нефти достигла 1400 км. Все нефтеперерабатывающие заводы Советского Союза связаны трубопроводными магистралями с районами добычи нефти. Нефтепроводы проектируются и эксплуатируются организациями Министерства нефтяной промышленности. Пропускная способность нефтепровода определяется мощностью НПЗ, а диаметр, кроме того, зависит от схемы перекачивания нефти (непрерывная или периодическая). При расширений НПЗ зачастую оказывается необходимо предусмотреть увеличение пропускной способности нефтепровода. Эта задача решается прокладкой параллельных трубопроводов на всей протяженности нефтепровода или на отдельных, наиболее перегруженных участках.

Для организации учета и контроля подачи нефти на НПЗ непосредственно перед предприятием (а иногда и на его территории) размещается приемо-сдаточный пункт. В состав пункта входят: площадка приема шара — специального устройства, которое время от времени прогоняется по нефтепроводу с целью очистки трубы от парафинистых отложений и грязи; фильтры-грязеуловители счетчики. Показания счетчиков служат для контроля количества «Поступающей на НПЗ нефти. Они передаются на головную станцию нефтепровода и на центральный диспетчерский пункт НПЗ. Перед фильтрами приемо-сдаточного пункта устанавливаются предохранительные клапаны для. защиты последних участков нефтепровода от разрыва. Причиной разрыва может быть недопустимо высокое давление, возникающее вследствие закрытия задвижки перед приемо-сдаточным пунктом. Сброс от предохранительных клапанов направляют в резервуары сырьевой базы НПЗ. С приемо-сдаточного пункта нефть подается в резервуары сырьевой базы НПЗ. Участок трубопровода от пункта до резервуаров является собственностью НПЗ. Этот трубопровод, как правило, прокладывается в земле и выводится на поверхность перед резервуарами-,

У Нефтехимические предприятия получают по трубопроводам сырье с близлежащих нефте – и газоперерабатывающих заводов. Обычно по трубопроводам подаются на НХЗ бензиновые фракции, сжиженные газы, ароматические углеводороды. Эксплуатируются, также магистральные трубопроводы, по которым сырье подается в НХЗ с предприятий, расположенных на расстоянии 150—200 км и выше.

Нефтехимические заводы часто используют в качестве сырья (например, для установок оксосинтеза) природный газ. Газ поступает на НХЗ из систем магистральных газопроводов через газораспределительные пункты (ГРП). На ГРП происходит снижение давления газа до величины, которая необходима нефтехимическому предприятию, здесь же организуется учет природного газа, Передаваемого на НХЗ. ГРП проектируются и эксплуатируются организациями Министерства газовой промышленности. Трубопровод природного газа, выходящий с ГРП, является собственностью НХЗ.

Транспорт сырья по железной дороге. Нефть на НПЗ подается в железнодорожных цистернах маршрутами, грузоподъемность которых определяется путевым развитием и пропускной способностью сети железных дорог. Для перевозки нефти используются цистерны различных типов — двух-, четырех-, шести – и восьмиосные. Подробная характеристика цистерн приведена в литературе.

Рис. 1.1. Комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов:

1 — наливной стояк; 2 — установка нижнего слива нефти; 3 — коллектор слива нефти; 4 — коллекторы темных нефтепродуктов.

На вновь строящихся НПЗ проектируются для приема нефти двухсторонние сливные эстакады длиной 360 м, вдоль которых устанавливается состав после его расцепки на две части. С целью более полного использования территории и уменьшения капитальных и эксплуатационных затрат практикуется оснащение железнодорожных эстакад устройствами для налива нефтепродуктов — мазута или дизельного топлива. В этом случае эстакада называется сливо-наливной и на ней поочередно осуществляется слив нефти и налив нефтепродукта. На рис. 5.1 изображена комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов.

Цистерны для перевозки нефти оснащены нижними сливными патрубками, к которым подводится и герметично присоединяется установка для нижнего слива (налива), представляющая собой систему шарнирно сочлененных труб. Промышленностью выпускаются установки для нижнего слива по ТОСТ 18194—79. Стандартом предусмотрен выпуск установок без подогрева (УСН), с паровым подогревом (УСНПп), с электроподогревом (УСНПэ). Установки типа УСН имеют диаметр условного прохода 150 и 175 мм, УСНПп — 175 мм, а УСНПэ — 150 мм.

Из сливной установки нефть поступает в сливной трубопровод. Ранее сливным трубопроводом нефть передавалась в резервуары, расположенные ниже отметки рельса («нулевые» резервуары). Вместимость этих резервуаров принималась такой, чтобы обеспечить слив всего маршрута. Из «нулевых» резервуаров нефть забиралась насосами заглубленной насосной и подавалась в резервуары сырьевой базы завода.

Практика показала, что в сооружении «нулевых» резервуаров и заглубленных насосных нет необходимости. Следует предусматривать поступление нефти от сливных приборов к насосам, расположенными на поверхности земли через сливную буфер.

Внимание необходимо уделять расчету гидравлических сопротивлений сливного трубопровода, учитывать всасывающую способ-Юность сырьевого насоса.

При проектировании сливо-наливных железнодорожных эстакад следует учитывать требования по нормативной продолжительности сливных операций, установленные «Правилами перевозок жидких грузов наливом в вагонах — цистернах и бункерных полувагонах», утвержденными МПС 25 мая 1966 г. Эти правила устанавливают следующую продолжительность слива (в ч) в пунктах механизированного (1) и немеханизированного (2) слива.

В зимнее время слив некоторых сортов нефтей и других продуктов, обладающих высокой температурой застывания затруднен, поскольку они поступают на пункты слива загустевшими. Правила перевозки грузов предусматривают увеличение продолжительности слива таких продуктов в период с 15 октября по 15 апреля, а также выделение специального времени на разогрев;

Для разогрева нефти в цистернах предусматривают паровые t гидромеханические подогреватели ПГМП-4 конструкции ВНИИСПТ Нефти, электрогрелки, погруженные змеевиковые подо-греватели, а также системы циркуляционного разогрева, сущность которых заключается в том, что холодный продукт, забираемый из цистерны, подогревается в специальном теплообменнике и в горячем состоянии возвращается в цистерну. Учитывая недостаточную эффективность вышеупомянутых способов непрямого разогрева

Q— .производительность слива; QH — подача основного насоса; Qд —подача дополнительного насоса.

В проектах следует предусматривать также подачу в цистерны острого пара. Сырье нефтехимических предприятий перевозится в цистернах с нижним сливом (и в этих случаях схема сливных операций аналогична описанной выше для нефти), в цистернах с верхним сливом и в специализированных цистернах.

Верхний слив из железнодорожных цистерн менее удобен, чем нижний. При верхнем сливе имеют место значительные потери от испарения, частые срывы работы насосов при сливе продуктов с высоким давлением насыщенных паров. Зачастую не, удается достичь полного удаления продукта из цистерн. Слив может осуществляться самотеком (при благоприятном рельефе местности) или с помощью, насосов.

В тех случаях, когда для верхнего слива применяют центробежные насосы, не обладающие самовсасывающей способностью, необходимо предусматривать установку поршневых насосов для первоначального (перед началом откачки) заполнения трубопроводов продуктом и зачистки цистерн. В летнее время слив продуктов с высоким давлением насыщенных паров сопровождается образованием газовых пробок во всасывающих трубопроводах насосов. Для уменьшения вакуума во всасывающих линиях рекомендуется предусматривать в проектах применение эжекторов. В качестве рабочей жидкости в эжекторах используется сливаемый продукт. При работе с погруженным эжектором не только полностью исключается вакуум во всасывающих линиях, но в отдельных случаях создается избыточное давление (подпор).

Схема обвязки эжекторов определяется разностью отметок между нижней образующей котла цистерны и резервуаром или насосом. На рис. 1.2 приведены различные варианты обвязки эжектора. Схема, изображенная на рис. 1.2, а применяется в тех случаях, когда разность геодезических отметок цистерны и резервуара позволяет (с учетом дополнительного подпора, развиваемого эжектором) обеспечить заданную производительность слива Q0. Подача и напор насоса обеспечивают работу эжектора. В тех случаях, когда разность отметок цистерны и резервуара не позволяет организовать самотечный слив или резервуар находится выше цистерны, применяют схемы, изображенные на рис. 1.2, б. Если давление, развиваемое основным насосом недостаточно для работы эжектора, то следует предусмотреть дополнительный насос для подачи рабочей жидкости в эжектор (рис. 5.2, б). Производитель-Юность дополнительного насоса выбирают равной расходу рабочей жидкости через эжектор, а дифференциальный напор равным разности между давлением рабочего продукта перед эжектором и давлением, развиваемым основным насосом.

Слив продукта может быть значительно ускорен, если создать повышенное давление над поверхностью продукта в цистерне. Для создания избыточного давления применяют подачу сжатого воздуха, инертного газа (азота) или пара.

Промыво-пропарочные станции. Для подготовки цистерн под налив и ремонта цистерн предназначены промыво-пропарочные станции (ППС), которые проектируются в составе НПЗ и НХЗ.

Заданием на проектирование ППС устанавливается суточная программа по очистке и промывке цистерн и бункерных полувагонов, оговариваются виды очистки (горячая или холодная). Обычно ППС на НПЗ должны ежесуточно обрабатывать 400—600 цистерн и 50—100 полувагонов.

На ППС предусматривается проведение следующих операций: удаление остатка светлых нефтепродуктов; пропарка котлов цистерн с одновременным сливом остатков темных нефтепродуктов; промывка горячей водой внутренних стенок котлов цистерн; удаление промывочных вод с помощью вакуумных установок; дегазация котлов цистерн вентиляционной установкой; обезвоживание слитых остатков темных нефтепродуктов; очистка сточных вод. ППС проектируются по заказам генпроектировщиков НПЗ проектными институтами МПС СССР.

Водный транспорт сырья. Перевозка нефти и нефтепродуктов. по воде осуществляется в самоходных нефтеналивных судах, морских и речных танкерах, а также в несамоходных морских, (лихтеры) и речных (баржи) судах. Внутренним водным транспортом перевозится более 60 млн. т. нефтепродуктов. Основной объем речных перевозок нефти и нефтепродуктов приходится на Волго-Камский и Обь-Иртышский бассейны. Сырая нефть перевозится с полуострова Мангышлак и из Махачкалы в Волгоград, а также из Куйбышева в районы Черного, Балтийского и Каспийского морей.

Для создания благоприятных условий слива нефти и для предотвращения загрязнения водоемов устраиваются специальные нефтяные гавани, в которых сооружаются пристани, пирсы или причалы. Гавани могут быть естественными (бухты, заливы, затоны) или искусственными.

Хранение сырья. Для хранения нефти на НПЗ предназначаются сырьевые резервуарные парки. Нормы технологического проектирования предлагают предусматривать в проектах такую вместимость парков, чтобы она обеспечивала бесперебойную работу НПЗ, получающего нефть по нефтепроводу, в течение 7. суток. Если предприятие снабжается нефтью по железной дороге или водным путем вместимость сырьевых парков должна быть увеличена. В этом случае величина нормативного запаса оговаривается в задании на проектирование.

Для предотвращения потерь нефти от испарения ее хранят в резервуарах с плавающими крышами или понтонами. На сырьевых базах НПЗ обычно устанавливаются резервуары объемом 20— 50 тыс. м3. Число резервуаров определяется общей вместимостью парка и принятым единичным объемом резервуара. При проектировании сырьевых складов НПЗ и НХЗ руководствуются СНиП II-106—79 [44]. Этот нормативный документ разработан для использования при проектировании складов нефти и нефтепродуктов; его допускается применять при проектировании складов легковоспламеняющихся, и горючих жидкостей, условия хранения которых в зависимости от их свойств сходны с условиями хранения нефти и нефтепродуктов. СНиП П-106—79, однако, не распространяется на проектирование складов (товарных баз) сжиженных газов, нефтепродуктов с упругостью паров выше 93,6 кПа (700 мм рт. ст.) при 20°С, складов синтетических жирозаменителей, подземных хранилищ в горных породах, отложениях каменной соли, ледогрунтовых хранилищ.

СНиП П-106—79 делит склады нефти и нефтепродуктов на две группы, причем товарно-сырьевые склады НПЗ и НХЗ отнесены к первой группе. Склады первой группы подразделяются на три категорий в зависимости от общей вместимости. В СНиП регламентированы расстояния от зданий и сооружений складов (товарно-сырьевых баз) до зданий и сооружений соседних предприятий, жилых и общественных зданий, расстояния от резервуаров для нефти и нефтепродуктов до зданий и сооружений склада (сливо-наливных устройств, насосных, канализационных сооружений, складов для нефтепродуктов в мелкой таре и т. п.), расстояния от зданий и сооружений склада до трубопроводов. СНиП П-106—79 рекомендует размещать резервуары группами, устанавливает предельную вместимость резервуаров в группе и расстояния между стенками резервуаров, расположенных в одной и соседних группах.

Товарная продукция, вырабатываемая на НПЗ, может быть условно разделена на две группы: 1) продукция, производимая непосредственно на технологических установках, и 2) продукция, приготавливаемая из различных компонентов. Непосредственно на установках НПЗ вырабатывают индивидуальные углеводородные фракции С3—Cs (пропановую, бутановые, пентановые), ароматические углеводороды (бензол, толуол, индивидуалыше ксилолы), различные марки твердых парафинов, присадки к маслам и т. д.

Значительное количество крупнотоннажных товарных продуктов — бензин, дизельное и котельное топлива, смазочные масла — получают на НПЗ смешением (компаундированием) из компонентов, вырабатываемых на различных установках. Так, для приготовления автомобильных бензинов на некоторых НПЗ используют до 10—15 компонентов.

На нефтехимических предприятиях товарная продукция — спирты, альдегиды, кислоты, полиолефины, сырье для производства синтетического каучука и др. — вырабатывается непосредственно в цехах и на установках.

Для осуществления операций по приготовлению товарной продукции из компонентов проектируются специальные объекты, на которых используются следующие основные методы компаундирования:

1) циркуляционный — приготовление производится в смесительных резервуарах;

3) непосредственное смешение в трубопроводах. Разработке проекта узла приготовления товарной продукции должен предшествовать расчет ожидаемых показателей качества товарных продуктов на основе сведений о качестве компонентов. В расчетах следует учитывать, что только некоторые из показателей качества являются аддитивными. Так, плотность смеси, содержание в ней серы, температуру анилиновой точки, показатели фракционного состава, определенные по ИТК, находят суммированием произведений массовых долей компонентов на соответствующие показатели каждого из компонентов. Давление насыщенных паров смеси с достаточной степенью точности можно определить суммированием произведений мольных долей компонентов на давления паров этих компонентов.

В известной степени аддитивными являются показатели октанового и цетанового чисел: Однако определенное по правилу аддитивности октановое число смеси может оказаться выше или ниже реального. Более Точно рассчитать реальное октановое число позволяет формула:

Здесь Осм — реальное октановое число смеси; О А, Ов — октановые числа ; высокооктанового и низкооктанового компонента смеси, соответственно; А и В — содержания компонентов в смеси, % (об.); k — поправочный коэффициент, определяемый по специальному графику, приведенному в литературе. –

Для расчета октанового числа смеси могут быть также использованы формулы, разработанные ВНИИНП и НПО «Нефтехим-автоматика» и фирмой «Этил Корпорейшн».

Более точные уравнения, по которым можно определить смесительные характеристики мазутов, зная показатели отдельных компонентов, приводятся в литературе.

Метод приготовления товарной продукции многократной циркуляцией через смесительные резервуары применяется в течение многих лет. Сущность метода заключается в следующем. Компоненты товарных продуктов с технологических установок поступают в компонентные,

Резервуары парков смешения, анализируются, а затем насосами подаются в смесительный резервуар. Приготовленный в смесительном резервуаре продукт забирается специальными насосами и многократно перекачивается по схеме «резервуар—насос— резервуар» до тех пор, пока в резервуаре не будет получена однородная по составу смесь, показатели которой соответствуют требованиям, предъявляемым к готовому продукту.

Вместимость компонентных резервуаров при приготовлении топлив должна соответствовать 48-часовому запасу каждого компонента, а смесительных резервуаров— 16-ч-асовой выработке данного вида топлива. При получении товарных масел предусматриваются компонентные резервуары, исходя из 36-часового запаса каждого компонента, и смесительные резервуары, исходя из суточной выработки масел.

В табл. приводится пример расчета необходимой вместимости резервуарных парков смешения, автобензина.

Для улучшения условий перемешивания резервуары оборудуют смесительными устройствами: маточниками с большим числом отверстий, направленных вверх, вниз или под углом; так называемыми «пауками» с установленными на них инжекторами-смесителями; подъемными трубами, через которые продукт закачивают на определенную высоту от днища.

В аппаратах с перемешивающими устройствами готовят товарные масла. Для ряда НПЗ была запроектирована установка приготовления масел, в состав которой входят компонентные резервуары, смесители с принудительным перемешиванием, насосная, емкости для присадок и камеры для плавления присадок.

Оба описанных выше метода обладают рядом серьезных недостатков: повышенным расходом электроэнергии, малой производительностью смешения, необходимостью строительства смесительных резервуаров.

Р-1—Р-3 — компонентные резервуары; Р-4 — товарный резервуар; Н-1—Н-3 — насосы; Ф-1—Ф-3 —фильтры; PM-J—PM-3— расходомеры; РЕ-1—РЕ-3— регуляторы; К-1—К-3 — регулирующие клапаны; СК-1 — смесительный коллектор.

Более эффективным является приготовление товарной продукции смешением в потоке. Для каждого НПЗ разрабатываются индивидуальные проекты автоматизированных систем (автоматических станций) смешения. Схема автоматической станции смешения, на которой приготавливается продукт из трех компонентов, приведена на рис. 1.3. В состав оборудования станции входят: компонентные резервуары, насосы, фильтры для очистки компонентов от механических примесей, газоотделитель (при приготовлении бензинов), измерители расхода, регулирующие клапаны, обратные, клапаны.

Объем резервуарного парка для хранения компонентов обуславливается производительностью станции смешения, необходимостью остановки для профилактического осмотра и ремонта, потребностью во времени для лабораторного анализа. Нормы технологического проектирования не регламентируют объема компонентных резервуаров, представляя право решать эту задачу проектировщикам. Оптимальные условия эксплуатации, как показывает практика, обеспечиваются при наличии 2-3 резервуаров для каждого компонента, общая вместимость которых соответствует 16—20-часовой выработке этого компонента.

Для перекачки каждого компонента следует предусматривать индивидуальные насосы, причем нежелательно, чтобы одним насосом компонент перекачивался в разные смесительные коллекторы.

В качестве измерителей расхода на станциях смешения применяются объемные счетчики или турбинные расходомеры. Широкое распространение получили венгерские турбинные расходомеры «Турбоквант», достоинством которых являются небольшие размеры, малая металлоемкость, простота ремонта. При разработке проектов станций смешения следует стремиться, чтобы максимальная производительность по компоненту не превышала 75% от пропускной способности расходомера, а минимальная не была близка к нижнему пределу пропускной способности.

Для управления процессом смешения в Рязанском СКВ Московского НПО «Нефтехимавтоматика» разработаны комплексы приборов управления «Поток». В состав комплексов входят блоки компонентов и управления.

Если схема автоконтроля блока компонента фиксирует отклонение действительного расхода компонента от заданного более чем на 0,5% в сторону уменьшения расхода, то формируется команда «Ошибка-1», по которой блок управления снижает скорость смешения.

В составе комплексов имеются основные и резервные блоки. При нарушении режима работы основных блоков резервные блоки подключаются к сети и форсированно выводятся на режим работы основного блока.

Хранение и отгрузка основного количества товарной продукции на НПЗ и НХЗ производится через товарно-сырьевые базы (ТСБ) предприятий. Отдельные виды продукции — битумы, элементарную серу, нефтяной кокс — отправляют потребителям непосредственно с технологических установок. При проектировании предприятий следует стремиться к тому, чтобы объекты по хранению и отгрузке продукции были сосредоточены в одном месте, что облегчает управление товарной базой, упрощает работу железнодорожного транспорта. Исключение делают для объектов по отгрузке сжиженных газов, которые в соответствии с противопожарными нормами проектирования следует размещать на расстоянии не менее 300—500 м от территории предприятия. Вместимость товарных складов (парков) зависит от устанавливаемых нормами технологического проектирования сроков хранения. Товарные парки должны обеспечивать возможность приема и хранения в них 15-суточной выработки, каждого из товарных нефтепродуктов. Вместимость складов сжиженных газов не должна превышать трехсуточной выработки этих продуктов. Если отгрузка товарных нефтепродуктов потребителям производится по трубопроводам, нормативный срок хранения сокращается до 7 суток.

Число устанавливаемых резервуаров зависит от количества подлежащего хранению продукта и единичной вместимости выбранного резервуара. Экономически целесообразно устанавливать меньшее число резервуаров большей вместимости. Так, расход металла на сооружение 6 резервуаров по 10 тыс. м3 составляет 955 т, а при строительстве 3 резервуаров по 20 тыс. м3 — 825 т. Сооружение резервуаров большей вместимости взамен мелких позволяет также уменьшить территорию, занимаемую парками.

Для каждого вида товарной продукции рекомендуется предусматривать не менее 3 резервуаров (в один поступает товарная продукция, второй находится на анализе, из третьего производится отгрузка продукции).

По, расположению и планировке резервуары делятся на подземные (если наивысший уровень жидкости в резервуаре ниже наинизшей планировочной отметки прилегающей площадки не менее, чем на 0,2 м) и наземные (если они не удовлетворяют вышеуказанным условиям). Для хранения товарной продукции НПЗ и НХЗ используются стальные емкости вместимостью 200 м3 (до ОСТ 26-02-1496—76); стальные резервуары вертикальные цилиндрические со щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3 с понтоном и щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3, с плавающей крышей вместимостью от 10 тыс..м3 до 50 тыс. м3; стальные резервуары с коническими днищами; горизонтальные емкости для хранения продуктов под давлением 0,6—1,8 МПа вместимостью отг25 м3 до_200_м,3 (по ОСТ 26-02-1159^-76); шаровые резервуары для хранения продуктов под давлением 0,25—1,2 МПа железобетонные резервуары.

В табл. 1.3 приведены рекомендации по выбору типа емкости для хранения продукции НПЗ и НХЗ. На рис. 1.4 изображен резервуар с плавающей крышей, применяемый для хранения бензина и других легкокипящих продуктов.

Безопасная и удобная эксплуатация резервуаров обеспечивается применением дополнительного оборудования, которое предназначено для заполнения и опорожнения резервуаров, замера уровня продукта, зачистки, .отбора проб, сброса подтоварной воды,

1 — верхний настил крыши; 2 — нижний настил крыши; 3 — днище; 4- подвижная лестница.

Рис. 1.5. Схема расположения оборудования на вертикальных резервуарах для маловязких нефтепродуктов:

1— световой люк; 2 — вентиляционный патрубок; 3 — дыхательный клапан; 4 — огневой предохранитель; 5 — замерный люк; 6 — прибор для замера уровня; 7— люк-лаз; 8 —сифонный кран; 9 — хлопушка; 10 — при-емо-раздаточный патрубок; 11 — перепускное устройство; 12 — управление хлопушкой; 13 — крайнее положение приемо-раздаточных патрубков по отношению к оси; 14 — предохранительный клапан.

Пенотушения, поддержания определенного давления в резервуарах. На рис. 1.5 приводится схема расположения оборудования на вертикальных резервуарах, для маловязких нефтепродуктов.

При разработке проектов товарных баз для НПЗ и НХЗ рекомендуется использовать СНиП II-106—79

Товарная продукция НПЗ и НХЗ отгружается трубопроводным, железнодорожным, автомобильным – и речным транспортом.

Трубопроводный транспорт. По трубопроводам транспортируются потребителям светлые и темные нефтепродукты — бензин, дизельное и котельное топлива, а также сжиженные газы, этилен, аммиак. Экономически целесообразным трубопроводный транспорт становится при концентрированном потреблении продукта в одной точке и районе, когда по трубопроводу перекачиваются не менее 300—500 тыс. т продукта в год.

