Переработка нефти и газа

Переработка нефти – производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и так далее) и сырья для последующей химической переработки.

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой ее физическое разделение на фракции. Сначала промысловая нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей – этот процесс называется первичной сепарацией нефти. Нефть поступает на НПЗ в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворенных легких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Атмосферная перегонка. Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки – мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Вакуумная дистилляция – процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины, церезины и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Вторичные процессы. Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

    Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов; Облагораживающие: риформинг, гидроочистка, изомеризация Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов.

Каталитический риформинг – каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

Каталитический крекинг – процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг – процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и бензин гидрокрекинга (компонент автобензина).

Коксование – процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Изомеризация – процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изопрен из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

Алкилирование – введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Http://drives. ru/po-otraslyam/pererabotka-nefti-i-gaza/

Подготовка нефти к переработке заключается в дополнительном обезвоживании (до 0,1% содержания воды) и обессоливании (содержание солей до 3-4 мг/л) для уменьшения коррозии технологического оборудования и повышения качества топлив и других нефтепродуктов.

Основные показатели нефтеперерабатывающей промышленности России в 1990 – 2012 гг.

Наличие на НПЗ процессов прямой перегонки нефти и установок, улучшающих качество прямогонных фракций, позволяют получить глубину не более 60%, наличие процессов переработки вакуумного газойля увеличивает глубину переработки до 75 – 80% , и только переработка гудрона и тяжелых остатков вторичных процессов позволяет перейти рубеж в 85 – 90% (рис. 5). Модернизация при сегодняшнем уровне развития технологических процессов в России потребует колоссальных затрат. Из 27 российских НПЗ уже на 18 заводах есть углубляющие процессы. 10 лет назад таких заводов было 11, к 2008 г. стало 16. Перейти рубеж в 75% сможем при наличии на всех НПЗ вторичных процессов. Основными процессами, углубляющими переработку нефти, являются деструктивные процессы, такие как коксование и все виды крекингов. Каталитический крекинг имеется на 13 заводах, из них только на 8 – современные процессы. На 5 за-водах – настоящий гидрокре-кинг, на 5 предприятиях – про-цесс коксования и на 9 – процесс висбрекинга (рис. 6). В 2008 г. таких установок было всего 6.Выходом из сложившейся ситуации является ускорение модернизации нефтеперерабатывающей промышленности России в направлении строительства установок, углубляющих переработку.

Вместе с тем, в связи с вводом в действие техрегламента на новые стандарты нефтепродуктов, перед российскими нефтяными компаниями стоят масштабные задачи по модернизации НПЗ, связанной с реконструкцией действующих и строительством новых установок, улучшающих качество топлив, в т. ч. гидроочистки топлив, каталитического крекинга, изомеризации, алкилирования, риформинга.

В 2014 г. объем нефтепереработ-ки в России вырос на 6% и составил 288,9 млн. т. Этот рост был обеспечен вводом новых нефтеперерабатывающих установок и модернизацией заводов. По итогам отчетного года «Башнефть» занимает четвертое место по объемам переработки нефти среди российских компаний с показателем 21,7 млн. т сырья.

Http://studbooks. net/1800584/ekonomika/predlozhenie_nefti_poputnogo_neftyanogo_gaza_pererabotka

Россия занимает второе после США место мире по объемам перерабатываемой нефти. Десятки миллионов людей прямо или косвенно вовлечены в этот бизнес.

Перегонка нефти была известна еще в начале нашей эры. Применялась для уменьшения неприятного запаха нефти при использовании ее в качестве лекарственного средства. На отраслевом уровне наиболее очевидный и рациональный путь снижения себестоимости, что тоже самое цены на моторное топливо (бензин) – их дополнительное производство из ресурсов мазута. Подавляющее большинство НПЗ России обладает значительными резервами углубления переработки нефти. Среднеотраслевой уровень – 71% (2004 г.) – существенно ниже, чем в США – 95% и Западной Европе 85% (Важно не количество нефти, а глубина ее переработки).Более 50% производимого в России мазута экспортируется, поэтому снижение его производства не вызовет дефицита его в стране. Эти меры оправданы также по причине уменьшения потребления мазута в Европе и введения новых норм ЕС на содержание в нем серы до 1%. 98% мазута, производимого в России, этим нормам не соответствует и, следовательно, можно ожидать снижения цен на этот продукт.

В последние годы объем экспорта российских нефтепродуктов составляет 70 млн. т./ год. При этом половина – мазут.

· Комплекс глубокой переработки мазута на базе гидрокрекинга, Пермский НПЗ 3520 тыс. т./год

Активно продолжается строительство установок гидрокрекинга и риформинга в Ярославле, гидроочистки вакуумного газойля и алкилирования в Рязани, риформинга в Омске, гидроочистка дизтоплива в Комсомольске, которые будут основными пусковыми объектами в 2005 г.

Кривая разгонки нефти. Нальем в сосуд сырую нефть, начнем нагревать, нефть закипит прим температуре 65 гр С. Через некоторое время нефть кипеть перестанет. Повысим температуру до 230 гр С нефть снова будет некоторое время кипеть, а затем кипение прекратится. Следующая ступень кипения 400 гр С, и 480 гр С. Таким образом мы получили

На протяжении 19 века целью перегонки в основном был керосин, количество которого зависело от качества нефти, технологии ее перегонки.

Основные характеристики керосина – плотность 0,79 – 0,85 т/м. куб., температурный интервал