В ближайшие годы намечается значительно расширить сеть нефтепродуктопроводов. Постановление Совета Министров СССР о развитии сети нефтепродуктопроводов в 1981—1985 годах предусматривает сооружение новых трубопроводов для перекачки бензина и дизельного топлива в центральных районах страны, Сибири, Казахстане, создание ряда мазутопроводов, связывающих НПЗ с крупными тепловыми электростанциями, и керосинопроводов между заводами и аэропортами.

На территории НПЗ и НХЗ обычно размещаются головные сооружения нефтепродуктопроводов: склады (парки), головные насосные. Некоторые продуктопроводы имеют в составе головных сооружений собственные резервуарные парки, в которые продукт подается из резервуаров товарной базы НПЗ насосами товарной насосной. Более экономичным решением является использование в качестве головных сооружений резервуаров заводской товарной базы. Продукт в магистральный трубопровод подается непосредственно c этих резервуаров насосами головной насосной станции, размещаемой рядом с резервуарами.

Железнодорожный транспорт. Транспортировка продукции НПЗ и НХЗ по железной дороге является основным видом перевозки нефтепродуктов и ее ведущее значение сохранится в ближайшие годы. Основным видом тары для перевозки по железной дороге нефтяных и химических продуктов служат цистерны. Цистерны подразделяются на универсальные, предназначенные для перевозки различных грузов (нефти и светлых нефтепродуктов, нефти и мазута и т. д.) и специальные. В специальных цистернах перевозится какой-либо один вид продукции (например, сжиженные газы, кислоты, спирты). Характеристика Цистерн, изготавливаемых вагоностроительными заводами и используемых при перевозке нефтяных и химических. продуктов, приводится в литературе. Для отгрузки продукции нефтеперерабатывающих и нефтехимических предприятий в составе товарных баз проектируются специальные устройства. Если объем отгрузки ограничен десятками тысяч тонн в год, то предусматривают одиночные стояки или небольшие односторонние эстакады, состоящие из 5—10 стояков. Для отгрузки многотоннажных продуктов (бензин, реактивное, дизельное и котельное топлива, смазочные масла) сооружаются двухсторонние эстакады галерейного типа. Эстакады для налива реактивного топлива, авиационных бензинов, смазочных масел, присадок к маслам и других ЛВЖ и горючих жидкостей, в которые недопустимо попадание воды, должны быть оборудованы навесами и крышами. Температура ЛВЖ, подаваемых на налив, должна быть не менее, чем на 10°С, ниже температуры начала кипения наливаемого продукта.

Налив нефтепродуктов осуществляется в одиночные цистерны, группы и маршруты цистерн. Маршрутный налив цистерн более экономичен и должен предусматриваться при проектировании эстакад как основной вид налива.

Длина эстакады не должна быть меньше половины длины маршрута. Конструкция эстакад должна обеспечивать техническую возможность налива продуктов в железнодорожные цистерны всех типов, пригодные для перевозки данных продуктов. Проектирование железнодорожных эстакад на ограниченное число типов (моделей) цистерн допускается только при наличии согласования с Управлением железной дороги, обслуживающей предприятие, или с’ предприятием — собственником цистерн.

В последние годы осуществляется постепенный переход железнодорожного транспорта на цистерны новых типов — шести восьмиосные вместимостью 90 и 120 м3. В проектах следует принимать во внимание особенности налива этих цистерн.

При разработке проектов железнодорожных эстакад необходимо учитывать возможность поступления под налив неисправных цистерн. Чтобы иметь возможность удалить из этих цистерн имеющийся в них продукт, проектом предусматриваются – самостоятельные эстакады с верхним и нижним сливом, которые оборудуются отдельными стояками и коллекторами для сливаемых продуктов. При небольших объемах отгрузки для слива неисправных цистерн могут быть запроектированы отдельно стоящие

Особые требования предъявляются к проектированию железнодорожных эстакад для слива и налива сжиженных газов. Эти эстакады должны быть отделены от прочих эстакад, оборудованы Самостоятельными коллекторами, трубопроводами, сливо-наливными устройствами и газоуравнительными системами для каждого вида наливаемых и сливаемых сжиженных газов. Одновременно с эстакадами для слива и налива сжиженных газов в составе товарно-сырьевых баз сжиженных газов следует проектировать эстакады для подготовки цистерн сжиженного газа под налив. Опыт проектирования эстакад освещен. Эксплуатация железнодорожных эстакад галерейного типа отличается большой трудоемкостью и применением ручного труда. Наиболее трудоемки подготовительные и вспомогательные операции, открытие и закрытие люков цистерн, заправка и подъем наливных шлангов и телескопических устройств и т. д. При проектировании железнодорожных эстакад следует предусматривать их оснащение средствами механизации и автоматизации: ограничителями налива, которые служат для автоматического прекращения подачи жидкости в цистерну при достижении в ней определенного уровня (ПОУН-1, ПОУН-2, НО-2М), устройствами механизации подъема— спуска наливных средств.

Автомобильный транспорт. Продукция НПЗ и НХЗ перевозится автомобильным транспортом в ограниченных размерах, На отдельных предприятиях имеются устройства для налива в автоцистерны мазута, битумов, бензина. Сооружения, предназначенные для полуавтоматического налива нефтепродуктов в автоцистерны и автотопливозаправщики, называются станциями налива. Станции налива оборудуются стояками, которые различаются по виду наливаемого продукта, По способу налива (герметизированные и негерметизированные), по виду управления процессом (автоматизированные и неавтоматизированные), по виду управления, (с механизированным и ручным управлением).

Станция налива состоит из 4—12 наливных «островков», располагаемых под навесом. Каждый островок оборудуется одним или двумя наливными стояками, в качестве которых применяются установки: автоматизированного налива с местным управлением АСН-5П, автоматизированного налива с дистанционным управлением АСН-5Н, автоматизированного и герметизированного налива АСН-12.

Водный транспорт. Нефтеперерабатывающие, заводы, расположенные вблизи крупных рек, отправляют в навигационный период часть своей продукции водным путем (в танкерах, баржах и лихтерах). Для налива сооружаются специальные причалы.

Налив нефтепродуктов осуществляется по трубопроводам, прокладываемым от резервуаров к причалам. Возможны два варианта организации налива: 1) подача продукта насосами из резервуаров товарного парка непосредственно в наливные суда; 2) подача продукта по трубопроводам в промежуточные резервуары, расположенные в непосредственной близости от причала с последующим поступлением нефтепродуктов в суда самотеком. Последний вариант применяют обычно ‘в тех случаях, когда НПЗ расположен на расстоянии нескольких километров от причала.

В составе нефтепричалов проектируют следующие сооружения: водные подходы, причальные устройства (подходные эстакады, центральные платформы, швартовые палы, отбойные устройства), шлангующие устройства и установки.

При проектировании водных подходов необходимо определить глубину и ширину полосы акватории, глубину водных подходов. Проект причальных устройств включает выбор типа причальных сооружений, определение суточной пропускной способности одного причала и числа причалов, необходимого для отгрузки всего количества грузов. В проекте нефтепричала также решаются вопросы выбора шлангующих устройств, подготовки резервуаров, трубопроводов и нефтеналивных судов к сливо-наливным операциям, определяются методы борьбы с потерями нефтепродуктов при наливе и защиты водных бассейнов от загрязнения нефтепродуктами.

1. Рудин М. Г., Смирнов Г. Ф. Проектирование нефте-перерабатывающих и нефтехимических заводов. –Л.: Химия, 1984.

Http://www. blyo. ru/referaty_po_stroitelstvu/referat_osobennosti_proektirovaniya. html

К общезаводскому хозяйству (ОЗХ) современных НПЗ и НХЗ относятся объекты приема и хранения сырья, приготовления из компонентов товарной продукции, хранения и отгрузки товарной продукции; ремонтно-механическая база; складское хозяйство; объекты, предназначенные для снабжения воздухом, водородом, инертным газом, топливом; вспомогательные службы (факельное хозяйство, газоспасательная служба, пожарная охрана, медицинская служба и служба питания). В более широком смысле в ОЗХ включают также объекты энергоснабжения, водоснабжения, канализации, очистных сооружений.

Объекты ОЗХ занимают большую часть территории предприятия, а стоимость их строительства превышает 40% от общей стоимости заводов.

Состав объектов ОЗХ зависит от профиля предприятия, его технологической схемы. Например, на заводах топливно-масляного профиля заметное место принадлежит узлам приготовления товарных масел, приема многочисленных присадок со стороны, хранения и затаривания твердых парафинов и т. д. Эти объекты на заводах топливного профиля отсутствуют.

Сырье поставляется на НПЗ и НХЗ по магистральным трубопроводам, железной дороге и, в незначительной степени, водным (танкеры, баржи) и автомобильным (автоцистерны) транспортом.

Трубопроводный транспорт нефти и нефтехимического сырья. Трубопроводным транспортом в нашей стране перевозится около 80% сырой нефти и 8% нефтепродуктов. Общая протяженность нефтепроводов и нефтепродуктопроводов на конец 1980 г. составила 69,7 тыс. км. Средняя дальность перекачки нефти достигла 1400 км. Все нефтеперерабатывающие заводы Советского Союза связаны трубопроводными магистралями с районами добычи нефти. Нефтепроводы проектируются и эксплуатируются организациями Министерства нефтяной промышленности. Пропускная способность нефтепровода определяется мощностью НПЗ, а диаметр, кроме того, зависит от схемы перекачивания нефти (непрерывная или периодическая). При расширений НПЗ зачастую оказывается необходимо предусмотреть увеличение пропускной способности нефтепровода. Эта задача решается прокладкой параллельных трубопроводов на всей протяженности нефтепровода или на отдельных, наиболее перегруженных участках.

Для организации учета и контроля подачи нефти на НПЗ непосредственно перед предприятием (а иногда и на его территории) размещается приемо-сдаточный пункт. В состав пункта входят: площадка приема шара — специального устройства, которое время от времени прогоняется по нефтепроводу с целью очистки трубы от парафинистых отложений и грязи; фильтры-грязеуловители счетчики. Показания счетчиков служат для контроля количества «Поступающей на НПЗ нефти. Они передаются на головную станцию нефтепровода и на центральный диспетчерский пункт НПЗ. Перед фильтрами приемо-сдаточного пункта устанавливаются предохранительные клапаны для. защиты последних участков нефтепровода от разрыва. Причиной разрыва может быть недопустимо высокое давление, возникающее вследствие закрытия задвижки перед приемо-сдаточным пунктом. Сброс от предохранительных клапанов направляют в резервуары сырьевой базы НПЗ. С приемо-сдаточного пункта нефть подается в резервуары сырьевой базы НПЗ. Участок трубопровода от пункта до резервуаров является собственностью НПЗ. Этот трубопровод, как правило, прокладывается в земле и выводится на поверхность перед резервуарами-,

У Нефтехимические предприятия получают по трубопроводам сырье с близлежащих нефте – и газоперерабатывающих заводов. Обычно по трубопроводам подаются на НХЗ бензиновые фракции, сжиженные газы, ароматические углеводороды. Эксплуатируются, также магистральные трубопроводы, по которым сырье подается в НХЗ с предприятий, расположенных на расстоянии 150—200 км и выше.

Нефтехимические заводы часто используют в качестве сырья (например, для установок оксосинтеза) природный газ. Газ поступает на НХЗ из систем магистральных газопроводов через газораспределительные пункты (ГРП). На ГРП происходит снижение давления газа до величины, которая необходима нефтехимическому предприятию, здесь же организуется учет природного газа, Передаваемого на НХЗ. ГРП проектируются и эксплуатируются организациями Министерства газовой промышленности. Трубопровод природного газа, выходящий с ГРП, является собственностью НХЗ.

Транспорт сырья по железной дороге. Нефть на НПЗ подается в железнодорожных цистернах маршрутами, грузоподъемность которых определяется путевым развитием и пропускной способностью сети железных дорог. Для перевозки нефти используются цистерны различных типов — двух-, четырех-, шести – и восьмиосные. Подробная характеристика цистерн приведена в литературе.

Рис. 1.1. Комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов:

1 — наливной стояк; 2 — установка нижнего слива нефти; 3 — коллектор слива нефти; 4 — коллекторы темных нефтепродуктов.

На вновь строящихся НПЗ проектируются для приема нефти двухсторонние сливные эстакады длиной 360 м, вдоль которых устанавливается состав после его расцепки на две части. С целью более полного использования территории и уменьшения капитальных и эксплуатационных затрат практикуется оснащение железнодорожных эстакад устройствами для налива нефтепродуктов — мазута или дизельного топлива. В этом случае эстакада называется сливо-наливной и на ней поочередно осуществляется слив нефти и налив нефтепродукта. На рис. 5.1 изображена комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов.

Цистерны для перевозки нефти оснащены нижними сливными патрубками, к которым подводится и герметично присоединяется установка для нижнего слива (налива), представляющая собой систему шарнирно сочлененных труб. Промышленностью выпускаются установки для нижнего слива по ТОСТ 18194—79. Стандартом предусмотрен выпуск установок без подогрева (УСН), с паровым подогревом (УСНПп), с электроподогревом (УСНПэ). Установки типа УСН имеют диаметр условного прохода 150 и 175 мм, УСНПп — 175 мм, а УСНПэ — 150 мм.

Из сливной установки нефть поступает в сливной трубопровод. Ранее сливным трубопроводом нефть передавалась в резервуары, расположенные ниже отметки рельса («нулевые» резервуары). Вместимость этих резервуаров принималась такой, чтобы обеспечить слив всего маршрута. Из «нулевых» резервуаров нефть забиралась насосами заглубленной насосной и подавалась в резервуары сырьевой базы завода.

Практика показала, что в сооружении «нулевых» резервуаров и заглубленных насосных нет необходимости. Следует предусматривать поступление нефти от сливных приборов к насосам, расположенными на поверхности земли через сливную буфер.

Внимание необходимо уделять расчету гидравлических сопротивлений сливного трубопровода, учитывать всасывающую способ-Юность сырьевого насоса.

При проектировании сливо-наливных железнодорожных эстакад следует учитывать требования по нормативной продолжительности сливных операций, установленные «Правилами перевозок жидких грузов наливом в вагонах — цистернах и бункерных полувагонах», утвержденными МПС 25 мая 1966 г. Эти правила устанавливают следующую продолжительность слива (в ч) в пунктах механизированного (1) и немеханизированного (2) слива.

В зимнее время слив некоторых сортов нефтей и других продуктов, обладающих высокой температурой застывания затруднен, поскольку они поступают на пункты слива загустевшими. Правила перевозки грузов предусматривают увеличение продолжительности слива таких продуктов в период с 15 октября по 15 апреля, а также выделение специального времени на разогрев;

Для разогрева нефти в цистернах предусматривают паровые t гидромеханические подогреватели ПГМП-4 конструкции ВНИИСПТ Нефти, электрогрелки, погруженные змеевиковые подо-греватели, а также системы циркуляционного разогрева, сущность которых заключается в том, что холодный продукт, забираемый из цистерны, подогревается в специальном теплообменнике и в горячем состоянии возвращается в цистерну. Учитывая недостаточную эффективность вышеупомянутых способов непрямого разогрева

Q— .производительность слива; QH — подача основного насоса; Qд —подача дополнительного насоса.

В проектах следует предусматривать также подачу в цистерны острого пара. Сырье нефтехимических предприятий перевозится в цистернах с нижним сливом (и в этих случаях схема сливных операций аналогична описанной выше для нефти), в цистернах с верхним сливом и в специализированных цистернах.

Верхний слив из железнодорожных цистерн менее удобен, чем нижний. При верхнем сливе имеют место значительные потери от испарения, частые срывы работы насосов при сливе продуктов с высоким давлением насыщенных паров. Зачастую не, удается достичь полного удаления продукта из цистерн. Слив может осуществляться самотеком (при благоприятном рельефе местности) или с помощью, насосов.

В тех случаях, когда для верхнего слива применяют центробежные насосы, не обладающие самовсасывающей способностью, необходимо предусматривать установку поршневых насосов для первоначального (перед началом откачки) заполнения трубопроводов продуктом и зачистки цистерн. В летнее время слив продуктов с высоким давлением насыщенных паров сопровождается образованием газовых пробок во всасывающих трубопроводах насосов. Для уменьшения вакуума во всасывающих линиях рекомендуется предусматривать в проектах применение эжекторов. В качестве рабочей жидкости в эжекторах используется сливаемый продукт. При работе с погруженным эжектором не только полностью исключается вакуум во всасывающих линиях, но в отдельных случаях создается избыточное давление (подпор).

Схема обвязки эжекторов определяется разностью отметок между нижней образующей котла цистерны и резервуаром или насосом. На рис. 1.2 приведены различные варианты обвязки эжектора. Схема, изображенная на рис. 1.2, а применяется в тех случаях, когда разность геодезических отметок цистерны и резервуара позволяет (с учетом дополнительного подпора, развиваемого эжектором) обеспечить заданную производительность слива Q0. Подача и напор насоса обеспечивают работу эжектора. В тех случаях, когда разность отметок цистерны и резервуара не позволяет организовать самотечный слив или резервуар находится выше цистерны, применяют схемы, изображенные на рис. 1.2, б. Если давление, развиваемое основным насосом недостаточно для работы эжектора, то следует предусмотреть дополнительный насос для подачи рабочей жидкости в эжектор (рис. 5.2, б). Производитель-Юность дополнительного насоса выбирают равной расходу рабочей жидкости через эжектор, а дифференциальный напор равным разности между давлением рабочего продукта перед эжектором и давлением, развиваемым основным насосом.

Слив продукта может быть значительно ускорен, если создать повышенное давление над поверхностью продукта в цистерне. Для создания избыточного давления применяют подачу сжатого воздуха, инертного газа (азота) или пара.

Промыво-пропарочные станции. Для подготовки цистерн под налив и ремонта цистерн предназначены промыво-пропарочные станции (ППС), которые проектируются в составе НПЗ и НХЗ.

Заданием на проектирование ППС устанавливается суточная программа по очистке и промывке цистерн и бункерных полувагонов, оговариваются виды очистки (горячая или холодная). Обычно ППС на НПЗ должны ежесуточно обрабатывать 400—600 цистерн и 50—100 полувагонов.

На ППС предусматривается проведение следующих операций: удаление остатка светлых нефтепродуктов; пропарка котлов цистерн с одновременным сливом остатков темных нефтепродуктов; промывка горячей водой внутренних стенок котлов цистерн; удаление промывочных вод с помощью вакуумных установок; дегазация котлов цистерн вентиляционной установкой; обезвоживание слитых остатков темных нефтепродуктов; очистка сточных вод. ППС проектируются по заказам генпроектировщиков НПЗ проектными институтами МПС СССР.

Водный транспорт сырья. Перевозка нефти и нефтепродуктов. по воде осуществляется в самоходных нефтеналивных судах, морских и речных танкерах, а также в несамоходных морских, (лихтеры) и речных (баржи) судах. Внутренним водным транспортом перевозится более 60 млн. т. нефтепродуктов. Основной объем речных перевозок нефти и нефтепродуктов приходится на Волго-Камский и Обь-Иртышский бассейны. Сырая нефть перевозится с полуострова Мангышлак и из Махачкалы в Волгоград, а также из Куйбышева в районы Черного, Балтийского и Каспийского морей.

Для создания благоприятных условий слива нефти и для предотвращения загрязнения водоемов устраиваются специальные нефтяные гавани, в которых сооружаются пристани, пирсы или причалы. Гавани могут быть естественными (бухты, заливы, затоны) или искусственными.

Хранение сырья. Для хранения нефти на НПЗ предназначаются сырьевые резервуарные парки. Нормы технологического проектирования предлагают предусматривать в проектах такую вместимость парков, чтобы она обеспечивала бесперебойную работу НПЗ, получающего нефть по нефтепроводу, в течение 7. суток. Если предприятие снабжается нефтью по железной дороге или водным путем вместимость сырьевых парков должна быть увеличена. В этом случае величина нормативного запаса оговаривается в задании на проектирование.

Для предотвращения потерь нефти от испарения ее хранят в резервуарах с плавающими крышами или понтонами. На сырьевых базах НПЗ обычно устанавливаются резервуары объемом 20— 50 тыс. м3. Число резервуаров определяется общей вместимостью парка и принятым единичным объемом резервуара. При проектировании сырьевых складов НПЗ и НХЗ руководствуются СНиП II-106—79 [44]. Этот нормативный документ разработан для использования при проектировании складов нефти и нефтепродуктов; его допускается применять при проектировании складов легковоспламеняющихся, и горючих жидкостей, условия хранения которых в зависимости от их свойств сходны с условиями хранения нефти и нефтепродуктов. СНиП П-106—79, однако, не распространяется на проектирование складов (товарных баз) сжиженных газов, нефтепродуктов с упругостью паров выше 93,6 кПа (700 мм рт. ст.) при 20°С, складов синтетических жирозаменителей, подземных хранилищ в горных породах, отложениях каменной соли, ледогрунтовых хранилищ.

СНиП П-106—79 делит склады нефти и нефтепродуктов на две группы, причем товарно-сырьевые склады НПЗ и НХЗ отнесены к первой группе. Склады первой группы подразделяются на три категорий в зависимости от общей вместимости. В СНиП регламентированы расстояния от зданий и сооружений складов (товарно-сырьевых баз) до зданий и сооружений соседних предприятий, жилых и общественных зданий, расстояния от резервуаров для нефти и нефтепродуктов до зданий и сооружений склада (сливо-наливных устройств, насосных, канализационных сооружений, складов для нефтепродуктов в мелкой таре и т. п.), расстояния от зданий и сооружений склада до трубопроводов. СНиП П-106—79 рекомендует размещать резервуары группами, устанавливает предельную вместимость резервуаров в группе и расстояния между стенками резервуаров, расположенных в одной и соседних группах.

Товарная продукция, вырабатываемая на НПЗ, может быть условно разделена на две группы: 1) продукция, производимая непосредственно на технологических установках, и 2) продукция, приготавливаемая из различных компонентов. Непосредственно на установках НПЗ вырабатывают индивидуальные углеводородные фракции С3—Cs (пропановую, бутановые, пентановые), ароматические углеводороды (бензол, толуол, индивидуалыше ксилолы), различные марки твердых парафинов, присадки к маслам и т. д.

Значительное количество крупнотоннажных товарных продуктов — бензин, дизельное и котельное топлива, смазочные масла — получают на НПЗ смешением (компаундированием) из компонентов, вырабатываемых на различных установках. Так, для приготовления автомобильных бензинов на некоторых НПЗ используют до 10—15 компонентов.

На нефтехимических предприятиях товарная продукция — спирты, альдегиды, кислоты, полиолефины, сырье для производства синтетического каучука и др. — вырабатывается непосредственно в цехах и на установках.

Для осуществления операций по приготовлению товарной продукции из компонентов проектируются специальные объекты, на которых используются следующие основные методы компаундирования:

1) циркуляционный — приготовление производится в смесительных резервуарах;

3) непосредственное смешение в трубопроводах. Разработке проекта узла приготовления товарной продукции должен предшествовать расчет ожидаемых показателей качества товарных продуктов на основе сведений о качестве компонентов. В расчетах следует учитывать, что только некоторые из показателей качества являются аддитивными. Так, плотность смеси, содержание в ней серы, температуру анилиновой точки, показатели фракционного состава, определенные по ИТК, находят суммированием произведений массовых долей компонентов на соответствующие показатели каждого из компонентов. Давление насыщенных паров смеси с достаточной степенью точности можно определить суммированием произведений мольных долей компонентов на давления паров этих компонентов.

В известной степени аддитивными являются показатели октанового и цетанового чисел: Однако определенное по правилу аддитивности октановое число смеси может оказаться выше или ниже реального. Более Точно рассчитать реальное октановое число позволяет формула:

Здесь Осм — реальное октановое число смеси; О А, Ов — октановые числа ; высокооктанового и низкооктанового компонента смеси, соответственно; А и В — содержания компонентов в смеси, % (об.); k — поправочный коэффициент, определяемый по специальному графику, приведенному в литературе. –

Для расчета октанового числа смеси могут быть также использованы формулы, разработанные ВНИИНП и НПО «Нефтехим-автоматика» и фирмой «Этил Корпорейшн».

Более точные уравнения, по которым можно определить смесительные характеристики мазутов, зная показатели отдельных компонентов, приводятся в литературе.

Метод приготовления товарной продукции многократной циркуляцией через смесительные резервуары применяется в течение многих лет. Сущность метода заключается в следующем. Компоненты товарных продуктов с технологических установок поступают в компонентные,

Резервуары парков смешения, анализируются, а затем насосами подаются в смесительный резервуар. Приготовленный в смесительном резервуаре продукт забирается специальными насосами и многократно перекачивается по схеме «резервуар—насос— резервуар» до тех пор, пока в резервуаре не будет получена однородная по составу смесь, показатели которой соответствуют требованиям, предъявляемым к готовому продукту.

Вместимость компонентных резервуаров при приготовлении топлив должна соответствовать 48-часовому запасу каждого компонента, а смесительных резервуаров— 16-ч-асовой выработке данного вида топлива. При получении товарных масел предусматриваются компонентные резервуары, исходя из 36-часового запаса каждого компонента, и смесительные резервуары, исходя из суточной выработки масел.

В табл. приводится пример расчета необходимой вместимости резервуарных парков смешения, автобензина.

Для улучшения условий перемешивания резервуары оборудуют смесительными устройствами: маточниками с большим числом отверстий, направленных вверх, вниз или под углом; так называемыми «пауками» с установленными на них инжекторами-смесителями; подъемными трубами, через которые продукт закачивают на определенную высоту от днища.

В аппаратах с перемешивающими устройствами готовят товарные масла. Для ряда НПЗ была запроектирована установка приготовления масел, в состав которой входят компонентные резервуары, смесители с принудительным перемешиванием, насосная, емкости для присадок и камеры для плавления присадок.

Оба описанных выше метода обладают рядом серьезных недостатков: повышенным расходом электроэнергии, малой производительностью смешения, необходимостью строительства смесительных резервуаров.

Р-1—Р-3 — компонентные резервуары; Р-4 — товарный резервуар; Н-1—Н-3 — насосы; Ф-1—Ф-3 —фильтры; PM-J—PM-3— расходомеры; РЕ-1—РЕ-3— регуляторы; К-1—К-3 — регулирующие клапаны; СК-1 — смесительный коллектор.

Более эффективным является приготовление товарной продукции смешением в потоке. Для каждого НПЗ разрабатываются индивидуальные проекты автоматизированных систем (автоматических станций) смешения. Схема автоматической станции смешения, на которой приготавливается продукт из трех компонентов, приведена на рис. 1.3. В состав оборудования станции входят: компонентные резервуары, насосы, фильтры для очистки компонентов от механических примесей, газоотделитель (при приготовлении бензинов), измерители расхода, регулирующие клапаны, обратные, клапаны.

Объем резервуарного парка для хранения компонентов обуславливается производительностью станции смешения, необходимостью остановки для профилактического осмотра и ремонта, потребностью во времени для лабораторного анализа. Нормы технологического проектирования не регламентируют объема компонентных резервуаров, представляя право решать эту задачу проектировщикам. Оптимальные условия эксплуатации, как показывает практика, обеспечиваются при наличии 2-3 резервуаров для каждого компонента, общая вместимость которых соответствует 16—20-часовой выработке этого компонента.

Для перекачки каждого компонента следует предусматривать индивидуальные насосы, причем нежелательно, чтобы одним насосом компонент перекачивался в разные смесительные коллекторы.

В качестве измерителей расхода на станциях смешения применяются объемные счетчики или турбинные расходомеры. Широкое распространение получили венгерские турбинные расходомеры «Турбоквант», достоинством которых являются небольшие размеры, малая металлоемкость, простота ремонта. При разработке проектов станций смешения следует стремиться, чтобы максимальная производительность по компоненту не превышала 75% от пропускной способности расходомера, а минимальная не была близка к нижнему пределу пропускной способности.

Для управления процессом смешения в Рязанском СКВ Московского НПО «Нефтехимавтоматика» разработаны комплексы приборов управления «Поток». В состав комплексов входят блоки компонентов и управления.

Если схема автоконтроля блока компонента фиксирует отклонение действительного расхода компонента от заданного более чем на 0,5% в сторону уменьшения расхода, то формируется команда «Ошибка-1», по которой блок управления снижает скорость смешения.

В составе комплексов имеются основные и резервные блоки. При нарушении режима работы основных блоков резервные блоки подключаются к сети и форсированно выводятся на режим работы основного блока.

Хранение и отгрузка основного количества товарной продукции на НПЗ и НХЗ производится через товарно-сырьевые базы (ТСБ) предприятий. Отдельные виды продукции — битумы, элементарную серу, нефтяной кокс — отправляют потребителям непосредственно с технологических установок. При проектировании предприятий следует стремиться к тому, чтобы объекты по хранению и отгрузке продукции были сосредоточены в одном месте, что облегчает управление товарной базой, упрощает работу железнодорожного транспорта. Исключение делают для объектов по отгрузке сжиженных газов, которые в соответствии с противопожарными нормами проектирования следует размещать на расстоянии не менее 300—500 м от территории предприятия. Вместимость товарных складов (парков) зависит от устанавливаемых нормами технологического проектирования сроков хранения. Товарные парки должны обеспечивать возможность приема и хранения в них 15-суточной выработки, каждого из товарных нефтепродуктов. Вместимость складов сжиженных газов не должна превышать трехсуточной выработки этих продуктов. Если отгрузка товарных нефтепродуктов потребителям производится по трубопроводам, нормативный срок хранения сокращается до 7 суток.

Число устанавливаемых резервуаров зависит от количества подлежащего хранению продукта и единичной вместимости выбранного резервуара. Экономически целесообразно устанавливать меньшее число резервуаров большей вместимости. Так, расход металла на сооружение 6 резервуаров по 10 тыс. м3 составляет 955 т, а при строительстве 3 резервуаров по 20 тыс. м3 — 825 т. Сооружение резервуаров большей вместимости взамен мелких позволяет также уменьшить территорию, занимаемую парками.

Для каждого вида товарной продукции рекомендуется предусматривать не менее 3 резервуаров (в один поступает товарная продукция, второй находится на анализе, из третьего производится отгрузка продукции).

По, расположению и планировке резервуары делятся на подземные (если наивысший уровень жидкости в резервуаре ниже наинизшей планировочной отметки прилегающей площадки не менее, чем на 0,2 м) и наземные (если они не удовлетворяют вышеуказанным условиям). Для хранения товарной продукции НПЗ и НХЗ используются стальные емкости вместимостью 200 м3 (до ОСТ 26-02-1496—76); стальные резервуары вертикальные цилиндрические со щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3 с понтоном и щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3, с плавающей крышей вместимостью от 10 тыс..м3 до 50 тыс. м3; стальные резервуары с коническими днищами; горизонтальные емкости для хранения продуктов под давлением 0,6—1,8 МПа вместимостью отг25 м3 до_200_м,3 (по ОСТ 26-02-1159^-76); шаровые резервуары для хранения продуктов под давлением 0,25—1,2 МПа железобетонные резервуары.

В табл. 1.3 приведены рекомендации по выбору типа емкости для хранения продукции НПЗ и НХЗ. На рис. 1.4 изображен резервуар с плавающей крышей, применяемый для хранения бензина и других легкокипящих продуктов.

Безопасная и удобная эксплуатация резервуаров обеспечивается применением дополнительного оборудования, которое предназначено для заполнения и опорожнения резервуаров, замера уровня продукта, зачистки, .отбора проб, сброса подтоварной воды,

1 — верхний настил крыши; 2 — нижний настил крыши; 3 — днище; 4- подвижная лестница.

Рис. 1.5. Схема расположения оборудования на вертикальных резервуарах для маловязких нефтепродуктов:

1— световой люк; 2 — вентиляционный патрубок; 3 — дыхательный клапан; 4 — огневой предохранитель; 5 — замерный люк; 6 — прибор для замера уровня; 7— люк-лаз; 8 —сифонный кран; 9 — хлопушка; 10 — при-емо-раздаточный патрубок; 11 — перепускное устройство; 12 — управление хлопушкой; 13 — крайнее положение приемо-раздаточных патрубков по отношению к оси; 14 — предохранительный клапан.

Пенотушения, поддержания определенного давления в резервуарах. На рис. 1.5 приводится схема расположения оборудования на вертикальных резервуарах, для маловязких нефтепродуктов.

При разработке проектов товарных баз для НПЗ и НХЗ рекомендуется использовать СНиП II-106—79

Товарная продукция НПЗ и НХЗ отгружается трубопроводным, железнодорожным, автомобильным – и речным транспортом.

Трубопроводный транспорт. По трубопроводам транспортируются потребителям светлые и темные нефтепродукты — бензин, дизельное и котельное топлива, а также сжиженные газы, этилен, аммиак. Экономически целесообразным трубопроводный транспорт становится при концентрированном потреблении продукта в одной точке и районе, когда по трубопроводу перекачиваются не менее 300—500 тыс. т продукта в год.

В ближайшие годы намечается значительно расширить сеть нефтепродуктопроводов. Постановление Совета Министров СССР о развитии сети нефтепродуктопроводов в 1981—1985 годах предусматривает сооружение новых трубопроводов для перекачки бензина и дизельного топлива в центральных районах страны, Сибири, Казахстане, создание ряда мазутопроводов, связывающих НПЗ с крупными тепловыми электростанциями, и керосинопроводов между заводами и аэропортами.

На территории НПЗ и НХЗ обычно размещаются головные сооружения нефтепродуктопроводов: склады (парки), головные насосные. Некоторые продуктопроводы имеют в составе головных сооружений собственные резервуарные парки, в которые продукт подается из резервуаров товарной базы НПЗ насосами товарной насосной. Более экономичным решением является использование в качестве головных сооружений резервуаров заводской товарной базы. Продукт в магистральный трубопровод подается непосредственно c этих резервуаров насосами головной насосной станции, размещаемой рядом с резервуарами.

Железнодорожный транспорт. Транспортировка продукции НПЗ и НХЗ по железной дороге является основным видом перевозки нефтепродуктов и ее ведущее значение сохранится в ближайшие годы. Основным видом тары для перевозки по железной дороге нефтяных и химических продуктов служат цистерны. Цистерны подразделяются на универсальные, предназначенные для перевозки различных грузов (нефти и светлых нефтепродуктов, нефти и мазута и т. д.) и специальные. В специальных цистернах перевозится какой-либо один вид продукции (например, сжиженные газы, кислоты, спирты). Характеристика Цистерн, изготавливаемых вагоностроительными заводами и используемых при перевозке нефтяных и химических. продуктов, приводится в литературе. Для отгрузки продукции нефтеперерабатывающих и нефтехимических предприятий в составе товарных баз проектируются специальные устройства. Если объем отгрузки ограничен десятками тысяч тонн в год, то предусматривают одиночные стояки или небольшие односторонние эстакады, состоящие из 5—10 стояков. Для отгрузки многотоннажных продуктов (бензин, реактивное, дизельное и котельное топлива, смазочные масла) сооружаются двухсторонние эстакады галерейного типа. Эстакады для налива реактивного топлива, авиационных бензинов, смазочных масел, присадок к маслам и других ЛВЖ и горючих жидкостей, в которые недопустимо попадание воды, должны быть оборудованы навесами и крышами. Температура ЛВЖ, подаваемых на налив, должна быть не менее, чем на 10°С, ниже температуры начала кипения наливаемого продукта.

Налив нефтепродуктов осуществляется в одиночные цистерны, группы и маршруты цистерн. Маршрутный налив цистерн более экономичен и должен предусматриваться при проектировании эстакад как основной вид налива.

Длина эстакады не должна быть меньше половины длины маршрута. Конструкция эстакад должна обеспечивать техническую возможность налива продуктов в железнодорожные цистерны всех типов, пригодные для перевозки данных продуктов. Проектирование железнодорожных эстакад на ограниченное число типов (моделей) цистерн допускается только при наличии согласования с Управлением железной дороги, обслуживающей предприятие, или с” предприятием — собственником цистерн.

В последние годы осуществляется постепенный переход железнодорожного транспорта на цистерны новых типов — шести восьмиосные вместимостью 90 и 120 м3. В проектах следует принимать во внимание особенности налива этих цистерн.

При разработке проектов железнодорожных эстакад необходимо учитывать возможность поступления под налив неисправных цистерн. Чтобы иметь возможность удалить из этих цистерн имеющийся в них продукт, проектом предусматриваются – самостоятельные эстакады с верхним и нижним сливом, которые оборудуются отдельными стояками и коллекторами для сливаемых продуктов. При небольших объемах отгрузки для слива неисправных цистерн могут быть запроектированы отдельно стоящие

Особые требования предъявляются к проектированию железнодорожных эстакад для слива и налива сжиженных газов. Эти эстакады должны быть отделены от прочих эстакад, оборудованы Самостоятельными коллекторами, трубопроводами, сливо-наливными устройствами и газоуравнительными системами для каждого вида наливаемых и сливаемых сжиженных газов. Одновременно с эстакадами для слива и налива сжиженных газов в составе товарно-сырьевых баз сжиженных газов следует проектировать эстакады для подготовки цистерн сжиженного газа под налив. Опыт проектирования эстакад освещен. Эксплуатация железнодорожных эстакад галерейного типа отличается большой трудоемкостью и применением ручного труда. Наиболее трудоемки подготовительные и вспомогательные операции, открытие и закрытие люков цистерн, заправка и подъем наливных шлангов и телескопических устройств и т. д. При проектировании железнодорожных эстакад следует предусматривать их оснащение средствами механизации и автоматизации: ограничителями налива, которые служат для автоматического прекращения подачи жидкости в цистерну при достижении в ней определенного уровня (ПОУН-1, ПОУН-2, НО-2М), устройствами механизации подъема— спуска наливных средств.

Автомобильный транспорт. Продукция НПЗ и НХЗ перевозится автомобильным транспортом в ограниченных размерах, На отдельных предприятиях имеются устройства для налива в автоцистерны мазута, битумов, бензина. Сооружения, предназначенные для полуавтоматического налива нефтепродуктов в автоцистерны и автотопливозаправщики, называются станциями налива. Станции налива оборудуются стояками, которые различаются по виду наливаемого продукта, По способу налива (герметизированные и негерметизированные), по виду управления процессом (автоматизированные и неавтоматизированные), по виду управления, (с механизированным и ручным управлением).

Станция налива состоит из 4—12 наливных «островков», располагаемых под навесом. Каждый островок оборудуется одним или двумя наливными стояками, в качестве которых применяются установки: автоматизированного налива с местным управлением АСН-5П, автоматизированного налива с дистанционным управлением АСН-5Н, автоматизированного и герметизированного налива АСН-12.

Водный транспорт. Нефтеперерабатывающие, заводы, расположенные вблизи крупных рек, отправляют в навигационный период часть своей продукции водным путем (в танкерах, баржах и лихтерах). Для налива сооружаются специальные причалы.

Налив нефтепродуктов осуществляется по трубопроводам, прокладываемым от резервуаров к причалам. Возможны два варианта организации налива: 1) подача продукта насосами из резервуаров товарного парка непосредственно в наливные суда; 2) подача продукта по трубопроводам в промежуточные резервуары, расположенные в непосредственной близости от причала с последующим поступлением нефтепродуктов в суда самотеком. Последний вариант применяют обычно “в тех случаях, когда НПЗ расположен на расстоянии нескольких километров от причала.

В составе нефтепричалов проектируют следующие сооружения: водные подходы, причальные устройства (подходные эстакады, центральные платформы, швартовые палы, отбойные устройства), шлангующие устройства и установки.

При проектировании водных подходов необходимо определить глубину и ширину полосы акватории, глубину водных подходов. Проект причальных устройств включает выбор типа причальных сооружений, определение суточной пропускной способности одного причала и числа причалов, необходимого для отгрузки всего количества грузов. В проекте нефтепричала также решаются вопросы выбора шлангующих устройств, подготовки резервуаров, трубопроводов и нефтеналивных судов к сливо-наливным операциям, определяются методы борьбы с потерями нефтепродуктов при наливе и защиты водных бассейнов от загрязнения нефтепродуктами.

1. Рудин М. Г., Смирнов Г. Ф. Проектирование нефте-перерабатывающих и нефтехимических заводов. –Л.: Химия, 1984.

Http://www. vevivi. ru/best/Osobennosti-proektirovaniya-tovarnogo-parka-neftepererabatyvayushchikh-zavodov-ref147314.html

Нефтеперерабатывающий Завод План: Введение 1 Профили НПЗ 1.1 Топливный профиль 1.2 Топливно-масляный профиль 1.3 Топливно-нефтехимический профиль 2 Подготовка сырья 3 Первичная переработка — перегонка 4 Вторичная переработка — крекинг 5 Гидроочистка 6 Процесс Клауса (Окислительная конверсия сероводорода в элементную серу) 7 Формирование готовой продукции 8 Историческая справка 9 Также см. Литература Введение Нефтеперерабатывающий Завод Shell в городе Мартинез (Калифорния). Нефтеперерабатывающий.

ВКЛАД ГРОЗНЕНСКИХ НЕФТЯНИКОВ В РАЗВИТИЕ НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ Современная Нефтеперерабатывающая промышленность является одной из наиболее сложных и насыщенных техникой отраслей промышленности. Характерная особенность ее— многообразие применяемых технологических процессов и прие­мов для разделения и превращения углеводородов и их смесей, а также высокая степень автоматизации и механизации различ­ных операций. Темпы развития Нефтеперерабатывающей промышленности чрезвычайно высоки и.

Характеристика Нефтеперерабатывающей промышленности России. Нефтеперерабатывающая промышленность России — отрасль российской топливной промышленности. Российская Нефтеперерабатывающая промышленность является одной из крупнейших в мире. По общему объёму переработки нефти Россия входит в пятёрку мировых лидеров, уступая только США и Китаю. Переработка нефти в России ведётся на 28 крупных Нефтеперерабатывающих Заводах (НПЗ), а также более чем на 200 мини-НПЗ. Суммарная мощность перерабатывающих.

(технический университет) [pic] КУРСОВая РАБОТА дисциплина: Промышленная экология (наименование учебной дисциплины согласно учебному плану) Тема: Оптимизация процесса очистки сточных вод Нефтеперерабатывающего Завода ООО «КИНЕФ» Автор: студент гр. ИЗ-06-3 _____________ /Быстрова Н. В./ (подпись) (Ф. И.О.) Дата: ________________ ПРОВЕРИЛ: Руководитель работы: доцент _____________ /Баркан.

Тема 4. СТРАТЕГИЧЕСКИЕ ПРОБЛЕМЫ НЕФТЕГАЗОВОЙ И НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ ОТРАСЛЕЙ ПРОМЫШЛЕННОСТИ В СТРУКТУРЕ ХОЗЯЙСТВЕННОГО КОМПЛЕКСА УКРАИНЫ План: 4.1. Анализ и оценка современного состояния нефтегазового комплекса страны 4.1.1. Общее состояние нефтегазовой отрасли промышленности 4.1.2. Состояние Нефтеперерабатывающей промышленности 4.2. Стратегические проблемы и направления реформирования нефтегазового комплекса страны Контрольные вопросы по теме 4 Литература: Р.

Введение Нефтеперерабатывающая промышленность – замыкающее звено нефтяной отрасли. От ее состояния зависят показатели всей отрасли, экономика и обороноспособность страны. Важнейшей проблемой, стоящей в настоящее время перед Нефтеперерабатывающей промышленностью, является углубление переработки нефти с целью максимального получения наиболее ценных светлых нефтепродуктов – моторных топлив и нефтехимического сырья. Актуальность углубления переработки нефти все более возрастает в связи со снижением.

……………. 4 ГЛАВА 2. Экономические рычаги и стимулы, используемые в практике руководства хозяйств…………………………………………………………..10 ГЛАВА 3. Анализ основных методов экономического стимулирования повышения эффективности производства на предприятиях Нефтеперерабатывающей и нефтехимической промышленности……………………………………………………………….13 ГЛАВА 4. Пути дальнейшего совершенствования экономического стимулирования повышения эффективности производства…………………………………………………………………. 21 ЗАКЛЮЧЕНИЕ………………………………………………. ………………25 .

Дата: ______________ Подпись _____________ Санкт-Петербург 2012 Темы реферата: Прогрессивные технологии обучения. Виды активных методов обучения. Краткая характеристика служб материально-технического снабжения и сбыта Нефтеперерабатывающего предприятия. Основные права и обязанности указанных служб и их руководителей. Введение. Новые образовательные технологии сопровождают результаты значительных научных исследований. Так, развитие кибернетики.

Краткая характеристика и история Завода. Днём рождения Орского НПЗ считается 24 декабря 1935 года. Его история начиналась в 30-х годах прошлого столетия. Молодой институт «Гипронефтезавод» получил задание на проектирование Орского Нефтеперерабатывающего Завода. Начало строительства (Рисунок 1) Рисунок 1 – начало строительства Предстояло разработать проекты большого числа сложных инженерных сооружений, конструкций, аппаратуры и оборудования, приборов контроля и автоматики. Наряду с этим нужно.

Потенциал модернизации Нефтеперерабатывающей промышленности. В настоящее время Нефтеперерабатывающая промышленность обеспечивает мировое хозяйство энергоносителями и создает сырье для ряда химических производств. Но, как это не парадоксально, нефтепереработка фактически исчерпала потенциал модернизации. Это связано с тем, что основные технологии переработки нефти и получения топлив были созданы до середины XX столетия. Одним из главных процессов нефтепереработки является крекинг. Термический.

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ………………………………………………………………………2 1. Понятие и классификация основных фондов предприятия……………….3 2. Состав и структура основных фондов нефтяных, Нефтеперерабатывающих и нефтехимических предприятий……………..…7 3. Оценка основных фондов……………………………………………………10 4. Износ основных фондов, их срок службы и амортизация………………. 13 5. Показатели использования основных фондов и методика их определения………………………………………………………………….16 6. Пути улучшения использования основных.

Продуктов Нефтеперерабатывающие Заводы (НПЗ) условно можно отнести к Заводам следующих профилей : 1. Топливного с неглубокой переработкой нефти. На таких Заводах предусматривается выпуск автомобильных бензинов, авиационных керосинов, мазута (как котельного топлива), битумов, дизельного топлива, в отдельных случаях парафина, серы, иногда ароматических углеводородов (бензол, ксилол и др.). 2. Топливного с глубокой переработкой нефти. Номенклатура основных товарных продуктов такая же, как и у Заводов первого.

ПЛАН Введение 1. Переработка. Утилизация. Смежные понятия. а) Значение переработки отходов; б) Вторичное сырье. 2. История переработки отходов. 3. Технологии переработки отходов. 4. Переработки промышленных отходов. 5. Перерабатывающие Заводы в Узбекистане а) Использованные шины б) Переработка мусора 6. Заключение Список использованной литературы. Введение Человечество слишком медленно подходит к пониманию масштабов опасности, которую создает легкомысленное отношение к окружающей среде. Между.

Нефтеперерабатывающие компании и предприятия, действующие в Казахстане [pic] дата добавления: 07.12.2011 В декабре 1991 года Казахстан стал независимым государством, ориентированным на капиталистический (рыночный) путь развития. В нефтегазовой отрасли, как и в других секторах экономики, началась всеобщая приватизация объектов государственной собственности – месторождений, добываемого сырья, комплекса нефтегазового оборудования, – все перешло в собственность различных АО, ОАО, СП и т. п.; совместные.

Содержание Введение Глава 1. Нефтеперерабатывающая и нефтехимическая промышленность Республики Башкортостан с экологической точки зрения…………………….3 1.1 Загрязнение атмосферы…………………………………………………3 1.2 Загрязнение водного бассейна………………………………………….4 1.3 Загрязнение твердыми и жидкими отходами…………………………6 Глава 2. Проблемы охраны природы и основные направления их решений…7 Глава 3. Методологические основы оценки экономической эффективности природоохранных.

1. УЧЕТ ЗАТРАТ И КАЛЬКУЛИРОВАНИЕ СЕБЕСТОИМОСТИ ПРОДУКЦИИ В НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ ОТРАСЛИ 1.1 Номенклатура статей учета затрат и калькулирования В Нефтеперерабатывающей промышленности используется следующая номенклатура статей учета затрат и калькулирования: 1. Сырье и материалы. 2. Полуфабрикаты собственного производства 3. Возвратные отходы (вычитаются). 4. Вспомогательные материалы на технологические цели 5. Топливо и энергия на технологические цели. 6. Основная заработная плата производственных.

Защите» подпись, дата подпись, дата КУРСОВАЯ РАБОТА на тему: «ПРОЕКТИРОВАНИЕ НЕФТЕПЕРЕРАБАТЫВАЮЩЕГО ЗАВОДА С ЦЕЛЬЮ ПОЛУЧЕНИЯ МАКСИМАЛЬНОГО ВЫХОДА ДИЗЕЛЬНОГО ТОПЛИВА И РАСЧЕТ УСТАНОВКИ ГИДРООЧИСТКИ» Пояснительная записка Руководитель.

1) Асбестовский котельно-машиностроительный Завод 2) Асбестовский Завод металлоконструкций 3) Асбестовский Ремонтно-Машиностроительный заво 4) Мебельная фабрика Кедр 5) Уральский асбестовый горно-обогатительный комбинат 6)Завод УРАЛ АТИ Асбестовский Завод металлоконструкций" выполняет работы по изготовлению, транспортировке и монтажу газоотводящих труб из композитных неметаллических материалов для промышленных предприятий по производству минеральных удобрений, металлургии, химии, нефтепереработки.

[pic] Вещества-продукты от Завода: 1.трихлорсилан 2. водород 3\ хлор 4. хлороводород 5. поликристаллический кремний 6. дихлорсилан; 7.кремний тетрахлорид и др. Друзья, задумайтесь, у ОМСКА НЕ БУДЕТ БУДУЩЕГО. ((((((((((( В Омске хотят построить два кремниевых Завода, строительство уже идёт. И это вовсе не развитие промышленности, как сейчас будут говорить с экранов для простого населения. Это химико-радиоактивные предприятия. Вся страна отказалась его строить. Последний случай.

На тему: Эколого-экономический анализ влияния Завода бытовой химии на состояние окружающей среды города Иваново. СОДЕРЖАНИЕ Задание на выполнение курсовой работы (вариант № 4) 4 Исходные данные для выполнения курсовой работы 5 Введение 7 ГЛАВА 1. ХАРАКТЕРИСТИКА ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ 9 1.1 Химическая промышленность и окружающая среда 9 ГЛАВА 2. ОЦЕНКА УЩЕРБА, НАНОСИМОГО ЗАВОДОМ БЫТОВОЙ ХИМИИ ОКРУЖАЮЩЕЙ СРЕДЕ 19 2.1. Расчет экономической.

(Самарская) область. Во – первых, наличие богатых сырьевых ресурсов. Открытие больших запасов нефти в 1930-е годы в куйбышевской области и соседних с ней Башкирской и Татарской АССР определило целесообразность строительства здесь Нефтеперерабатывающих и нефтехимических Заводов. Второй предпосылкой стал комплекс условий: высокий уровень промышленного развития района, наличие энергетических ресурсов, мощных строительных организаций и развитой строительной индустрии. Третьим благоприятным фактором явилось.

Приняло решение построить под Москвой Нефтеперерабатывающий Завод для снабжения столицы и области моторным топливом и битумом. Работая безостановочно, Московский Нефтеперерабатывающий Завод переработал около 400 миллионов тонн нефти, постоянно поддерживая обеспечение Москвы в интересах его жителей. Стратегической линией его текущей деятельности и развития является интеграция с промышленной и экологической политикой правительства Москвы. За 65 лет работы Завод выпускал только неэтилированные бензины.

Государственной противопожарной службы Кафедра: Истории и экономической теории Дисциплина: История пожарной охраны Реферат Тема: «Пожар на Заводе КАМАЗ» Выполнил: курсант уч. гр. 2114 рядовой внутренней службы.

Введение Экологическая практика проходила на базе ОАО «Чебоксарский Агрегатный Завод». Важной особенностью данного вида практики является комплексность в изучении качества и состояния всех элементов окружающей среды: почвы, атмосферы, гидросферы, флоры и фауны различных биотопов города и пригородных зон, оценки влияния антропогенных факторов на различные экосистемы. Поэтому в процессе прохождения практики большое внимание уделяется организации экологического мониторинга. В целях предупреждения.

«Экономика, организация и управление промышленными предприятиями» Курсовая работа по дисциплине «Анализ и диагностика финансово-хозяйственной деятельности предприятия» на тему: «Анализ себестоимости продукции в ОАО «Улан-Удэнский авиационный Завод»» Выполнила: студентка гр. 513-1 Серенева Т. Ж. Проверил: Бальжинов А. В. Улан-Удэ 2012 г. Содержание.

Функционируют три Нефтеперерабатывающих Завода общей мощностью 18 млн. тонн нефти в год: ОАО "Атырауский НПЗ" (АНПЗ), ЗАО "Павлодарский нефтехимический Завод" (ПНХЗ) и ОАО "Шымкентнефтеоргсинтез" (ШНОС). 1. Месторасположение Нефтеперерабатывающие Заводы расположены в Южной, Западной и Северо-восточной области Республики [см. приложение: рисунок 2]. Такое расположение объясняется двумя основными факторами. Первый: близость к основным нефтепроводам. Второй: в бывшем СССР Нефтеперерабатывающие Заводы строились.

СОДЕРЖАНИЕ Введение…………………………………………………………………. 2 1.История создания Омского Нефтеперерабатывающего Завода………………………………………………….…………………………. 3 2.Омский Нефтеперерабатывающий Завод «сегодня»…………………..5 3.Общая характеристика воздействия Нефтеперерабатывающих Заводов на экосистемы………. ………………………………………………….………..8 4.Экологические требования к размещению Нефтеперерабатывающих Заводов…………..………………………………………………………………..11 5.Экологическая ситуация нашего города и влияние на нее НПЗ. …………………………………………………………………………….

Контрольная работа По экономической географии Тема № 5: География Нефтеперерабатывающей промышленности России и транспортные пути. Содержание: Введение. 1. География основных нефтяных баз России и удельный вес в добыче. 2. Проблема диверсификации отрасли и факторы размещения Нефтеперерабатывающей промышленности. 3. Способы транспортировки нефти: география магистральных и экспортных нефтепроводов, крупнейшие морские порты по вывозу нефти. .

Вертикально-интегрированных компаний, занимающейся добычей и переработкой нефти и газа, производством нефтепродуктов и продуктов нефтехимии. В основных сферах своей деятельности Компания занимает лидирующие позиции на российском и мировом рынках. Заводы Компании Стремясь сбалансировать объемы добычи и переработки нефти, ЛУКОЙЛ уделяет особое внимание развитию имеющихся НПЗ, а также рассматривает различные варианты приобретения и строительства новых перерабатывающих мощностей. Стратегической задачей.

| |[pic] | |[pic] | |[pic] | Современные Нефтеперерабатывающие предприятия характеризуются большой мощностью как НПЗ (исчисляемой миллионами тонн в год), так и составляющих их технологических процессов. В этой связи на НПЗ исключительно высоки требования к уровню автоматизации технологических процессов.

Позволил России наращивать экспорт нефти значительными темпами. Москва стремилась максимизировать валютные поступления от экспорта нефти и боролась за увеличение своей доли на мировом рынке. 1. Рождение нефтяной промышленности Нефтеперерабатывающий месторождение Завод промышленный В Бакинском регионе находилось много больших месторождений с относительно легко извлекаемыми запасами, но транспортировка нефти до рынков сбыта была трудной и дорогой. Братья Нобель и семейство Ротшильдов сыграли ключевую.

Выхода Казахстана на внешние рынки в числе ведущих мировых экспортеров нефти 2.1. Производство нефти в Республике Казахстан и прогнозные оценки его развития……………………………………………………………………………11-14 2.2. Состояние и потенциал Казахстанской Нефтеперерабатывающей промышленности ………………………………………………………….. 14-24 2.3 Инвестиции в нефтедобывающую отрасль Казахстана и транспортировка нефти………………………………………………………………………….24-28 Заключение.

Модернизацию и развитие инфраструктуры нефтегазового комплекса. Главными проблемами Нефтеперерабатывающей отрасли России являются: невысокая глубина переработки – 70%, недостаточный уровень качества нефтепродуктов, технически устаревшее оборудование на большинстве НПЗ. Все это приводит к тому, что выгоднее продавать сырье, чем продукты нефтепереработки, рассмотреть особенности развития Нефтеперерабатывающей промышленности России на пути ее становления в конце XIX века, влияние такой выдающейся.

Компании-имеют Нефтеперерабатывающие Заводы для получения своего сырья, но большую часть нефтяного бизнеса все-таки осуществляют 10-20 интегрированных нефтяных компаний. В США часто используют название «главные» нефтяные компании, которое относится к таким корпорациям, как Эксон, Шелл, Шеврон, Мобил, Тексако, Амоко, Бритиш Петролеум. Некоторые относительно крупные компании не являются полностью интегрированными, например компания Оксидэйшен Петролеум не имеет своих Нефтеперерабатывающих Заводов и автозаправочных.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Общая характеристика предприятия НК НПЗ. . . . . . . . . . . . . . . . . . . 21 1.3 Зарубежный опыт развития нефтяной промышленности. . . . . 29 ГЛАВА 2. Развитие Нефтеперерабатывающих предприятий в системе корпоративных отношений в новых условиях хозяйствования. . .. . . . 43 2.1 Факторы, определяющие конкурентоспособность в условиях рынка. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Методы контроля качества продукции на предприятии 6 1.3 Особенности контроля качества продукции на предприятии 15 ГЛАВА 2.Анализ процесса контроля качества на примере ОАО «Хабаровский Нефтеперерабатывающий Завод» 20 2.1 Краткая характеристика ОАО «Хабаровский Нефтеперерабатывающий Завод» 20 2.2 Контроль качества на Нефтеперерабатывающем предприятии 21 ЗАКЛЮЧЕНИЕ 27 Библиографический список 28 ВВЕДЕНИЕ Под контролем качества понимается проверка соответствия количественных.

Страны не могут развиваться без применения нефтепродуктов или продуктов нефтехимии, то есть без энергообеспечения промышленного производства и других отраслей народного хозяйства. Главная роль в системе нефтепродуктообеспечения принадлежит Нефтеперерабатывающим Заводам, на которых осуществляется процесс переработки нефти и производство нефтепродуктов различных товарных групп и видов. Нефтепродукты с НПЗ распределяются по автозаправочным станциям (АЗС), о логистике которых пойдет речь в данной работе на.

Нефти за рубежи России наоборот выросли. В целом вся сеть нефтепроводов представлена двумя группами объектов: внутрирегиональными, межобластными и системой дальних транзитных нефтепроводов. Первые обеспечивают индивидуальные связи нефтепромыслов и Заводов, вторые – интегрируют потоки нефти, обезличивая ее конкретного владельца. Россия предпринимает усилия диверсифицировать пути поставок нефти за рубеж. В середине 90-х гг. экспорт нефти из России в дальнее зарубежье увеличился, несмотря на падение.

Искусственного жидкого топлива первоначально планировалось в Хакасии, в г. Черногорске. Туда уже была завезена значительная часть оборудования, полученного по репарациям с Заводов Германии. В Черногорске в 1946 году была образована дирекция строящегося комбината № 18. Однако в связи с бурным развитием нефтедобывающей и Нефтеперерабатывающей промышленности между Волгой и Уралом (в городе Ишимбае, прозванном затем «вторым Баку») правительством страны в 1947 году было принято решение о перебазировании комбината.

МЕТОДЫ ДЕФЕКТОСКОПИИ ТРУБОПРОВОДОВ НЕФТЕПЕРЕРАБАТЫВАЮЩИХ ЗАВОДОВ Харитонова А. В. студентка группы ТП-26Дм Технологический институт ВНУ им. В. Даля (г. Северодонецк) Основной метод контроля за надежной и безопасной работой технологических трубопроводов – периодические ревизии и диагностика. Результаты диагностики служат основанием для оценки состояния трубопровода и возможности его дальнейшей эксплуатации. Диагностика трубопровода включает в себя: – периодический мониторинг механического.

Определяется как процесс непрерывного совершенствования техники, технологии, орудий труда, технологических процессов, создания новых видов продукции, повышения надежности и качества готовой продукции. Основные направления технического прогресса в Нефтеперерабатывающей промышленности проявляются в следующем: — создании и внедрении новых технологических процессов для повышения качества вырабатываемой продукции и улучшения использования сырья; — совершенствовании действующих процессов с целью повышения.

После ее завершения мощности Завода возрастут с 5 до 12 млн. тонн нефти в год. Одновременно увеличиться и глубина переработки – она составит 95%. Помимо этого, Завод начнет выпускать продукцию, соответствующую стандартам Евро-4 и Евро-5. Тем самым, актуальность приобретает вопрос оценки эффективности модернизации Туапсинского НПЗ. Объектом исследования данного курсового проекта является Туапсинский НПЗ. Предмет исследования – проект модернизации данного Завода. Цель курсового проекта состоит.

Содержание Введение 3 Нефтяная и Нефтеперерабатывающая промышленность 4 Газовая промышленность 7 Угольная промышленность 11 Электроэнеогетика.

И СНГ, история разведки и добычи, современное состояние, перспективные направления»……………………………………………………………………13 7.1 История разработки нефтегазовых месторождений в России ………………………………………………………………………….13 7.2 Нефтедобывающая и Нефтеперерабатывающая промышленность стран СНГ…………………………………………………………………….22 7.3 Современное состояние нефти и газовой промышленности……. 51 7.4 Инновации в области добычи нефти и газа: перспективные направления и разумные решения…………………………………………………….

РЕГИОНАЛЬНОЙ ЭКОНОМИКИ И ГЕОГРАФИИ КУРСОВАЯ РАБОТА На тему «Динамика и география Нефтеперерабатывающей промышленности мира, 1970-2009 гг.» Выполнил Абульев Т. Р. Группа ЭУ-102 Проверила Радионова И. А. Москва, 2011 План работы: Введение………………………………………………………………….3 Глава 1. Общая характеристика Нефтеперерабатывающей промышленности мира…………………………………………………………5 1. Технология переработки нефти………………………………….

Нефтеперераба́тывающая промы́шленность Росси́и — отрасль российской промышленности, часть нефтяной промышленности России. В России действуют 32 крупных Нефтеперерабатывающих предприятий с общей мощностью по переработке нефти 261,6 млн. тонн (2009 год; в 2012 году 262,65 млн. тонн), а также 80 мини-НПЗ с общей мощностью переработки 11,3 млн тонн.[1]. В 2010 году в России было произведено 36 млн тонн автомобильного бензина, 69,9 млн тонн дизельного топлива, 77,7 млн тонн топочного мазута[2]. Средняя.

Федеральное агентство по образованию Байкальский государственный университет экономики и права Читинский институт Кафедра мировой экономики Курсовая работа по экономической и социальной географии на тему: «Развитие и размещение нефтяной и Нефтеперерабатывающей промышленности» Работу выполнил: студент гр. БУ-08-2 Ковалёв М. С. Научный руководитель: доцент кафедры «Мировая экономика», к. б.н. Лобанова Н. Л. Чита, 2008 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . .

3-13] Уточним, что в начале текущего десятилетия уровень цен в 36 долл. за баррель определялся как "запредельный" и способный привести крупные экономики к стагнации. Во Франции, например, осенью 2000 г. водители грузовиков блокировали Нефтеперерабатывающие Заводы, а автолюбители запасались бензином в канистрах. Однако достаточно неожиданно после краткосрочной рецессии в 2001 г. мировая экономика смогла "переварить" эти высокие цены, сохраняя значительные темпы роста. Согласно модели, разработанной.

Было принято решение о строительстве в области Нефтеперерабатывающих Заводов. Так Нефтеперерабатывающая промышленность стала еще одной перспективной отраслью Кузбасса. На сегодняшний день в области уже имеются мощности для переработки почти 450 тыс. тонн нефти. Производятся бензин, дизельное топливо, мазут. В 2010 году на строительство, реконструкцию и модернизацию нефтегазовых производств затрачено более 8 млрд рублей. Увели-чение Нефтеперерабатывающих мощностей продолжается. – Сегодня Кузбассу.

В 1993 году было добыто 350 млн. т нефти с газовым конденсатом. По уровню добычи мы уступаем только Саудовской Аравии и США. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 Нефтеперерабатывающих Заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов. На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки.

Пояснительная записка К ДИПЛОМНОМУ ПРОЕКТУ 140610 «Электрооборудование и электрохозяйство предприятий, организаций и учреждений» Тема«Электрооборудование и электрохозяйство Нефтеперерабатывающего Завода» г. Омск Электрооборудование и электрохозяйство Нефтеперерабатывающего Завода Исходные данные на проектирование. 1. Генеральный план. 2. Мощность системы 650 MBА. 3. Питание предприятия можно осуществить от подстанции энергосистемы на классах напряжения 220.

Башкортостан «За вклад в развитие экономики Республики Башкортостан». ОАО "Башнефтехим" – пожалуй, самая крупная в России Нефтеперерабатывающая компания. Объединяет три НПЗ – "Уфанефтехим", "Новойл" (Ново-Уфимский НПЗ), Уфимский НПЗ, а также нефтехимическое предприятие "Уфаоргсинтез". Суммарная мощность НПЗ достигает 40 млн. тонн в год (по некоторым данным, проектные мощности Заводов – до 60 млн. тонн нефти в год). 1. Характеристика предприятия Карточка компании Наименование компании: | Открытое.

Перерабатывающие предприятия «Пермнефтеоргсинтез», Волгоградский и Новоуфимский Нефтеперерабатывающие Заводы (последний вскоре перешёл под контроль властей Башкортостана).На основании Указа Президента РФ № 1403 от 17 ноября 1992 года «Об особенностях приватизации и преобразовании в акционерные общества государственных предприятий, производственных и научно-производственных объединений нефтяной, Нефтеперерабатывающей промышленности и нефтепродуктообеспечения» 5 апреля 1993 года на базе государственного.

Изменяться. Железнодорожное строительство вызвало усиленное потребление железными дорогами топлива: каменного угля и нефти. Донецкая угольная промышленность во вторую половину 90-х годов 36 % своей продукции сбывала транспорту, 29% – металлургическим Заводам и лишь 25 % – частным потребителям (10 % шло для собственного производственного потребления). Внутреннее потребление керосина в 1893 г. составило 37,9 млн. пудов, в 1900г. – 54,6 млн. пудов; мазута за те же годы – 114,5 млн. и 286,4 пудов; всех вообще.

Башкортостан «За вклад в развитие экономики Республики Башкортостан». ОАО "Башнефтехим" – пожалуй, самая крупная в России Нефтеперерабатывающая компания. Объединяет три НПЗ – "Уфанефтехим", "Новойл" (Ново-Уфимский НПЗ), Уфимский НПЗ, а также нефтехимическое предприятие "Уфаоргсинтез". Суммарная мощность НПЗ достигает 40 млн. тонн в год (по некоторым данным, проектные мощности Заводов – до 60 млн. тонн нефти в год). 1. Характеристика предприятия Карточка компании Наименование компании: Открытое.

ОАО «ХАБАРОВСКИЙ НЕФТЕПЕРЕРАБАТЫВАЮЩИЙ ЗАВОД» 2.1 Характеристика ОАО «Хабаровский Нефтеперерабатывающий Завод» 2.2 Контроль качества на Нефтеперерабатывающем предприятии 2.3 Характеристика процесса контроля качества ОАО «Хабаровский Нефтеперерабатывающий Завод» ГЛАВА 3. ПУТИ СОВЕРШЕНСТВОВАНИЯ КОНТРОЛЯ КАЧЕСТВА ПРОДУКЦИИ 3.1 Совершенствование контроля качества продукции 3.2 Предложения по совершенствованию контроля качества продукции ОАО «Хабаровский Нефтеперерабатывающий Завод» ЗАКЛЮЧЕНИЕ СПИСОК.

«Газпромнефть-Омский НПЗ» 16 2.1. Общая характеристика организации 16 «Газпромнефть-Омский НПЗ» является частью вертикально интегрированной структуры компании «Газпром нефть». 17 2.2. Классификация и функции центров ответственности на Омском Нефтеперерабатывающем Заводе 20 2.3. Оценка состояния управленческого учета по центрам ответственности 22 2.4. Рекомендации к повышению эффективности деятельности центров ответственности 28 Заключение 32 Список использованной литературы 34 Приложения 37 .

Владеет Нефтеперерабатывающими мощностями в 6 странах мира (с учетом НПК ISAB и НПЗ TRN). Суммарная мощность Нефтеперерабатывающих Заводов группы «ЛУКОЙЛ» по состоянию на конец 2010 года составляет 71,5 млн т/год. В России Компании принадлежат четыре Нефтеперерабатывающих Завода и два мини-НПЗ, а также четыре газоперерабатывающих Завода. Кроме того, в состав российских активов группы «ЛУКОЙЛ» входят 2 нефтехимических предприятия. Суммарная мощность российских Нефтеперерабатывающих Заводов группы.

Цистерны и другие средства транспортировки используются для перевозки сырой нефти, сжатых и сжиженных углеродных газов, жидких нефтепродуктов и других химических веществ от места добычи или производства до терминалов продуктопроводов, перерабатывающих Заводов, дистрибьюторов и потребителей. Жидкая нефть и жидкие нефтепродукты транспортируют, хранят и обрабатывают в их естественном жидком состоянии. Углеводородные газы транспортируются, хранятся и обрабатываются как в газообразном, так и в жидком состоянии.

Объединение «Белоруснефть» 4 1.1 Геологоразведка 4 1.2 Добыча нефти и газа 5 1.3 Газопереработка и энергетика 6 1.3.1 Газореработка 6 1.3.2 Энергетика 7 Глава 2 ОАО «Нафтан» 8 2.1 Продукция 8 2.2 Используемые технологии 8 Глава 3 «Мозырский Нефтеперерабатывающий Завод» 10 Глава 4 ОАО «Полоцктранснефть Дружба» 13 4.1 Лаборатории 13 4.1.1 Полевая испытательная лаборатория 14 Заключение 15 Список использованных источников 16 ВВедение В Республике Беларусь производится более 500 видов нефтехимической и.

Http://www. skachatreferat. ru/poisk/%D0%BD%D0%B5%D1%84%D1%82%D0%B5%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%B0%D1%82%D1%8B%D0%B2%D0%B0%D1%8E%D1%89%D0%B8%D0%B9-%D0%B7%D0%B0%D0%B2%D0%BE%D0%B4/1

Государственное образовательное учреждение высшего профессионального образования

По специальности 280101 «Безопасность жизнедеятельности в техносфере»

НЕФТЕПЕРЕРАБАТЫВАЮЩИЙ ЗАВОД «УФАНЕФТЕХИМ» КАК ИСТОЧНИК ЗАГРЯЗНЕНИЯ СРЕДЫ ОБИТАНИЯ

АТМОСФЕРА, НЕФТЬ, НЕФТЕХИМИЯ, НЕФТЕПЕРЕРАБОТКА, ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ, НЕФТЕЛОВУШКИ, АБСОРБЕРЫ, АЭРОТЕНКИ, СТОЧНЫЕ ВОДЫ, ЗАГРЯЗНЕНИЕ, ПРЕДЕЛЬНО ДОПУСТИМАЯ КОНЦЕНТРАЦИЯ, ПРЕДЕЛЬНО ДОПУСТИМЫЕ СБРОСЫ, ОТХОДЫ, фенол, диоксид серы, оксиды азота, оксид углерода.

Объектом исследований является нефтеперерабатывающее предприятие ОАО «Уфанефтехим»

Цель данного дипломного проекта – анализ нефтехимической промышленности, как источник загрязнения окружающей среды.

В дипломном проекте произведен анализ нефтеперерабатывающей промышленности как источник загрязнения атмосферы, водного бассейна, литосферы, рассмотрено влияние на человека, рассчитаны выбросы загрязняющих веществ в атмосферу и сбросы сточных в водные объекты, рассчитана плата за выбросы и сбросы загрязняющих веществ, так же определены класс опасности предприятия и санитарно-защитная зона.

Пояснительная записка к дипломному проекту содержит 68 стр., таблиц 23, рисунков 2, библиограф 32

1.1 Выбросы в атмосферу на различных этапах технологического процесса

1.2 Основные источники выбросов предприятия в атмосферный воздух

1.3 Состав соединений, выбрасываемых в атмосферный воздух и их влияние на живые организмы

1.6 Нефти и нефтепродукты, сбрасываемые со сточными водами и их влияние на водные объекты

II. Эколого-социально-экономические расчеты воздействия загрязнения на окружающую среду и человека

2.1 Расчет массы образующихся выбросов (инвентаризация) на предприятии ОАО «Уфанефтехим» в цехе 1 газотопливного производства

2.4 Определение экологической опасности и санитарно-защитной зоны предприятия ОАО «Уфанефтехим»

Экологические проблемы, имеющие в настоящее время глобальный социальный характер, наиболее ярко проявились в нефтеперерабатывающей отрасли, где огромная энергонасыщенность предприятий, образование и выбросы вредных веществ создают не только техногенную нагрузку на окружающую среду, но и общественно-политическую напряженность в обществе. Постоянно интенсифицируются технологии, вследствие чего такие параметры как температура, давление, содержание опасных веществ, достигают критических величин. Растут единичные мощности аппаратов, количество находящихся в них опасных веществ. Многие виды продукции нефтеперерабатывающих заводов с передовой технологией, обеспечивающей комплексную переработку сырья и состоящей из сотен позиций взрывоопасны и пожароопасны или токсичны. Перечисленные особенности современных объектов нефтепереработки обусловливают их потенциальную экологическую опасность. Экономическая целесообразность расположения нефтеперерабатывающих предприятий приводит к повсеместному созданию индустриальных комплексов в местах проживания населения.

Ущерб промышленных технологий НПЗ для окружающей среды можно охарактеризовать риском, характер и масштабы которого зависят от типа и объемов потребляемых нефти и топлива, способов их использования, уровня технологии системы безопасности и эффективности проведения работ по уменьшению загрязнений. Гигиеническая значимость этих производств очень высока потому, что сама нефть и процесс ее переработки включают сотни химических веществ, присутствующих одновременно в различных комбинациях между собой, сочетаниях с другими неблагоприятными факторами; нефть и нефтепродукты обладают комплексным воздействием на организм, т. е. поступают в организм через все входные ворота; и, наконец, нефть и все ее производные, способны проникать и поражать все аспекты окружающей среды, всю среду обитания: воздух, воду, почву, трансформируются во все живые и неживые объекты в природе. Все это создает полное экологическое неблагополучие, ухудшение стандартов жизни, всех санитарно-гигиенических норм, что не может не отразиться на состоянии здоровья рабочих этих предприятий и населения регионов, где размещены объекты перерабатывающей промышленности. Состояние здоровья людей должно быть главным показателем социальной эффективности, а создание здоровой среды обитания, обеспечивающей социальное, физическое и психическое благополучие человека, должно стать главной концепцией дальнейшего развития общества.

Поэтому одной из важнейших проблем нефтедобывающей и нефтеперерабатывающей отраслей промышленности является проблема охраны производственной и окружающей среды. Нефтеперерабатывающую промышленность в настоящее время вполне справедливо относят к тем отраслям народного хозяйства, которые в наибольшей степени ответственны за здоровье населения.

В связи с этим важными являются анализ влияния на среду обитания предприятий нефтеперерабатывающего комплекса. Таким образом, тема дипломного проекта является актуальной.

Целью данного дипломного проекта является анализ влияния на среду обитания нефтеперерабатывающих предприятий на примере ОАО «Уфанефтехим».

– выполнить эколого-экономические расчеты воздействия загрязнения на окружающую среду и человека.

ОАО «Уфанефтехим» расположена в северной промышленной зоне города Уфы республики Башкортостан. Завод введен в эксплуатацию в 1957 году и является топливным с долей нефтехимических процессов. Рельеф окружающей местности средне холмистый. Преобладающее направление ветра в течение года но району – южное и юго-западное.

Основными источниками загрязнения атмосферы являются организованные источники (дымовые трубы) и неорганизованные источники (выбросы с установок за счет не герметичности аппаратов, оборудования, от резервуарных парков, очистных сооружений).

Загрязнение атмосферного воздуха происходит на всех этапах технологического процесса переработки нефти и ее компонентов.

Сточные воды образуются, как правило, не от изолированных производственных процессов или агрегатов, а являются совокупностью потоков, собираемых от предприятия в целом [30].

1.1 Выбросы в атмосферу на различных этапах технологического процесса

Установки ЭЛОУ. Сырая нагретая нефть в смеси с деэмульгатором и водой под действием переменного электромагнитного поля обезвоживается и обессоливается.

Основными источниками выбросов вредных примесей в атмосферу являются неорганизованные источники (за счет не герметичности аппаратов, оборудования) и организованные – вентвыбросы из помещений насосных[30].

На данном этапе технологического процесса в атмосферу выделяются вредные примеси испарений легких фракций нефти (бензин нефтяной и сероводород)[1].

Обезвоженная и обессоленная нефть нагревается и разделяется на фракции в ректификационных колоннах, как при повышенном давлении, так и при вакууме.

Источниками выбросов являются дымовые трубы технологических печей, не герметичность технологического оборудования (неорганизованные источники) и производственные помещения насосных.

Перечень вредных веществ дополнительно включает дымовые газы: (метан, ангидрид сернистый, углерода оксид, азота оксид и диоксид, зола мазутная в пересчете на ванадий, бенз(а)пирен, сероводород.

Печи АВТ-1, АВТ-2, АВТ-3, АВТ-4 оборудованы форсунками для сжигания газов разложения, содержащих сероводород. После эжекторов с вакуумных колонн К-5 данное устройство снижает содержание сероводорода в выбросах, переводя его в ангидрид сернистый.

– Висбрекинг. Осуществляется технологический крекинг тяжелых остатков нефти при умеренной температуре, при которой распадаются преимущественно тяжелые углеводороды. С уменьшением вязкости гудронов – выработка компонента мазута.

Источниками выделения вредных примесей являются технологические печи и неплотности технологического оборудования, поэтому перечень вредных веществ не изменяется [6].

– Установка деасфальтизации. Деасфальтизацию проводят в экстракционных колоннах. В противотоке жидкий пропан растворяет в себе масляную часть гудрона. В экстрактном растворе получают деасфальтизированное масло, в рафинатном – асфальт. Сырье – гудрон. Продукт – деасфальтизат и асфальтосмолистые вещества.

Источниками выбросов являются насосные, которые пронормированы по бутану и бензину и дымовые трубы технологических печей.

– Установка УСРПГ. Сбор, компремирование «жирных газов» установки АВТ с последующей ректификацией образовавшегося газового конденсата с получением «сухого» газа и деэтанизированной головки.

– Установка производства нефтяных битумов. Установка предназначена для получения нефтяных дорожных вязких битумов, а также различных связующих нефтяных (брикетин-1, брикетин-3, НБС-1). В состав установки входят блок окисления и блок налива готовой продукции. Газы окисления, отработанный воздух и не сконденсированная часть отгона подаются в печь дожига газов окисления, топливо – экстракт фенольной очистки. В перечень вредных веществ добавляются меркаптаны, которые пронормированы по «н-пропантиолу», и фенол.

– Установка депарафинизации масел. Удаление из дистиллятных и остаточных рафинатов фенольной очистки высокоплавких парафиновых и церезиновых углеводородов путем кристаллизации их из растворов в смеси ацетона, метилэтилкетона и толуола при низких температурах с целью снижения температуры застывания. Продукты – депарафинированные дистиллятные и остаточные масла, газ и петролатум. Проводится глубокая депарафинизация масел. В перечне вредных примесей добавляются ацетон, метилэтилкетон и толуол.

– Установка получения многофункциональных алкилфенольных присадок.

В атмосферу выбрасывается уксусная кислота, ортофосфорная кислота, аммиак, кальция гидроксид [30].

– Установка каталитического крекинга 1-А. Осуществляется каталитический крекинг вакуумного газойля в кипящем слое катализатора с последующей ректификацией продуктов реакции. Источниками выделения вредных примесей являются технологические печи, регенератор катализатора, производственные помещения насосных и компрессорных. Выбросы катализаторной пыли из регенератора очищаются на электрофильтрах. В перечень вредных веществ добавляется пыль катализаторная, которая пронормирована как «взвешенные вещества».

– Газофракционирующая установка ГФУ. Разделение сжиженных углеводородов газов на фракции происходит в процессе ректификации под давлением с получением пропановой фракции, изобутановой фракции и газового бензина.

– Абсорбционно-газофракционирующая установка АГФУ. Абсорбцией и ректификацией разделяют смесь легких углеводородов на «сухой газ» и бутановую фракцию, которая затем подвергается обработке каустической содой с целью очистки их от сероводорода.

Перечень вредных примесей на данном этапе производства включает пропан и пропилен.

– Установка полимеризации бутан-бутиленовой фракции. Процесс полимеризации бутан-бутилена происходит в реакторах в присутствии катализатора под повышенным давлением с последующим фракционированием продуктов реакции[30].

Сырье – фракция бутан-бутиленовая, продукт – легкий и тяжелый полимердистиллят, отработанная бутан-бутиленовая фракция[5].

– Установка УСКФГ. Установка сбора и компремирования факельных газов высокого и низкого давления. Сырье – факельные газы с долей сероводорода не более 8%. Продукт – сухой газ с содержанием сероводорода 3%-5%, газовый конденсат.

Факельное хозяйство оборудовано схемой сбора и возврата газового конденсата в топливную систему завода.

-Гидрокрекинг. Процесс гидрокрекинга вакуумных дистиллятов проводят на стационарном слое катализатора под высоким парциальным давлением водорода. Процесс гидрокрекинга позволяет перерабатывать тяжелые нефтяные фракции при длительном цикле работы катализатора.

Установка регенерации катализатора оборудована скрубберами. Скруббер 2-913 производит очистку газов от катализаторной пыли и предельных углеводородов. На скруббере 2-913 предусмотрена очистка от оксида углерода и сернистого ангидрида.

В составе гидрокрекинга находится установка производства водорода. Процесс получения водорода основан на методе паровой конверсии углеводородов.

– Установка предварительной гидроочистки бензина. Превращение и удаление сернистых, азотистых, кислородсодержащих соединений из сырья гидрированием под высоким парциальным давлением водорода на стационарном слое катализатора с последующей стабилизацией гидрогенизата. Сырье – бензин. Продукт – стабильный гидрогенизат – сырье установок 35-5, 35-6.

– Установка изомеризации 35-5. На установке изомеризации гидроочищенных фракций прямогонного бензина получают высооктановый автобензин [30].

Сырье – бензин прямой гонки, узкие фракции с КПА, продукт – автобензин.

– Установка каталитического риформинга 35-11/300. Установка каталитического риформинга прямогонных бензинов и бензиновых фракций вторичного происхождения на алюмоплатиновом катализаторе с целью их ароматизации с предварительной гидроочисткой и отпаркой сырья и последующей стабилизацией продуктов реакции предназначена для переработки прямогонных бензинов с установок АВТ, гидрокрекинга, фракций КПА в высокооктановые компоненты автобензина или ароматизированный стабильный катализат для получения растворителей.

– Установка по производству элементарной серы. Установка перерабатывает сероводородсодержащий газ в элементарную серу.

Сера в жидком состоянии с установки поступает на склад, затвердевает на открытом воздухе, после чего бульдозером разбивается на комки и загружается в железнодорожные вагоны [4].

– Комбинированная установка получения ортоксилола, параксилола и бензола.

Широкую прямогонную фракцию бензина подвергают вторичной перегонке с целью получения узких фракций. Фр. 85-140°С подвергается гидроочистке, а затем подвергается каталитическому риформингу с целью обогащения их ароматическими углеводородами, из полученного риформинга выделяют индивидуальные ароматические углеводороды. Сырье – бензин, продукт – параксилол, ортоксилол, бензол, толуол.

– Биологические очистные сооружения. Очистка и доочистка нефтесодержащих стоков от НУНПЗ, УНПЗ, УЗСС, ТЭЦ-4 и прочие.

Стоки, пройдя механическую очистку, поступают в смеситель, перемешиваются. Затем они поступают в аэротенки – сооружение для биохимического окисления загрязненных сточных вод при помощи микроорганизмов и кислородом воздуха. Пройдя двухступенчатую очистку в аэротенках стоки поступают в распределительные камеры отстойников и по радиальным отстойникам для отстоя очищенных стоков от активного ила. Затем осветленные стоки поступают на флотацию, пруд доочистки, откуда через рассеивающий выпуск сбрасывается в р. Белая.

– Механические очистные сооружения. Очистка сточных вод путем отстаивания, сепарации, турбофлотации и центрифугирования.

– Химическая водоочистка. Очистка воды основана на процессе коагуляции и известкования воды и умягчения на катионитовых фильтрах[30].

Резервуарный парк предназначен для обеспечения приема и хранения нефти и получаемых нефтепродуктов.

В товарном производстве некоторые резервуары объемом по 5000м3 оборудованы понтонами или плавающими крышами. Резервуары по комплексу «Ароматика» оснащены понтонами и азотным «дыханием».

Северная и южная эстакады налива оборудованы системой герметичного налива нефтепродуктов. Южная наливная эстакада оснащена блоком улова и утилизации паров бензина[4].

1.2 Основные источники выбросов предприятия в атмосферный воздух

Среди загрязнений воздушной среды выбросами НПЗ, в том числе и ОАО «Уфанефтехим» (сероводород, сернистый газ, оксиды азота, оксид углерода, углеводороды, и другие токсичные вещества) основными являются углеводороды и сернистый газ. Степень загрязнения воздушной среды зависит от применяемой техники и технологии, а также от масштабов переработки нефти[1].

По содержанию серы нефти условно классифицируют на малосернистые (до 0,5%), сернистые (до 2,0%) и высокосернистые (свыше 2,0%). Нефти, добываемые на территории республики Башкортостан относят к высокосернистым [17].

Рост добычи и поступление в переработку сернистых и высокосернистых нефтей ухудшают качественные показатели нефтепродуктов, ведут к повышенной коррозии и преждевременному износу трубопроводов, арматуры, оборудования и аппаратуры, к сверхнормативным простоям установок, к сокращению межремонтных циклов, к значительным затратам на текущий и капитальный ремонты, увеличению загрязненности, образованию накипи в теплообменных аппаратах и прогоранию печных труб. При переработке высокосернистых нефтей и получении из них нефтепродуктов с малым содержанием серы усложняются технологические схемы заводов и уменьшается выход светлых нефтепродуктов, требуется более глубокая их очистка и облагораживание. По данным, безвозвратные потери нефти из нефтепродуктов по различным источникам на заводах топливного и топливно-масляного профиля (по группе НПЗ в Башкортостане), перерабатывающих сернистые и высокосернистые нефти, составляют (в % на переработанную нефть) [4]:

Из резервуаров и емкостей для хранения нефти и нефтепродуктов (открытого типа с шатровой крышей) – 40

С поверхности сточной жидкости в нефтеловушках и различных прудах, с сооружений биологической очистки сточных вод, включая испарение из канализационных колодцев и открытых градирен – 19

При наливе в цистерны и при других товарных операциях (на эстакадах открытого типа – 1,3

Прочие источники испарения, утечки через неплотности, пропуски через клапаны и воздушники на аппаратах, не подключенных к факельной линии и др – 2,7

Потери на факелах (при отсутствии газгольдеров для улавливания факельного газа) – 17

Потери при сжигании кокса с катализаторов, от разливов и утечек в грунт, с газами разложения на АВТ и битумных установках со шламами, глинами и т. д – 19

Потери со сточными водами (до биологической очистки при содержании в них 75 мг/л нефтепродуктов) – 1

Самым крупным источником загрязнения атмосферного воздуха являются заводские резервуары для хранения нефти и нефтепродуктов при обычном атмосферном давлении. Выброс осуществляется через специальные дыхательные клапаны при небольшом избыточном давлении паров нефтепродукта или при вакууме в резервуаре, а также через открытые люки и возможные неплотности в кровле резервуара. Особенно увеличивается выброс при заполнении резервуара нефтью или нефтепродуктом, в результате чего из газового пространства вытесняются в атмосферу, как правило, пары легких нефтепродуктов.

Дополнительная загазованность атмосферы происходит при нарушении герметичности резервуаров за счет коррозии крыши, если переработке подвергаются сернистые нефти. При негерметичной крыше резервуара происходит «выветривание» газового пространства: более тяжелые пары продукта выходят снизу, а воздух в таком же объеме входит сверху. При наличии ветра потери от вентиляции газового пространства увеличиваются во много раз [7].

При обследовании НПЗ ОАО «Уфанефтехим» в Башкортостане потери углеводородов по отдельным резервуарам были [30]:

Из промежуточных и товарных резервуаров и емкостей с бензиновыми компонентами и светлыми продуктами – 48

Из резервуаров с компонентами бензина от первичных и вторичных процессов – 27,2

Открытые поверхности очистных сооружений — песколовок, нефтеловушек, пруды дополнительного отстоя, кварцевые фильтры, аэротенки I и II ступени, вторичные и третичные отстойники после аэротенков, пруды накопители — являются источниками загрязнения атмосферного воздуха и окружающей территории продуктами нефтепереработки. Средние концентрации газов в воздушных потоках от отдельных элементов очистных сооружений, а также валовые газовыделения с открытой поверхности этих объектов представлены в табл. 1.2.2 [9].

У работающих фильтров концентрации сероводорода и паров углеводородов в воздушных потоках с поверхности испарения были выше, чем у фильтров, остановленных на промывку, так как промывная вода менее насыщена продуктом.

Нефтепродукты, поступающие с оборотной водой, в основном испаряются в воздух; например в градирнях НПЗ удаляется с воздухом через вентиляторы 286 кг/ч, или 2500 т/год углеводородов. Сточные воды, отходящие от барометрических конденсаторов, сбросы охлаждающей воды из конденсаторов смешения паров, образующихся при охлаждении кокса на установках замедленного коксования и другие, являются источником загрязнения атмосферы сероводородом [9].

Выброс углеводородов и сероводорода происходит на атмосферно-вакуумных и вакуумных установках НПЗ, на последней ступени паро-эжекторного агрегата неконденсированных газов. При наличии на НПЗ установок каталитического крекинга вакуумного газойля, потери нефти и нефтепродуктов с выжигаемым коксом при регенерации катализатора составляют 5,0—6,5% от перерабатываемого сырья. При мощности завода 12 млн. т/год и выходе вакуумного газойля 10% на нефть они составляют 0,6% от переработанной нефти.

Технологические конденсаты после атмосферных и атмосферно-вакуумных установок и установок каталитического крекинга являются источником загрязнения атмосферного воздуха сероводородом [3].

Пары нефтепродуктов выделяются в атмосферный воздух через неплотности оборудования, арматуры и фланцевых соединений, через сальниковые устройства насосов и компрессоров. Число насосов и компрессоров на НПЗ средней производительности составляет более 1000. Каждая задвижка, фланцевое соединение, предохранительный клапан и сальник насоса — потенциальные источники загрязнения атмосферного воздуха. При нормальной работе от одного насоса выделяется в час 1 кг газов и паров, а от одного компрессора —3 кг. Фактические выделения часто превышают эти цифры в 2—3 раза; для насосной при 20 насосах они могут составлять 20—60 кг/ч, для компрессорной при 5 компрессорах— от 15 до 45 кг/ч.

Выбросы углеводородов в атмосферу на НПЗ через предохранительные клапаны достаточно велики. Например, на НПЗ мощностью 12 млн. т/год через предохранительные клапаны выбрасывается в сутки около 100 т углеводородов. Кроме того, необходимо учитывать выбросы в результате недостаточной герметизации оборудования и арматуры.

Дымовые газы трубчатых печей технологических установок являются источниками выброса в атмосферный воздух сернистого ангидрида, оксидов углерода и азота [6].

Проблема выбросов оксида углерода на установках каталитического крекинга с псевдоожиженным слоем в настоящее время приобрела особое значение. Это связано со значительной коррозией оборудования, (вызванной повышенными температурами в циклонах или в линии отходящих газов в результате дожигания оксида углерода до диоксида в разбавленной фазе катализатора, использованием цеолитных катализаторов, требующих высокой степени выжига кокса повышения температуры регенерации с 620 до 700 °С.

Сернокислотная очистка парафина и масел, сульфирование при получении поверхностно-активных веществ и многие другие процессы в нефтеперерабатывающей промышленности связаны с выбросом сернистых газов в атмосферу [9].

Основным процессом производства битумов является окисление остатков нефтепереработки кислородом воздуха при 240—300°С. Газы, выходящие из окислительного аппарата, состоят из азота, кислорода, диоксида углерода, смеси углеводородов и их кислородных производных, а также водяных паров, образующихся в ходе реакции окисления углеводородного сырья, и за счет воды и водяного пара, подаваемых иногда в газовое пространство окислительного аппарата. Эти выбросы являются одним из основных источников загрязнения воздушного бассейна, связанных с работой НПЗ. Дополнительным и часто значительным источником загрязнения воздушного бассейна могут быть пары органических соединений, выделяющиеся при наливе горячего битума в железнодорожные бункеры и автобитумовозы или розливе его в мелкую тару (бумажные мешки, бочки) для охлаждения.

Состав газов, выделяющихся при обычных режимах окисления в колонне при использовании в качестве сырья гудрона (на примере западно-сибирской нефти) даны в таблице 1.2.4 [2].

Кроме того, в газах, выходящих из окислительного аппарата, в небольших количествах присутствует оксид углерода (до 0,5% масс); концентрация же сероводорода невелика—не более 0,01% (масс.)—даже при использовании высокосерниcтого сырья; содержание сернистого ангидрида еще ниже. Концентрация 3,4-бенз-пирена в газах достигает 5 мкг/м3 (при ПДК его в воздухе производственных помещений 0,15 ,мкг/м3). В случае подачи В окислительную колонну воды для съема тепла реакции или водяного пара для снижения концентрации кислорода до взрывобезопасной (.ниже 5% об.) необходимо учитывать соответствующее разбавление газов окисления[2].

Факельные системы являются значительными источниками загрязнения атмосферного воздуха сернистым ангидридом, оксидом углерода и другими вредными газами. На факельные установки направляют горючие и горюче-токсические газы и пары (из технологического оборудования и коммуникаций, а также «сдувки» из предохранительных клапанов и других предохранительных устройств, если эти сбросы невозможно использовать в качестве топлива в специальных печах или котельных установках. Кроме того, на факел направляют горючие и горюче-токсические газы и пары в аварийных случаях, в период пуска оборудования, при остановке оборудования на ремонт и наладке технологического режима (периодические сбросы).

На НПЗ в качестве топлива используют не только поступающий со стороны естественный газ, но и получаемый непосредственно при переработке нефти — высококалорийный, так называемый нефтезаводской сухой газ. Преимущества его по сравнению с жидким топливом заключаются в удобстве обращения и транспортирования, в легком смешении с воздухом и возможности сжигания с малым избытком воздуха.

Несмотря на то, что значительная доля нефтезаводского газа потребляется в качестве топлива, на заводах все еще сжигается на факеле сухой газ, поступающий с технологических установок и резервуаров, на которых недостаточен контроль работы – предохранительных клапанов и другой запорной арматуры.

Сжигаемый на факеле газ загрязняет атмосферу дымом и копотью. Особенно много сажи выделяется при сжигании сбросных газов, содержащих тяжелые непредельные углеводороды [8].

1.3 Состав соединений, выбрасываемых в атмосферный воздух и их влияние на живые организмы

Углеводороды. Токсичность нефтепродуктов и выделяющихся газов определяется сочетанием углеводородов, входящих в их состав. От преобладания углеводородов того или иного ряда зависят токсические свойства нефтепродуктов. Так, тяжелые бензины являются более токсичными по сравнению с легкими. Токсичность смеси углеводородов в составе нефтепродуктов, выше токсичности отдельных компонентов смеси. Значительно возрастает токсичность нефтепродуктов при переработке сернистых и многосернистых нефтей. Основной вредностью при переработке нефтей, содержащих сернистые соединения, является комбинация углеводородов и сероводорода. Комбинированное действие углеводородов и сероводорода проявляется быстрее, чем при изолированном действии углеводородов.

Действие на организм углеводородных компонентов в сочетании с сероводородом многообразно. Прежде всего страдает центральная нервная система. При углеводородных отравлениях поражается промежуточный мозг как высший центр вегетативной нервной системы. Углеводороды влияют на сердечно-сосудистую систему, а также на гематологические показатели (снижение содержания гемоглобина и эритроцитов).

Специальные экспериментальные исследования указывают на возможность поражения печени, нарушения различных ее функций при хроническом воздействии нефтепродуктов. Углеводороды влияют и на эндокринный аппарат организма. При хроническом воздействии углеводородов выявляются изменения в щитовидной железе, коре надпочечников, яичниках белых крыс. У животных более интенсивно нарастала масса тела по сравнению с интактными, было выявлено влияние на половую систему [1].

Бензин. Сравнение токсического действия бензинов показало, что бензины из высокосернистых нефтей более токсичны, чем бензины из нефтей малосернистых. Бензин поражает центральную нервную систему. Экспериментальные данные свидетельствуют о действии бензина на сердечно-сосудистую систему и о влиянии на процессы обмена.

При хроническом воздействии бензина в концентрации 2500 — 3000 мг/м3 (пребывание животных в течение года в камере) наблюдалось повышение липоидов в крови, снижение резервной щелочности, изменение содержания калия в сыворотке крови. Хроническая затравка животных парами бензина, полученной из сернистой нефти (концентрации углеводородов 3000—6000 мг/м3) привела к угнетению окислительно-восстановительных процессов, резкому уменьшению глютатиона в печени, росту количества недоокисленных продуктов. В противоположность этим данным сероводородсодержащий бензин вызывает при аналогичных условиях повышение окислительно-восстановительных процессов, увеличение восстановительного и общего глютатиона, снижение количества недоокисленных продуктов. Под влиянием бензина происходит изменение иммунобиологической активности организма.

Все виды бензина обладают более или менее выраженным запахом. Интенсивность запаха бензина зависит от его химического состава. Особенно неприятным и резким запахом отличается бензин, содержащий много непредельных углеводородов и сернистых соединений. Порог обонятельного ощущения бензина «калоша» для наиболее чувствительных лиц находится на уровне 10 мг/м3, а максимальная неощутимая концентрация для тех же лиц равна 8 мг/м3. Порог обонятельного ощущения автомобильного бензина марки А-72 и авиационного бензина марки Б-70, определенный у 12 наблюдаемых, наиболее чувствительных лиц, равен соответственно 6,5 и 7,5 мг/м3, а максимальная неощутимая концентрация равна 5,2 и 7,1 мг/м3 [30].

Диоксид серы. Порог раздражающего действия диоксида серы лежит на уровне 20 мг/м3. Острое токсическое действие оказывают более высокие концентрации; хроническое отравление, несомненно, имеет место также при концентрациях, лежащих выше порога раздражения.

Исследования на подопытных животных (белых крысах) методом условных рефлексов показали, что концентрация диоксида серы, равная 20 мг/м3, вызывает изменения в высшей нервной деятельности при затравке по 3,5 ч в день в течение 1,5 месяцев; концентрация 5 мг/м3 также оказывает заметное действие, а при концентрации 2,5 мг/м3 изменений не происходит.

Порог рефлекторного действия газа на функциональное состояние коры головного мозга лежит на уровне 0,6 мг/м3, т. е. значительно ниже, чем полученный в работе порог резорбтивного действия его на высшую нервную деятельность крыс. На основании последних исследований была предложена максимальная разовая ПДК в атмосферном воздухе, равная 0,5 мг/м3, т. е. ниже установленного порога.

По данным, порог рефлекторного действия диоксида серы на процесс образования «электрокортикального условного рефлекса» (0,6 мг/м3) также лежит выше разовой ПДК. Среднесуточная концентрация принята на уровне 0,05 мг/м3.

Вдыхание диоксида серы в низких концентрациях от 2,7 до 21,6 мг/м3 вызывает заметные изменения в дыхании, которое становится более поверхностным и быстрым, и сердечном ритме [1].

Оксид углерода. Токсичность оксида углерода для человека связана с высокой способностью этого газа вступать в реакцию с гемоглобином, образуя «карбокси-гемоглобин, не способный транспортировать кислород из легких к потребляющим тканям. Вследствие этого наступает аноксемия, отражающаяся прежде всего на центральной нервной системе. Под влиянием вдыхания оксида углерода усиливается атеросклеротический процесс.

Оксид углерода в средней концентрации 2,65 мг/м3 при круглосуточной хронической затравке в течение 2,5 месяцев вызывает некоторое изменение порфиринового обмена, а при средней концентрации 1,13 мг/м3 при тех же условиях не вызывает у подопытных животных изменения моторной хронаксии и порфиринового обмена и не влияет на функцию кроветворной системы. Среднесуточная ПДК оксида углерода в атмосферном воздухе равна 1 мг/м3.

Оксиды азота оказывают раздражающее действие на органы дыхания, особенно на легкие, и в больших концентрациях вызывают отек легких. Опасной при кратковременном дыхании является концентрация 200—300 мг/л. При концентрации 15 мг/м3 ощущается явный запах оксида азота и слабое раздражение глаз; при концентрации 10 мг/м3 запах едва заметен; при концентрации 3 мг/м3 запаха не обнаруживается.

Трехмесячная круглосуточная динамическая затравка белых крыс диоксидом азота в концентрации 0,15 мг/м3 не вызвала у животных ни функциональных, ни органических изменений. Учитывая высокую токсичность диоксида азота, в качестве среднесуточной ПДК в атмосферном воздухе рекомендовали концентрацию 0,085 мг/м3, т. е. на уровне максимальной разовой величины [9].

3,4-Бензпирен. Химические канцерогенные вещества являются одной из причин возникновения раковых заболеваний. Наиболее распространенными из них являются канцерогонные вещества группы полициклических ароматических углеводородов, которые образуются при горении и сухой перегонке топлива, т. е. в условиях пиролитических реакций.

Основные типы опухолей легких, особенно часто встречающихся и в патологии человека, — плоскоклеточный рак, недифференцированный рак типа мелкоклеточного, аденокарцинома и комбинированные опухоли, а также саркомы.

Допустимая концентрация 3,4-бензпирена в воздухе не должна превышать 0,1 мкг/100м3. Такие концентрации обнаруживаются в атмосферном воздухе сельских населенных мест и городских районов, характеризующихся малой интенсивностью движения автотранспорта: и значительно удаленных от промышленных предприятий.

Количество вышеперечисленных веществ, образующихся на предприятии ОАО «Уфанефтехим» и выбрасываемых в атмосферу приведены в таблице 1.3 [30, 29].

Таблица 1.3 – Выбросы основных загрязняющих веществ в атмосферу за 2004 год

Особенностью предприятий нефтеперерабатывающей промышленности является то, что сточные воды образуются, как правило, не от изолированных производственных процессов или агрегатов, а являются совокупностью потоков, собираемых от предприятия в целом [10].

Современные НПЗ делятся на: топливные и топливно-масляные, топливные и топливно-масляные с нефтехимическим производством. Технология переработки нефти и имеющиеся в ней различия в зависимости от профиля производства, глубины переработки нефти и ассортимента конечных продуктов определяют и отходы заводов. Основные технологические процессы переработки нефти включают: подготовку нефти, ее обезвоживание и обессоливание; атмосферную и вакуумную перегонку; деструктивную переработку (крекинг, гидрогенизацию, изомеризацию); очистку светлых продуктов; получение и очистку масел [22].

Расход воды для производственных целей и объем сточных вод возрастает с глубиной переработки нефти. Содержание же различных загрязняющих веществ в сточных водах определяется качеством перерабатываемой нефти, технологией ее переработки и качеством конечных продуктов производства. Наибольший расход воды отмечается на стадии подготовки нефти, в процессе ее обезвоживания и обессоливания.

Электрообессоливание и обезвоживание нефти. Нефти, поступающие с нефтепромыслов, содержат до 2% воды и до 0,5% солей. Однако для переработки пригодна нефть, в которой не более 0,0005% солей и 0,1% воды. Поэтому нефть, поступающая на НПЗ, вначале подвергается обезвоживанию и обесеоливанию на специальных электрообессоливающих установках ЭЛОУ. В сырую нефть добавляют воду, затем разделяют образовавшуюся эмульсию в две ступени: первая — термическое отстаивание при 75—80°С; вторая—разрушение эмульсий и обезвоживание в электродегидротаторах. Для разрушения стойкой эмульсии в процессе обезвоживания и обессоливания нефти используют деэмульгаторы: ОП-7, ОП-10, диосольван, ОЖК и др.

Вода, отделившаяся на установках ЭЛОУ, отводится в специальную сеть канализации. В ней содержатся соли, нефть, сернистые соединения и другие вещества, находящиеся в сырой нефти в виде примесей [1].

Атмосферная И вакуумная переработка нефти. Первичным технологическим процессом переработки нефти является прямая перегонка на атмосферно-вакуумных трубчатках (АВТ) с получением светлых дистиллятов и масляных фракций. Нефть после ЭЛОУ проходит теплообменники, затем подогревается в печи атмосферной части установки АВТ и подается в атмосферную ректификационную колонну, где происходит разделение нефти с получением легких продуктов. Светлые продукты атмосферной колонны — бензин, керосин и дизельное топливо — охлаждаются, конденсируются в теплообменниках и конденсаторах. Остаток нефтепродуктов с атмосферной колонны поступает через трубчатую печь вакуумной части в вакуумную колонну, где в результате перегонки в вакууме получаются масляные дистилляты и кубовый остаток. При первичной перегонке нефти имеет, место разложение сернистых соединений. Часть из них переходит в светлые дистилляты, загрязняя последние, а часть — в газы и остаток нефтепродуктов.

Вакуум в барометрических конденсаторах смешения вакуумных колонн АВТ создается за счет непосредственного соприкосновения воды с парами нефтепродуктов и газами. В результате отработанная вода загрязняется парами нефтепродуктов и сероводородом. В настоящее время на небольшом числе установок АВТ во избежание образования загрязненных сточных вод барометрические конденсаторы смешения заменяют на конденсаторы поверхностного типа, где соприкосновения воды с нефтепродуктами нет.

При прямой перегонке нефти образуются продукты двух типов: дистиллятные (бензин, керосин, лигроины, дизельное топливо, соляровые масла) и остаточные (мазуты, гудроны, газойль). Мазуты частично используются как топливо [30].

Из-за агрессивности сернистых соединений к технологическому оборудованию из металла их присутствие в товарных нефтепродуктах не допускается. Очищают нефтепродукты от соединений серы промывкой водным раствором щелочи (едкий натр). При этом из нефтепродуктов в щелочной раствор переходят сероводород, меркаптаны и другие сернистые соединения, а также фенолы. После многократного, использования щелочной раствор, содержащий большое количество сернистых соединений, а также другие загрязняющие вещества, сбрасывается в специальную сеть — сеть сернисто-щелочной канализации [17].

Таким образом, на стадии атмосферно-вакуумной переработки нефти образуются сточные воды двух видов: сернисто-щелочные при очистке нефтепродуктов от сернистых соединений и сточные воды после барометрических конденсаторов смешения. И в тех, и в других содержатся нефть, нефтепродукты и соединения серы [1].

Деструктивная переработка нефти. При глубокой переработке нефти остатки прямой перегонки подвергаются крекингу и пиролизу. Известны различные виды крекинга: каталитический крекинг, – протекающий в присутствии катализаторов (хлористый алюминий, алюмосиликаты); гидрогенизационный крекинг в атмосфере водорода (гидрогенизация), где в качестве сорбента используется глина; дегидрогенизационный крекинг, сопровождающийся массивным выделением водорода; окислительный крекинг в атмосфере кислорода или воздуха. Основное развитие на современных НПЗ получает гидрогенизационный крекинг.

На установках каталитического крекинга продукты прямой перегонки нефти после АВТ подвергаются прямому расщеплению молекул тяжелых углеводородов с целью получения высокооктановых (бензинов и индивидуальных ароматических углеводородов. Процесс ведется при высоких температурах и давлениях. Очистка жидких продуктов проводится также щелочью. Охлаждение и конденсация готовых продуктов ведется с помощью воды в поверхностных конденсаторах и холодильниках. Вода при этом нагревается до 70—80°С. Загрязнение нефтепродуктами охлаждающей воды возможно лишь при неисправности и не герметичности аппаратов.

При глубокой переработке нефти с применением процессов крекинга образуются:

– газообразные углеводороды с высоким содержанием нейтральных углеводородов, которые направляются в качестве сырья на нефтехимические производства НПЗ для последующего синтеза в спирты, гликоли, производные гликолей и пр.;

– жидкие дистилляты—крекинг-бензин, ароматические углеводороды (например, бензол, толуол); из жидких продуктов, получаемых при пиролизе нефти, на нефтехимических предприятиях получают ряд других Соединений (изопрен, сырье для синтетического волокна и др.);

Кроме воды, используемой для охлаждения готовых продуктов при их конденсации, в канализацию сбрасывается и вода из водоотделителей. Последняя образуется главным образом, в результате конденсации водяного пара, поступающего в аппараты установки, так называемые технологические конденсаты. Из-за непосредственного контакта с нефтепродуктами в технологическом конденсате могут содержаться значительные концентрации углеводородов, а при переработке сернистых и высокосернистых нефтей также сульфиды аммония и фенолы [17].

Очистка нефтепродуктов. Для очистки нефтепродуктов применяют кислотную и щелочную очистку и промывку. При кислотной очистке (периодической и непрерывной) легкие фракции нефти обрабатываются в специальных аппаратах с мешалками. Затем их нейтрализуют, промывают водой и подвергают щелочной обработке. В результате очистки получается много отходов— кислых гудронов, щелочных сточных вод, обезвреживание и утилизация которых затруднительны. Однако в настоящее время решение этой проблемы чрезвычайно важно для защиты окружающей среды от загрязнения.

Кроме общих методов очистки нефтепродуктов применяют специальные методы, например обессеривающие методы, из которых наиболее перспективным считают каталитической гидрогенизации, очистка с помощью селективных растворителей и другие [22].

Получение и очистка масел. Сырьем для производства масел служат масляные погоны, полученные с установок АВТ. Для удаления из масляных фракций минеральных примесей (сернистые, азотистые, асфальто-смолистые вещества и другие нежелательные для масла компоненты) их подвергают очистке с помощью растворителей на специальных установках. К ним относятся установки: деасфальтизации масел пропаном, депарафинизации масел в среде ацетон — бензол — толуол, гидроочистки масел и контактной очистки отбеливающими глинами.

На установке деасфальтизации жидкий пропан растворяет асфальто-смолистые вещества, содержащиеся в масляных погонах АВТ. Эти вещества оседают в осадок и отделяются. На этой установке нефтепродукты могут попадать в канализацию через неплотности сальников насосов или в результате других неисправностей, при мытье полов.

На установках селективной очистки масел и деасфальтизата от смолистых веществ и других примесей фенолом загрязнение сточных вод возможно только за счет сброса в канализацию смывов с полов насосной станции, а также через неплотности в аппаратуре.

На установке депарафинизации при нормальной работе технологического оборудования загрязнения незначительны. Однако при авариях и пропусках через неплотности возможно попадание в канализацию нефтепродуктов с высокой температурой застывания, а также растворителей и др.

При правильной эксплуатации установок гидроочистки масел попадание нефтепродуктов в сточные воды исключено. Сброс в канализацию масляных компонентов возможен лишь при авариях и через неплотности соединений трубопроводов.

Значительное количество загрязнений поступает в сточные воды НПЗ из резервуарных парков и при ремонте оборудовании.

Дополнительным источником загрязнения канализации нефтепродуктами и механическими примесями являются дождевые и талые воды [6].

Для очистки образующихся сточных на предприятии ОАО «Уфанефтехим» имеется механическая, физико–химическая и биологическая очистные сооружения. ООО «Уфанефтехим» имеет мощные биологические очистные сооружения (БОС) и способно принимать на очистку сточные воды и других организаций. Данные о сбросах сточных вод на БОС ОАО «Уфанефтехим» приведены в таблице 1.4 [29,30].

Таблица 1.4 – Сброс сточных вод на БОС ОАО «Уфанефтехим» в 2004 году.

Сточные воды предприятия ОАО «Уфанефтехим» очищаются в очистных сооружениях из которых часть идет в возврат для нового использования, а часть в итоге сбрасывается в реку Белая [30].

Таким образом, производственные сточные воды на НПЗ образуются практически на всех технологических установках. В зависимости от источников образования их подразделяют на следующие:

1. Нейтральные нефтесодержащие сточные воды. Они составляют основную часть воды первой системы промышленно-ливневой канализаций. К ним относятся сточные воды, получающиеся при конденсации, охлаждении и водной промывке нефтепродуктов (кроме вод барометрических конденсаторов АВТ), после очистки аппаратуры, смыва полов производственных помещений, от охлаждения втулок сальников насосов, дренажные воды из лотков технологических аппаратов (кроме вод от узлов управления при сырьевых парках), фундаментальных приямков аппаратов и насосов, а также ливневые воды с площадок технологических установок. В этих водах присутствует преимущественно нефть в виде эмульсии. Ее концентрация достигает 5—8 г/л, а общее содержание солей 700—1500 мг/л. Сравнительно невысокое содержание солей позволяет использовать сточные воды после соответствующей очистки для пополнения систем оборотного водоснабжения.

2. Солесодержащие сточные воды (стоки ЭЛОУ) с высоким содержанием эмульгированной нефти и большой концентрацией растворенных солей (в основном хлористого натрия). Они поступают от электрообеосоливающих установок и сырьевых парков. К ним также относятся дождевые воды с территории указанных объектов. Предельно допустимое содержание нефтепродуктов в них без учета аварийных сбросов не должно превышать 10 г/л. Исследования стоков с установок ЭЛОУ показывают, что содержание нефти в отдельных пробах может доходить до 30 г/л, что связано с негерметичностью технологического оборудования и дефектами в эксплуатации. Содержание солей в водах этой группы зависит главным образом от качества нефтей, поступающих на завод.

3. Сернисто-щелочные сточные воды получаются от защелачивания светлых нефтепродуктов и сжиженных газов. В процессе щелочной очистки из нефтепродуктов удаляются главным образом сероводород, меркаптан, фенолы и нафтеновые кислоты.

В соответствии с технологическими требованиями состав сернисто-щелочных сточных вод должен быть следующим: ХПК—до 85000 мгО2/л, БПКполн – до 75000 мгО2/л, сульфиды (в пересчете на H2S) до 26000 мг/л, серы общей до 35000 мг/л, фенолы летучие до 5000 мг/л, нефтепродукты до 3000 мг/л, общая щелочность (в пересчете на. NaOH) – 10000 мг/л, рН —14.

Однако состав этой категории сточных вод может значительно отличаться от установленных нормативов. Периодичность сброса отработанных щелочей в сернисто-щелочную канализацию на различных заводах колеблется от 2 до 45 дней в зависимости от типа технологических установок и их. мощности, принятого режима переработки нефти, качества получаемого исходного сырья, схемы защелачивания, гидравлической нагрузки на щелочные отстойники и ряда других факторов. Среднесуточный сброс этих вод (без учета промывных вод) колеблется от 0,0009 до 0,0019 м3 на 1 т перерабатываемой нефти.

4. Кислые сточные воды от цеха регенерации серной кислоты образуются в результате неплотностей соединений в аппаратуре, потерь кислоты из-за коррозии аппаратуры и содержат в своем составе до 1 г/л серной кислоты.

5. Сероводородсодержащие сточные воды поступают в основном от барометрических конденсаторов смешения. При замене барометрических конденсаторов смешения на поверхностные объем их сокращается в 40— 50 раз.

Кроме барометрических вод, сероводород содержится и в так называемых технологических конденсатах установок АВТ, каталитического крекинга, замедленного коксования, гидроочистки и гидрокрекинга, но в этих сточных водах, кроме сероводорода, присутствуют фенолы и аммиак [1].

При объединении НПЗ и нефтехимических производств появляются сточные воды, загрязненные продуктами нефтехимического синтеза. Состав их обусловлен видом получаемой продукции. Так, сточные воды производств БВК из жидких нефтяных парафинов имеют БПКполн. до 1000 мг О2/л, ХПК—2200 мг О2/л, рН 4,8—5,6.

Из других источников образования сточных вод следует отметить сточные воды от этилосмесительных установок и эстакад по наливу этилированных бензинов, в которых содержатся до 10 мг/л нефтепродуктов и тетраэтилсвинец, а также кислые сточные воды от цехов синтетических жирных кислот.

Таким образом, в сточные воды НПЗ попадает большое количество органических веществ, из которых наиболее значимы конечные и промежуточные продукты перегонки нефти: нефть, нафтеновые кислоты и их соли, дезмульгаторы, смолы, фенолы, бензол, толуол. В сточных водах содержится также песок, частицы глины, кислоты и их соли, щелочи.

Приведенные данные показывают, что содержание отдельных соединений в сточных водах колеблется в широких пределах, например, содержание фенолов и нефти в сернисто-щелочных сточных водах. Наиболее опасными для биологических очистных сооружений и водоемов являются сульфиды и сульфогидраты, присутствие которых в воде водоемов хозяйственно-питьевого, рыбохозяйственного и культурно-бытового водопользования не допускается.

Нефть и нефтепродукты в производственных сточных водах содержатся в растворенном, коллоидном и эмульгированном состояниях. Большинство растворенных в воде органических веществ как правило, определяются суммарно через биохимическое потребление кислорода или химическое (бихроматное) потребление кислорода пробой воды [5].

1.6 Нефти и нефтепродукты, сбрасываемые со сточными водами и их влияние на водные объекты

Отходы НПЗ, попадая в водные объекты, отрицательно влияют на качество воды и санитарные условия жизни и водопользования населения, нанося этим и экономический ущерб народному хозяйству. Это связано с особенностями поведения веществ, сбрасываемых со сточными водами НПЗ в водоемы, и, прежде всего нефти.

Исследования по гигиеническому нормированию вредных веществ сточных вод НПЗ было показано, что нефть и нефтепродукты, поступающие в водоем со сточными водами, неблагоприятно влияют на условия водопользования населения вследствие появления запахов в воде [9].

Ниже дана характеристика вредных веществ, сбрасываемых со сточными водами НПЗ.

Нефти — сложные смеси органических соединений; они содержат метановые, метано-нафтеновые, нафтеновые, нафтено-ароматические и ароматические углеводороды. Присутствие кислородных, азотистых и сернистых соединений в нефти различных месторождений колеблется в широких пределах. Различают нефти и по содержанию в них легких фракций, парафинов и смолистых веществ. Сырая нефть — вязкая маслянистая жидкость, обычно темно-коричневого цвета.

Растворимость нефти в воде без предварительного взбалтывания составляет 1,5 мг/л; стойкие эмульсии содержат 30—40 мг/л нефти.

Нефть и нефтепродукты окисляются в воде, причем интенсивность их окисления зависит от присутствия в воде кислорода и специфической микрофлоры. Так, на окисление 1 мг нефти за 8 суток в чистой воде расходуется 0,24—0,27мг кислорода, а при добавлении культуры, микрофлоры, выращенной на нефтяной пленке, 0,4—0,5 мг кислорода [3].

При спуске сточных вод НПЗ в водоем можно выделить следующие, важные в санитарном отношении формы состояния нефти в водной среде: всплывающую, растворенную и эмульгированную. Продукты высших погонов, практически почти нерастворимые в воде, образуют нефтяные пленки разной толщины (от микронов у мест спуска сточных вод до долей микронов в более отдаленных точках). Нефтяные пленки длительное время держатся на поверхности воды, оказывая отрицательное действие на кислородный режим водоема. Под влиянием ветров и волнений нефтяная пленка прибивается к берегам, загрязняя их и прибрежную растительность. Запахи нефти в воде ощущаются уже в небольших концентрациях: пороговые концентрации для большинства нефтей и нефтепродуктов составляют 0,1 — 0,3 мг/л.

Нефть после очистных сооружений в основном находится в растворенном и эмульгированном состоянии, хорошо смешивается с водой и может распространяться в водоеме на большие расстояния, загрязняя всю толщу водяного слоя. Тяжелые продукты переработки нефти опускаются уже у места спуска сточных вод на дно, образуя сравнительно стабильные очаги вторичного загрязнения водоема. Нефть обладает значительной стабильностью в воде: при температуре воды не выше 5°С загрязнение воды нефтью за 30 дней уменьшается только на 15%, при средних температурах до 20 °С — на 40—50% [31].

Углеводороды нефти в процессе биохимической очистки претерпевают существенные изменения. Около 50% их превращается в вещества, не растворяющиеся в эфире и, следовательно, не учитывающиеся при определении содержания нефтепродуктов. К ним относятся прежде всего кислородсодержащие соединения — многоатомные спирты, фенолы, многоосновные кислоты. Из веществ, растворяющихся в эфире, лишь 10% представляют собой углеводороды нефти, остальная масса — продукты неполного окисления нефти. В связи с этим качество очищенных нефтесодержащих сточных вод должно характеризоваться не только содержанием остаточных количеств нефтепродуктов, но и определением ВПК и ХПК, характеризующих остаточное содержание недоокисленных органических веществ в целом.

В качестве лимитирующего показателя вредности был определен органолептический — запах. Оказалось, что при пороговых концентрациях нефти по запаху не наблюдается образования нефтяных пленок на воде; нет также торможения процесса самоочищения воды в водоеме и, что особенно важно, пороговые концентрации по запаху в сотни раз меньше доз и концентраций, которые могут оказаться вредными для здоровья человека [16].

Мазуты, как и нефть, имеют сложный химический состав. Они представляют собой вязкую жидкость от светло-коричневого до темно-коричневого цвета. Мазут легче эмульгируется, в стойких эмульсиях содержится до 170 мг/л мазута. Лимитируется содержание мазута в воде водных объектов по влиянию на запах (ПДК 0,3 мг/л).

Нефтяные бензины получаются из легких фракций нефти; их различают по содержанию групп углеводородов в зависимости от месторождения нефти. Бензин в хронических опытах на животных при поступлении его в смеси с водой внутри организма в течение 2—6 мес. поражает нервно-регуляторный аппарат сердца и миокарда, вызывает истощение организма животных, кровоизлияние во внутренних органах, дистрофические и некробиотические изменения в них.

Концентрации бензина, как и нефти, и нефтепродуктов лимитируют в воде по органолептическому показателю вредности (ПДК — 0,1 мг/л) [13].

Керосин получают из средних фракций нефти. Действие его на организм человека сходно с действием бензина. В воде растворяется слабо. Концентрацию керосина лимитируют также по органолептическому признаку вредности (ПДК—0,1 мг/л).

В воде водоемов рыбохозяйственного значения нефть и все нефтепродукты в растворенном и эмульгированном состоянии нормируют по органолептическому признаку вредного действия; ПДК для этих веществ установлено на уровне 0,05 мг/л. При содержании в воде водоемов нефти выше допустимого уровня рыба приобретает отчетливый запах нефтепродуктов.

Бензол — бесцветная жидкость. Встречается как примесь в составе некоторых нефтяных бензинов, а также получается при перегонке нефти; хорошо растворяется в воде (до 0,19 г/л). Бензол — нервный и кровяной яд. При хроническом воздействии низких концентраций бензола на животных и рыб обнаруживаются изменения в первую очередь со стороны крови (лейкопения, анайлозия костного мозга). Хронические отравления бензолом оказались смертельными для подопытных животных и рыб. Более высокая токсичность бензола отмечалась при совместном воздействии на организм с толуолом и ксилолом. Бензол лимитируют по санитарно-токсикологическому признаку (ПДК в воде водоема —0,5 мг/л). Он оказывает действие на органолептические свойства воды в водоеме в концентрации 25 мг/л.

Толуол и ксилол получаются при тех же технологических операциях, что и бензол [16].

Толуол — бесцветная жидкость с характерным запахом. Летучесть в два раза меньше, чем у бензола. Коэффициент растворимости паров в воде составляет 2,5 при 36—38 °С. В хронических опытах на животных толуол вызывает аналогичные изменения со стороны крови, но несколько слабее, чем бензол. Содержание толуола в водоеме хозяйственно-питьевого и рыбохозяйственного водопользования лимитируют по органолептическому показателю вредности (ПДК—0,5 мг/л). На санитарный режим водоема он оказывает влияние при концентрации 25 мг/л, пороговая концентрация по санитарно-токсикологическому признаку составляет лишь 200 мг/л.

Ксилол — бесцветная жидкость, в воде растворяется слабо (0,13 мг/л). На организм человека оказывает прежде всего наркотическое действие. При длительном воздействии в малых концентрациях вызывает раздражение кроветворных органов; действие его сходно с действием бензола и толуола. В воде водоемов, используемых для питьевых и культурно-бытовых целей, содержание ксилола лимитируют по органолептическому признаку вредности (ПДК—0,05 кг/л). Очень важно подчеркнуть, что его подпороговая концентрация по токсическому действию близка к установленной для него ПДК (0,1 мг/л), что делает ксилол особо потенциально опасным для здоровья человека. Его пороговая концентрация по влиянию на санитарный режим водоема также невысока — 1 мг/л.

В водоемах, используемых для рыбохозяйственных целей, содержание ксилола лимитируют по органолептическому признаку; его ПДК составляет 0,5 мг/л [14].

Нафтеновые кислоты содержатся главным образом в нефтях кожных месторождений. В сточных водах они присутствуют в виде солей, образующихся при щелочной очистке нефтепродуктов. Неочищенные нафтеновые кислоты представляют собой бурую маслянистую жидкость с резким, неприятным запахом. Окисление нафтеновых кислот в водной среде идет крайне медленно, что делает их опасными загрязнителями водоемов. Пороговые концентрации нафтеновых кислот по влиянию на запах воды близки к пороговым концентрациям нефти (0,2— 0,3 мг/л). Влияние кислот на санитарный режим водоема не выражено.

Этилен — бесцветный газ, способный растворяться в воде: его растворимость при 0°С составляет 0,32 мг/л. Этилен используется как исходный продукт при синтезе спиртов, полиэтилена, оксида этилена, этиленгликоля, дихлорэтана и др. По характеру токсического действия этилен — сильный наркотик. При длительном введении водных растворов этилена имеет место поражение печени, сдвиги со стороны крови. Порог токсического действия в экспериментах на животных установлен при концентрации 1,5 мг/л; в концентрациях выше 0,5 мг/л этилен придает воде посторонний запах, и в концентрациях больше 10 мг/л нарушает процессы самоочищения водоема от органических веществ хозяйственно-бытовых сточных вод. ПДК этилена в водных объектах хозяйственно-питьевого назначения установлена по органолептическому признаку действия на уровне 0,5 мг/л.

Пропилен — бесцветный газ; растворимость пропилена в воде составляет 0,835 мг/л при 20°С. В хронических опытах на животных пропилен вызывает аналогичную этилену картину интоксикации. ПДК установлена по влиянию на запах воды на уровне 0,5 .мг/л [14].

Как уже указывалось, в процессе переработки и очистки нефти в сточные воды наряду с основными нефтепродуктами попадает много соединений, присутствующих в нефти в виде примесей. Из них наибольшее гигиеническое значение имеют сернистые соединения и фенол. Сернистые соединения содержатся в больших концентрациях в отработанных сточных водах, образующихся в результате щелочной очистки бензинов, керосинов и сжиженных газов. Важнейшими из них являются сульфиды и меркаптаны.

Сернистые соединения попадают в водоемы со сточными водами НПЗ в виде свободного и связанного сероводорода (сульфиды) и продуктов их окисления. Сульфиды при поступлении в водоем диссоциируют с образованием гидросульфидных ионов HSˉ, которые носят название связанного сероводорода. Связанный и свободный сероводород в водоеме окисляются с образованием сульфат-ионов; промежуточными продуктами при этом являются сульфитные и тиосульфатные ионы. Кроме того, могут образовываться коллоидная сера, оксиды серы, тритионовые и политионовые кислоты.

Процесс окисления сернистых соединений в воде начинается с первых же минут. В присутствии избытка кислорода сероводород (свободный и связанный) окисляется полностью в течение первых суток. Промежуточные продукты окисляются значительно медленнее, так как их окисление обусловлено биохимическими процессами, протекающими в воде [17].

Установлена зависимость интенсивности окисления в водной среде сернистых соединений от концентрации растворенного кислорода, рН и температуры, а также от процессов перемешивания и наличия тионовых бактерий. Расчетная величина необходимых затрат кислорода на полное окисление сероводорода до сульфатов полностью совпадает с величиной, полученной в прямом опыте. Так, 1 мг кислорода расходуется на окисление 0,53 мг сероводорода до сульфатов или на окисление 1,09 мг сероводорода до тиосульфатов.

Особенность поведения сульфидов в водной среде обусловливает выраженное вредное влияние их на санитарный режим водоема — быстрое связывание кислорода, растворенного в воде. Сульфиды должны полностью отсутствовать в воде, а следовательно, и в сточных водах, чтобы сохранить надлежащий кислородный режим в воде водоемов. Сульфиды вредно влияют и на органолептические свойства воды, придавая ей в концентрациях 0,1—0,3 мг/л запах интенсивностью 1—2 балла.

Меркаптаны — простейшие сернистые соединения, представляют собой летучие бесцветные жидкости плотностью ниже единицы с очень резким отталкивающим запахом. Меркаптаны легко растворяются в щелочах, образуя соединения, в которых водород замещен металлом (меркаптиды); в воде растворяются плохо. Под действием слабых окислителей или воздуха меркаптаны постепенно окисляются в дисульфиды.

Применение метода определения меркаптанов в воде чувствительностью 0,001—0,002 мг/л позволило установить концентрацию меркаптана 0,001 мг/л в качестве предельной по ее влиянию на запах воды. Эта концентрация меркаптана не влияет на санитарный режим водоема и не вызывает отрицательного токсического действия на организм [17].

Фенолы в чистом виде представляют собой бесцветные кристаллические вещества. Одноатомные фенолы (оксибензол, крезолы) хорошо растворяются в воде, придавая ей резкий запах и привкус. Порог восприятия запаха фенола составляет 0,025—1,0 мг/л. При обработке воды хлором фенолы резко усиливают запах за счет образования хлорфенольных соединений. Запах хлорфенола стабилен, не обладает привыкаемостью. Эта способность фенолов и положена в основу его гигиенического нормирования в воде водоемов, используемых для хозяйственно-питьевых целей. Минимальная концентрация фенола, образующая при хлорировании запах интенсивностью 1 балл, составляет 0,001 мг/л [16].

Наряду с влиянием на органолептические свойства воды одноатомные фенолы, воздействуют и на санитарный режим водоема, потребляя на окисление кислород, растворенный в воде. Было установлено, что при длительном введении с водой одноатомных фенолов в концентрации около 800 мг/л в организме животных развивается хроническая интоксикация, проявляющаяся в дистрофическом поражении почек, печени, изменениях со стороны сердечно-сосудистой системы, центральной нервной системы и др. Эффект совместного действия двух — трех фенолов близок к сумме эффектов действия отдельных веществ.

Для водоемов рыбохозяйственного значения ПДК фенолов установлена на уровне 0,001 мг/л по влиянию на качество мяса рыбы (рыбохозяйственный признак).

При оценке возможного загрязнения окружающей среды отходами НПЗ нельзя забывать их роли как источников канцерогенов особенно в водных объектах. Содержание их в сточных водах зависит от температуры, при которых происходит возгонка сырья. Как известно, среди большой группы полициклических ароматических соединений в качестве индикатора канцерогенной загрязненности окружающей среды принимается бенз[а]пирен (3,4-бензпирен). Хотя в сточных водах НПЗ сравнительно меньше 3,4-бензпирена, чем в сточных водах других предприятий по термической переработке твердого и жидкого топлива, однако и в них обнаруживалось до 0,292 мг/л 3,4-бензпирена. Как показали исследования, 3,4-бензпирен обладает значительной стабильностью и растворимостью в водной среде, что делает возможным распространение его (и других канцерогенных углеводородов) на большие расстояния вниз по течению от источника загрязнения. 3,4-Бензпирен накапливается в донных отложениях в планктоне, водорослях, рыбных организмах [1].

Как известно, основным источником загрязнения сточных вод НПЗ является процесс обезвоживания и обессоливания нефти. Решающее значение при этом имеет качество применяемых деэмульгаторов, представляющих собой поверхностно-активные вещества (ПАВ).

ПАВ — это вещества, адсорбирующиеся на поверхности раздела соприкасающихся тел и образующие на этой поверхности адсорбционный молекулярный слой. Даже очень малые добавки ПАВ могут резко изменить условия молекулярного взаимодействия на поверхности раздела, скорости фазовых превращений и перехода из одной фазы в другую. В химическом отношении ПАВ могут быть разделены на ионогенные и неионогенные; первые в свою очередь делятся на анионоактивные и катионоакивные.

Анионоактивные ионогенные ПАВ при растворении в воде диссоциируют на положительно заряженный катион и отрицательно заряженный анион. Носителем поверхностно-активных свойств у анионоактивных ПАВ является анион. Представителями анионоактивных ПАВ является алкилбензосульфонат и алкилсульфаты. К ним относятся применяемые ранее на НПЗ сульфонат (соли сульфонафтеновых кислот) и деэмульгатор НЧК (нейтрализованный черный контакт).

Катионоактивные ПАВ также диссоциируют на катионы и анионы, но поверхностно-активными свойствами обладают катионы, представляющие собой положительно заряженную группу. Отрицательными свойствами анионоактивных ПАВ (в частности, НЧК и сульфоната) является их способность реагировать с находящимися в воде солями кальция и магния и образовывать осадки, способствующие шламообразованию при деэмульгации нефти. При этом образуются стойкие эмульсии нефти, не поддающиеся ни отстаиванию, ни всплыванию. Обессоливание высокосмолистых нефтей требует больших расходов НЧК (до 3 кг на 1 т нефти). При переработке такой нефти получающиеся сточные воды не поддаются очистке на нефтеловушках и кварцевых фильтрах.

НЧК плохо окисляется на биологических очистных сооружениях и в большой степени определяет характер загрязнения биологически очищенных сточных вод НПЗ (в настоящее время НЧК в процессе подготовки нефти не используется).

На смену малоэффективных и плохо разрушающихся на очистных сооружениях ионогенных деэмульгаторов в нефтеперерабатывающей промышленности стали применять неионогенные ПАВ. Неионогенные ПАВ не диссоциируют в водных растворах; их молекула проявляет поверхностную активность как целая электролитная единица. Их расход значительно ниже, они хорошо растворяются в воде, не образуют стойких нефтяных эмульсий и соединений с солями и кислотами, содержащимися в воде и нефти. Так, расход ОП-10 составляет лишь 40—50 г на 1 т нефти, причем производительность установок обезвоживания и обессоливания повышается на 40—50% по сравнению с применением НЧК.

С санитарно-гигиенической точки зрения очень важным преимуществом неионогенных деэмульгаторов является то, что они не образуют стойких нефтяных эмульсий, не поддающихся разрушению и очистке [3].

В настоящее время количество промышленных выбросов, поступающих в биосферу, превышает в десятки и сотни раз уровень некоторых веществ, естественно циркулирующих в ней. В силу наличия органной адсорбционной поверхности, почва служит резервуаром, в котором загрязнения могут накапливаться в большом количестве. Загрязнение почвенного покрова происходит в результате адсорбции атмосферных выбросов, складирования и захоронения отходов производств.

Образующиеся в процессе переработки нефти углеводороды, особенно ароматические, обладают большей токсичностью, чем природная нефть. При этом содержание ароматических углеводородов в количестве 10—25 мг/кг почвы может привести к угнетению некоторых микробиологических процессов, происходящих в ней. Прежде всего, нарушается процесс нитрификации, ацетиленовой азотфиксации и угнетаются актиномицеты [30].

Изучение загрязнения почвы выбросами нефтехимических предприятий и накопление специфических ингредиентов нефтепереработки в сельскохозяйственных культурах было начато в институте гигиены и профзаболеваний в 1976 г. Контроль за содержанием специфических компонентов в почвенном покрове и сельскохозяйственных растениях осуществлялся в основном в гг. Уфа, Салават и Стерлитамак [29].

Общеизвестно, что такие компоненты выбросов НХЗ, как сероводород и окислы в процессе круговорота серы в пригороде с осадками попадают в почву, где адсорбируются почвенным поглощающим комплексом. Все сернистые соединения нефти проходят стадию образованию сульфатов.

Поэтому повышенное содержание сульфатов в почве, по-видимому, свидетельствует о загрязнении почвы выбросами НХЗ [7].

Для климатических условий Башкирии, где продолжительность снежного периода составляет 5—6 месяцев, снег является хорошим индикатором загрязнения окружающей среды. В нем накапливаются такие выбросы НХЗ, как углеводороды, нефти оксиды азота, серы, фенол, аммиак, а также тяжелые металлы, вымываемые снегом из атмосферы в районе расположения тепловых электростанций. С гигиенических позиций качественный состав снежного покрова имеет большое значение, т. к. во время снеготаяния может формировать загрязнение поверхностных вод. Кроме того, по степени загрязненности снеговых проб можно в определенной степени судить о санитарном состоянии атмосферного воздуха [2].

Таким образом, исследования почвы в районах размещения предприятий нефтепереработки и нефтехимии показали, что она загрязняется нефтепродуктами и выбросами этих предприятий в радиусе до 3-х км и глубиной до 60—80 см. В километровой зоне концентрации загрязняющих почву химических веществ значительно выше фоновых и предельно допустимых уровней по отдельным ингредиентам достигающих десятки и сотни ПДК. Исходя из этого, в 3-х километровой санитарно-защитной зоне

Предприятий недопустимо размещение баз отдыха и лечения, Размещение коллективных садов и сельхозугодий. Эти территории должны быть использованы для выращивания древесных и кустарниковых насаждений с высокой газоустойчивостью для создания светофильтров — зеленой защиты от химических загрязнений.

Таким образом, нефтеперерабатывающие и нефтехимические предприятия оказывают неблагоприятное воздействие на все объекты окружающей среды — атмосферный воздух, водные объекты, почву загрязняя их отходами своего производства [12].

Загрязнение почвенного покрова вокруг НХЗ происходит за счет адсорбции атмосферных выбросов и фильтрации химических веществ из загрязненных сточными водами водных объектов, а также в результате складирования и захоронения отходов производств. Промышленные отходы состоят, в основном, из шлаков, кислого гудрона, растворов щелочей, отработанных катализаторов и др. Основными загрязнителями почвенного покрова являются нефтепродукты, сульфаты, ароматические углеводороды (бензол, толуол, стирол, альфаметилстирол, ортоксилол, этилбензол, изопропилбензол, бензин), бензапипрен, азот аммонийный. В радиусе 1 км от НХЗ загрязнители обнаруживаются на глубине 60—80 см от поверхности почвы [20].

Имеются многочисленные научные данные, свидетельствующие о связи легочной, онкологической, кожной и другой паталогии с характером и уровнем загрязнения воздуха. Многократно подтверждена, например, зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом, характеризуемая следующими данными:

При концентрации сернистого газа 0,13 мг/м3 процент обострения хронического бронхита (в человеко-днях) 13,0, при концентрации 0,78 мг/м3 — 26,5.

Статистически установлена связь детской заболеваемости (в первую очередь органов дыхания) с уровнем загрязнения атмосферного воздуха сернистым газом. Обстоятельное изучение большой группы детей (3866 человек) с момента их рождения и до 15-летнего возраста показало, что частота острых респираторных заболеваний среди них значительно увеличилось в те дни, когда уровни среднегодовых концентраций сернистого газа и дыма в атмосферном воздухе превышали 0,13 мг/м3. Аналогичная связь частоты обострений с опасным загрязнением атмосферы установлена для бронхиальной астмы.

Загрязнение воздуха сернистым газом при концентрации до 0,049 мг/м3 увеличивает показатель общей заболеваемости (в человеко-днях, США) до 8,1%: при концентрации от 0,150 до 0,349 и выше 0,350 мг/м3 — соответственно до 12 и 43,8%. Частота заболевания бронхиальной астмой пропорциональна концентрации сернистого газа в воздухе (Япония). Все возрастающее количество раковых заболеваний пропорционально числу труб, выбрасывающих загрязняющие вещества в атмосферу (Великобритания) и т. д. [31].

Канцерогенные вещества при контакте с клеткой организма человека оставляют на ней «клеймо». Последующее воздействие канцерогенов суммируется даже в том случае, если оно разделено значительным интервалом времени. Вероятность возникновения злокачественного образования повышается, хотя видимого воздействия на организм и качественной перестройки клетки не отмечено. Последняя отчетливо фиксируется при пороговой концентрации. Для многих вредных веществ биологических видов и экосистем эта концентрация в настоящее время не определена [16].

Опасное воздействие на человека оказывает окись углерода. Вдыхание воздуха, содержащего даже небольшие количества СО, вызывает глубокое отравление. Причина отравления в том, что окись углерода быстрее и легче, чем кислород, связывается с гемоглобином крови и образует довольно стойкое соединение, названное карбоксигемоглобин (НЬ — СО). Химическое сродство НЬ с СО в 200 раз больше, чем с кислородом. Это означает, что даже небольшого количества СО во вдыхаемом воздухе оказывается достаточно, чтобы превратить около 2/3 гемоглобина крови в карбоксигемоглобин. Процесс этот обратим, но НЬ — СО диссоциирует медленно. По этой причине образовавшийся НЬ — СО нарушает дыхательную функцию крови (кровь насыщается окисью углерода и человек погибает от кислородной недостаточности).

Повышенное содержание СО в воздухе при высоких уровнях загрязнения атмосферы (0,1%) нарушает сердечно-сосудистую функцию у работающих. Оно смертельно опасно для людей, страдающих сердечно-сосудистыми заболеваниями. Содержание СО в атмосфере при концентрации 0,1% в 35 раз увеличивает смертность больных острым инфарктом миокарда и т. д.

Диссоциацию НЬ — СО можно ускорить увеличением парциального давления кислорода в воздухе (вдыхание кислородно-углекислотной смеси с содержанием 95%О2 и 5%СО2 или воздуха с повышенным содержанием кислорода).

Одним из опасных загрязнителей атмосферы Земли, связанных также с нефтегазодобывающим производством, является сера. По удельной значимости вклада в загрязнение сера занимает в настоящее время одно из первых мест, особенно в составе очень распространенных сульфатных аэрозолей [31].

Нефтяная пленка сильно влияет и на динамику биологических процессов в поверхностном микрослое воды. Прежде всего, микробиологическая деструкция углеводородов нефти сопровождается потреблением больших количеств растворенного кислорода: для полного окисления 10 л сырой нефти требуется столько кислорода, сколько его содержится примерно в 3750 м3 воды поверхностного 30-сантиметрового слоя. Следовательно, загрязнение нефтепродуктами приводит к значительным изменениям условий жизнедеятельности организмов, обитающих в верхних горизонтах воды [15].

Влияние нефтяных загрязнений на жизнь океана изучено далеко не достаточно. Принято общее воздействие нефтепродуктов на состояние гидробионтов подразделять на пять основных категорий:

4)болезненные изменения в организме гидробионтов, вызванные внедрением углеводородов;

5)изменение химических, биологических и биохимических свойств среды обитания.

Летальное отравление морских организмов наступает в результате прямого воздействия нефтяных углеводородов на внутриклеточные процессы и, особенно, на процессы обмена между клетками.

В этом отношении парафиновые углеводороды с относительно короткими (С10 и менее) цепями менее опасны. Они проявляют наркотическое действие лишь в очень больших концентрациях, отсутствующих в нефтяных пятнах.

Напротив, ароматические углеводороды, растворимые в воде, представляют большую опасность: смерть взрослых морских организмов может наступить после нескольких часов контакта с ними уже при концентрации 10-4—10-2 %. Смертельные концентрации ароматических углеводородов для икринок и мальков еще ниже.

Массовая гибель морских организмов отмечается, как правило, в прибрежных районах, где их обитает особенно много. При загрязнении морской воды вдали от берегов, на больших глубинах, токсичные нефтяные фракции успевают частично испариться, частично разбавиться водой до менее опасных концентраций. Однако и в сравнительно невысоких концентрациях ароматические углеводороды нефти оказывают негативное воздействие на морские биоценозы [10].

Эффекты покрытия нефтепродуктами и гибели находящихся в зоне прилива планктона, низкорастущих растений и птиц хорошо известны. Нефтепродукты нарушают изолирующие свойства оперения, а при попытке очистить перья птицы заглатывают загрязнения и погибают. Только в Северном море и Северной Атлантике нефтяные загрязнения являются причиной гибели 150—450 тыс. птиц в год. В акваториях с замедленным водообменом (заливы, бухты) наблюдается почти полное уничтожение морской флоры и фауны. Нефтяные разливы в реках создают в межсезонный период непроходимый барьер для некоторых видов рыб, чувствительных к углеводородному загрязнению[8].

Поражение морских организмов в результате накопления ароматических углеводородов в их тканях может происходить даже при очень низком содержании нефтепродуктов, если обитатели моря сравнительно долго пребывают в загрязненной ими среде.

Присутствие полициклических ароматических углеводородов не только ухудшает вкус съедобных организмов, но и опасно, так как эти вещества являются канцерогенным. Так, концентрация канцерогенных многоядерных углеводородов в ткани мидий, выловленных в районе порта Тулон (Франция), достигала 1,3—3,4 мг/кг сухого вещества.

Значение нижнего яруса растительного покрова как корма диких и домашних животных, тепло – и влагорегулятора почвы, основного средства против образования оврагов, оползней и эрозии трудно переоценить. Между тем основное воздействие нефти и нефтепродуктов на природно-растительный комплекс при отказах трубопроводов сводится именно к снижению биологической продуктивности почвы и фитомассы растительного покрова [9].

Характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами. Многие виды сосудистых растений оказываются устойчивыми против нефтяного загрязнения, тогда как большинство лишайников погибает при воздействии на них нефти и нефтепродуктов. Установлено, что наиболее токсичны углеводороды с температурой кипения в пределах от 150 до 2700 С, т. е. нафтеновые и керосиновые фракции. Углеводороды с более низкой температурой кипения менее токсичны либо вообще безвредны, особенно их летучие фракции, поскольку они испаряются, не успевая проникнуть через растительную ткань. Высококипящие тяжелые фракции нефти также менее токсичны, чем нафтеновые и керосиновые фракции[23].

Деградация нефти в грунтовой среде происходит путем биологического окисления микроорганизмами и химического окисления. Значительно ускоряют процесс очищения почвы от нефти дождевые осадки, которые вымывают ее и тем самым снижают концентрацию нефти в верхних слоях почвы.

Загрязнение почвы нефтью и нефтепродуктами в северных районах будет, очевидно, иметь гораздо большие отрицательные последствия, нежели в районах с относительно умеренным климатом.

Низкие температуры воздуха и грунтовой среды, сильные ветры, небольшая продолжительность летнего теплого периода (во время которого активизируются биологические процессы) создают чрезвычайно сложный режим функционирования растительного покрова. Поэтому всякое нарушение этого режима может привести к необратимым процессам. Одним из наиболее опасных в этом является загрязнение нефтью грунтовой среды в результате утечек из магистральных нефтепроводов, резервуаров [13].

Таким образом, на основании вышеизложенного можно сделать вывод о том, что наибольшей токсичностью для биоты обладают нефтепродукты с температурой кипения 150-2700С (нафтеновые и керосиновые фракции), поражение морских организмов в результате накопления ароматических углеводородов в их тканях происходит даже при очень низком содержании нефтепродуктов, характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами. Это воздействие сводится именно к снижению биологической продуктивности почвы и фитомассы растительного покрова [18].

Экологические аспекты. Кризис во взаимоотношениях человека и природы в немалой степени обусловлен бурным развитием нефтяной и нефтеперерабатывающей отраслей промышленности. Особенностью развития этих отраслей на современном этапе является создание территориально-производственных комплексов, в которых различные отрасли сконцентрированы в единый производственный цикл и объединены территориально в один узел. В таких регионах сильно загрязнены воздух, вода, почва, продукты питания. Серьезно подорвано состояние здоровья населения. Регионы эти стали районами экологического бедствия, в Башкортостане это центральный (Уфа, Благовещенск) и южный ТПК (Стерлитамак, Салават, Ишимбай).

Башкортостан в этом ряду занимает особое место, потому что на его территории ведется добыча нефти и газа, земля пронизана мощными продуктопроводами, по которым осуществляется их транспортировка, располагаются мощнейшие заводы по переработке, развиты нефтехимия, химия, микробиология на основе переработки нефтепродуктов. Башкирии принадлежит исключительное место по концентрации экологически опасных производств в Европе. Здесь производится 23% продукции нефтехимии страны, 45% кальцинированной соды, 12%—каустической соды, 15%—гербицидов, 7%—смол и пластмасс и т. д.[3].

Большинство производств сосредоточено на юге республики. В центре этого промышленного узла находится г. Салават с населением 150 тыс, человек. В этом городе сосредоточено более 30 крупных предприятий нефтеперерабатывающей, нефтехимической и химической промышленности — всего 94 промышленных предприятия, 2277 источников загрязнения атмосферного воздуха. В радиусе 45 км расположены еще три крупных индустриальных города — Стерлитамак, Ишимбай, Мелеуз, где также сконцентрированы производства химии, нефтехимии, минеральных удобрений. Эти города составляют так называемый Южный башкирский промышленный узел. Аналогов по мощности нет в отечественной и зарубежной практике.

Экологическая опасность нефтехимических промышленных узлов очень высока потому, что, во-первых, сам продукт и процесс переработки состоит из сотен химических веществ, присутствующих одновременно в различных комбинациях между собой, сочетаниях с другими неблагоприятными факторами и обладает комплексным воздействием на организм, во-вторых, все продукты нефти и газа поражают объекты окружающей среды: воздух, воду, почву и трансформируются во все живое и неживое.

Главными загрязнителями в нефтяной и нефтеперерабатывающей отраслях принято считать углеводороды, сероводород, диоксид серы, оксиды углерода и азот [15].

В действительности же выбросы содержат до 250 химических веществ, одна треть из которых представляет I и II класс опасности, среди которых тяжелые углеводороды, лимонен, диоксин, бензпирен и т. д.

Еще следует сказать, что 30% таких предприятий находится в центре жилой зоны (в Уфе — РТИ, Гидравлика, 2 установки ароматики, СЖС и ВЖС в 500 м от жилых домов), санитарная зона других – составляет 2—3 км, а вещества, превышающие в десятки раз ПДК, выявляются во всех этих городах на расстоянии до 20 км от завода.

Необходимо учесть, что нефтеперерабатывающие и некоторые нефтехимические предприятия построены еще в 50-е годы и, несмотря на реконструкцию, 40—45% установок эксплуатируется более 30 лет.

Все это создает полное экологическое неблагополучие, стремительное ухудшение стандартов жизни, всех санитарно-гигиенических норм, что не может не отразиться на состоянии здоровья населения. В Уфе население, проживающее на расстоянии до 3 км от НХЗ, болеет в 3 раза чаще населения «чистых» районов по показателям обращаемости в медицинские учреждения, в 1,7 раза по данным углубленного медосмотра, в 1,5 раза по временной утрате трудоспособности, по болезням ЦНС — в 4 раза, простудными — в 3,5 раза.

Следует добавить, что у подавляющего большинства населения, а именно у работающих на предприятиях нефтяной промышленности уже в первые 3 года значительно снижается иммунитет, что безусловно, способствует росту заболеваемости простудными инфекционными, системными заболеваниями. Наверное, не случайно диагноз «ревматизм», болезни кожи и подкожной клетчатки в 6 раз чаще встречается именно в Уфе, Стерлитамаке, чем в других городах [29].

Огромные средства, выделенные на природоохранные мероприятия, тратятся не по назначению. При этом каждая отрасль составляет свои планы, из простой суммы предложений предприятий получается план социально-экономического развития региона. Настала необходимость иметь региональные планы комплексного развития экономики и общества, сохраняющие равновесие между человеком и природой. Состояние здоровья людей должно стать мерилом экологического благополучия. Альтернативы жизни нет. Создание здоровой среды обитания, обеспечивающей социальное, физическое и психическое благополучие человека, должно стать главной концепцией всех экологических программ [18].

Экономические аспекты. Нефтяная промышленность России в последние годы переживает глубокий спад. Добыча нефти и газового конденсата сократилась по сравнению с 1990 г. более чем на 40%. При этом отрасль продолжает обеспечивать как внутренние потребности страны, так и экспорт. Несмотря на современное кризисное состояние нефтяной промышленности, Россия остается одним из крупнейших в мире производителей, потребителей и экспортеров нефти и продолжает сохранять важные позиции на мировом рынке, занимая третье место в мире по добыче нефти.

В настоящее время такой вид топлива, как нефть, имеет уникальное и огромное значение. Нефтяная промышленность – это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики[11].

Значение нефти в народном хозяйстве велико: это сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельного печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Россия – единственная среди крупных промышленно развитых стран мира, которая не только полностью обеспечена нефтью, но и в значительной мере экспортирует топливо. Велика ее доля в мировом балансе топливно-энергетических ресурсов, например по разведанным запасам нефти – около 10% [6].

Для России, как и для большинства стран-экспортеров, нефть – один из важнейших источников валютных поступлений. Удельный вес экспорта нефти и нефтепродуктов в общей валютной выручке страны составляет приблизительно 27%. Роль нефтяного комплекса России как источника бюджетных поступлений постоянно растет. На экспорт поставляются 2/5 добываемой в стране нефти и 1/3 от производимых нефтепродуктов. На долю крупных нефтяных компаний приходится около 80% добычи нефти в стране.

Таким образом, бюджетный вклад нефтяного комплекса с каждым годом становится все больше и больше в связи с ростом цены на сырую нефть, в то время как добыча нефти не только не увеличилась, но и сократилась более чем на 5% . Это значит, что последние пять лет характеризуются постоянным существенным, даже многократным ростом налоговой нагрузки на нефтяной комплекс [23].

Размещение основных запасов нефти РФ не совпадает с размещением населения, производством и потреблением топлива и энергии. Около 9/10 запасов минерального топлива (в том числе нефти) и свыше 4/5 гидроэнергии находится в восточных районах, тогда как примерно 4/5 общего количества топлива и энергии потребляется в европейской части страны.

Размещение нефтеперерабатывающей промышленности зависит от размеров потребления, техники переработки и транспортировки нефти, территориальных соотношений между ресурсами и объемами потребления жидкого топлива. В настоящее время переработка приблизилась к районам потребления.

Развитие нефтеперерабатывающей промышленности обусловливается целесообразностью использования нефти в основном для производства моторных топлив и химического сырья. Как энергетическое сырье более эффективным является природный газ, так как эквивалентное количество его вдвое дешевле нефти.

Размещение отраслей и производств нефтеперерабатывающей промышленности находится под совокупным влиянием различных факторов, среди которых наибольшую роль играют сырьевой, топливно-энергетический и потребительский [23].

Этические и социальные аспекты. Глобальные проблемы современности требуют немедленного переосмысления исторически сформировавшейся в человеческом сознании установки, направленной на потребительское, разрушающее и во многих случаях уничтожающее отношение человека к природе.

В последние годы во многих развитых странах произошла экологизация морального сознания, изменились ценностные ориентации; была создана такая система ценностей, в которую вошли как социальные, так и природные элементы. Природа в этом случае получила статус самостоятельной ценности в силу ее уникальности, единственности и неповторимости. Человек и общество выступают как элементы единой системы «природа – общество», вне которого их существование невозможно; однако при этом интересы природы выдвигаются на первый план, получают приоритет над интересами общества, включаются в сферу морали. При таком подходе природа в новой системе моральных ценностей выступает как цель, а не как средство, что прямо связано с новым пониманием сущности человека как природного существа. Встает также вопрос о нравственном отношении человека к природе, об особенностях этого отношения, о расширении сферы действия традиционных, привычных форм моральной регуляции (норм, принципов, ценностей, идеалов и т. д.).

Таким образом, в данной части дипломного проекта выполнен анализ основных загрязнений предприятий нефтехимического комплекса. Рассмотрен состав и вид основных загрязнителей [3].

Выявлено влияние загрязнения на атмосферу, водные объекты, почву и биоту. Загрязнение воздушного бассейна происходит при всех технологических процессах переработки нефти: на атмосферно-вакуумых и вакуумных установках, установках каталитического и термического крекинга, контактной очистки масел и коксования, гидроформинга и депарафинизации, производства битумов. Основными загрязнителями воздушного бассейна являются сероводород, сернистый газ, оксиды азота, оксид углерода, предельные и непредельные углеводороды.

Сточные воды НХЗ образуются на всех технологических установках, в зависимости от которых обусловлен их состав. Кроме промежуточных и конечных продуктов переработки нефти сточные воды содержат нефть, нафтеновые кислоты и их соли, эмульгаторы, смолы, фенолы, бензол, толуол, а также песок, частицы глины, кислоты и их соли, щелочи.

Загрязнение почвенного покрова вокруг НХЗ происходит за счет адсорбции атмосферных выбросов и фильтрации химических веществ из загрязненных сточными водами водных объектов, а также в результате складирования и захоронения отходов производств. Промышленные отходы состоят, в основном, из шлаков, кислого гудрона, растворов щелочей, отработанных катализаторов и др. Основными загрязнителями почвенного покрова являются нефтепродукты, сульфаты, ароматические углеводороды (бензол, толуол, стирол, альфаметилстирол, ортоксилол, этилбензол, изопропилбензол, бензин), бензапирен, азот аммонийный [23].

Наибольшей токсичностью для биоты обладают нефтепродукты с температурой кипения 150-2700С (нафтеновые и керосиновые фракции), поражение морских организмов в результате накопления ароматических углеводородов в их тканях происходит даже при очень низком содержании нефтепродуктов, характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами.

Также в данном разделе было выявлено влияние загрязнения на человека. Современный технологический процесс переработки нефти сопровождается наличием десятков и сотен различных химических веществ, большинство из которых являются синергистами. Почти каждый третий относится к 1 и 2 классам опасности. Преимущественно поражают центральную нервную систему, печень, кровь. Были рассмотрены экологические, экономические, этические и социальные аспекты [23].

2. Эколого-социально-экономические расчеты воздействия загрязнения на окружающую среду и человека

2.1 Расчет массы образующихся выбросов (инвентаризация) на предприятии ОАО «Уфанефтехим» в цехе 1 газотопливного производства

Инвентаризация выбросов (ГОСТ 17.2.1.04 — 77) представляет собой систематизацию сведений о распределении источников по территории, количестве и составе выбросов загрязняющих веществ в атмосферу.

Основной целью инвентаризации выбросов загрязняющих веществ является получение исходных данных для:

– оценки степени влияния выбросов загрязняющих веществ предприятия на окружающую среду (атмосферный воздух);

– установления предельно допустимых норм выбросов загрязняющих веществ в атмосферу как в целом, по предприятию, так и по отдельным источникам загрязнения атмосферы;

– организация контроля соблюдения, установленных норм выбросов загрязняющих веществ в атмосферу;

– оценки экологических характеристик, используемых на предприятии технологий;

– оценки эффективности использования сырьевых ресурсов и утилизации отходов на предприятии;

Источниками выбросов на этапе производства (газотопливное производство) являются:

– установки ЭЛОУ, где сырая нагретая нефть в смеси с деэмульгатором и водой под действием переменного электромагнитного поля обезвоживается и обессоливается. Выбросы вредных примесей в атмосферу могут поступать через неорганизованные источники (за счет не герметичности аппаратов, оборудования) и организованные – вентвыбросы из помещений насосных. На данном этапе технологического процесса в атмосферу выделяются вредные примеси испарений легких фракций нефти (бензин нефтяной и сероводород).

– атмосферно-вакуумные трубчатые установки (АВТ), где обезвоженная и обессоленная нефть нагревается и разделяется на фракции в ректификационных колоннах, как при повышенном давлении, так и при вакууме. Источниками выбросов являются дымовые трубы технологических печей, не герметичность технологического оборудования (неорганизованные источники) и производственные помещения насосных.

Количество загрязняющих веществ, поступающих в атмосферу от источника загрязнения по каждому веществу рассчитывается по формуле:

Где Сmax – максимальная концентрация загрязняющего вещества, измеренная в устье источника, загрязнения, г/м3;

V – объемный расход газовоздушной смеси в единицу времени (м3/с) в устье источника [24].

Таким образом, масса образующихся в цехе топливного производства веществ составляет 252,6036 т/год, из которого 252,534 т/год – бензин, а 0,0696 т/год – сероводород.

Расчет платы за загрязнение окружающей среды представляет собой плату за выбросы, сбросы и размещение отходов. Так как предприятия, в том числе и ОАО «Уфанефтехим» не могут соблюсти предельно допустимые концентрации, то для них устанавливаются предельно допустимые нормативы (ПДВ, ПДС для каждого вещества отдельно) и в соответствии с этими нормативами устанавливается плата за выбросы, сбросы и размещение отходов. В случае если, предприятие по каким – либо временным причинам не может соблюсти установленные нормативы, то для нее устанавливают временно-согласованные выбросы (сбросы) и плата за загрязнение увеличивается.

Если фактический объем выбросов загрязняющих веществ не превышает установленный норматив (ПДН), то плата за выбросы (сбросы) рассчитывается по формуле:

Где miф – фактическая масса выброса (сброса) i-го загрязняющего вещества, т;

Сi – ставка платы за выброс (сброс) 1 т i-го загрязняющего вещества, руб./т

В случае, если фактический объем выбросов(сбросов) превышает допустимый норматив, но находится в пределах лимита (ВСВ, ВСС), то плата рассчитывается по следующей формуле:

Где miф – фактическая масса выброса (сброса) i-го загрязняющего вещества, т;

Miн – предельно допустимый норматив выброса (сброса) i-го загрязняющего вещества, т;

В случае, если фактический объем выбросов (сбросов) превышает установленный лимит (ВСВ, ВСС), по плата рассчитывается по формуле:

Где miф – фактическая масса выброса (сброса) i-го загрязняющего вещества, т;

Miн – предельно допустимый норматив выброса (сброса) i-го загрязняющего вещества, т;

Расчет показал, что суммарная плата предприятия за выброс в атмосферу загрязняющих веществ с учетом экологического состояния атмосферного воздуха в Приволжском округе составляет Патм=524144,4038 · 1,9 = 995874,36722 руб/год., а суммарная плата за сброс в водные объекты с учетом коэффициента экологической значимости по Приволжскому округу составляет Пвод = 1414621,531 · 1,12 = 1584376,11472 руб/год.

Таким образом, ежегодно предприятие ОАО «Уфанефтехим» за выброс и сброс загрязняющих веществ платит 2580250,48194 руб/год.

2.4 Определение экологической опасности и санитарно-защитной зоны предприятия ОАО «Уфанефтехим»

Категория опасности предприятия (КОП) рассчитывается в зависимости от массы и видового состава выбрасываемых в атмосферу загрязняющих веществ в соответствии с рекомендациями по формуле:

ПДКI среднесуточная предельно допустимая концентрация i-гo вещества, мг/м3;

АI безразмерная константа, позволяющая соотнести степень вредности i-гo вещества с вредностью сернистого газа. Значение А для веществ различных классов опасности приведены в табл.2.4.1 [32].

Таблица 2.4.1 – Значение А для веществ различных классов опасности

Http://www. f-mx. ru/bezopasnost_zhiznedeyatelnosti/neftepererabatyvayushhij_zavod. html

В зависимости от качества исходной нефти, глубины ее переработки, применяемых катализаторов, а также номенклатуры получаемых товарных продуктов Нефтеперерабатывающие заводы (НПЗ) условно можно отнести к заводам следующих профилей.

1. Топливного с неглубокой переработкой нефти. На таких заводах предусматривается выпуск автомобильных бензинов, авиационных керосинов, мазута (как котельного топлива), битумов, дизельного топлива, в отдельных случаях парафина, серы, иногда ароматических углеводородов (бензол, ксилол и др.).

2. Топливного с глубокой переработкой нефти. Номенклатура основных товарных продуктов такая же, как и у заводов первого профиля, но значительная часть мазута направляется на вторичные процессы термической переработки (крекинг, коксование, алкилирование) для получения высококачественных бензинов, нефтяного кокса и других продуктов.

3. Топливно-масляного с неглубокой переработкой нефти. Основные товарные продукты такие же, как и у заводов первого профиля, но имеются технологические установки, использующие часть мазута для получения технических масел.

4. Топливно-масляного с глубокой переработкой нефти. Номенклатура основных товарных продуктов такая же, как и у заводов второго профиля, но имеются установки для производства масел.

5. Топливно-нефтехимического с глубокой переработкой нефти и получением из промежуточного исходного сырья (жидкие и газообразные фракций нефти) нефтехимических продуктов — этилена, полиэтилена, полипропилена, бутиловых спиртов и др.

В состав Нефтеперерабатывающего завода независимо от его профиля входят следующие основные установки: электрообессоливающая (ЭЛОУ) для подготовки нефти с целью ее обезвоживания и обессоливания; комбинированная или атмосферно-вакуумная трубчатые установки (АВТ), предназначенные для прямой перегонки нефти на фракции, отличающиеся температурой кипения; щелочной очистки нефтепродуктов от непредельных углеводородов, смолистых и других веществ: гидроочистки дизельного топлива; производства битума; получения серы, а в ряде случаев парафина и ароматических углеводородов.

На заводах с глубокой переработкой нефти имеются установки: термического или каталитического крекинга тяжелых нефтепродуктов (мазута) с получением легких фракций; газофракционирующая для разделения смеси газов и направления их на дальнейшую химическую переработку; каталитического риформинга бензиновых фракций для получения высокооктановых бензинов; переработки парафина с получением синтетических жирных кислот и др.

На нефтемаслозаводах предусматриваются установки контактной очистки и вакуумной перегонки масел и получения присадок к ним. На заводах нефтехимического профиля имеются производства этилена и пропилена, получаемых методом пиролиза рафинатов бензина и бутиловых спиртов, а также установка полимеризации и водородная установка. На некоторых заводах имеется сернокислотное производство. Этилосмесительные установки, повышающие качество бензина, предусматриваются на многих заводах.

Некоторые нефтехимические продукты могут производиться и на отдельно располагаемых предприятиях из сырья, поставляемого нефтеперерабатывающими заводами.

Количество нефти, перерабатываемой отдельными заводами, составляет 3—12 млн. т в год и более.

Усредненные удельные количества загрязненных сточных вод на 1 т нефти применительно к профилю завода приводятся в табл. 48.1. Данные этой таблицы могут быть использованы для разработки ТЭО и схем канализации районов и промышленных узлов при наличии там нефтеперерабатывающих заводов. Для более детальной разработки проектов канализации данные, о количестве сточных вод НПЗ представляются соответствующими отраслевыми технологическими организациями.

Количество воды в системе оборотного водоснабжения Нефтеперерабатывающих заводов превышает количество сточных вод в 10—20 раз (меньшее значение для НПЗ с глубокой переработкой нефти).

В оборотных водах допускается содержание: 25—30 мг/л нефтепродуктов, 25 мг/л взвешенных веществ, 500 мг/л сульфатов (в пополняющей воде 130 мг/л), 300 мг/л хлоридов (в пополняющей воде 50 мг/л), 25 мг 02/л БПКполн (в пополняющей воде 10 мг/л); карбонатная временная жесткость не должна превышать 5 мг-экв/л (в пополняющей воде 2, 5 мг-экв/л).

Ориентировочная концентрация загрязняющих веществ в сточных водах основных технологических установок нефтеперерабатывающих заводов приводится в табл. 48.2 (с учетом данных Всесоюзного объединения Нефтехим и ВНИИ ВОДГЕО).

При переработке сернистых нефтей и при очистке нефтепродуктов щелочью (защелачивании) на ряде установок (№ 1, 2, 8, 9 и 13 в табл. 48.2) образуются, кроме того, концентрированные сернисто-щелочные сточные воды, характеризуемые содержанием: 3000—4000 мг/л нефтепродуктов, 25 000—30 000 мг/л сульфидов и сульфогидратов, 12 000—15 000 мг/л едкого натра, 5000—8000 мг/л фенолов при ХПК=85 000—100 000 мг О/л и БПКполн = 50 000—70 000 мг 02/л, рН — до 14.

От отдельных установок отводятся также конденсаты водяного пара, загрязняемого при переработке сернистых нефтей сульфидами (1000—4500 мг/л и более), фенолами (300—450 мг/л) при рН=7,5-8, содержании аммонийного азота 4000—4500 мг/л и БПКполн = 300—7000 мг 02/л.

На некоторых Нефтеперерабатывающих заводах предусматриваются катализаторные фабрики, на которых образуются маточные растворы. В зависимости от вида выпускаемого катализатора растворы содержат до 80—90 г/л сернокислого аммония, до 85— 100 г/л азотнокислого и сернокислого натрия и до 1 г/л азотной кислоты. На отдельных заводах может быть сернокислотный цех, в сточных водах которого при неисправности оборудования содержится кислота.

Http://www. vodalos. ru/spravochniki-stroitelya/spravochnik-proektirovshika/11/6/1/1

Поделиться ссылкой: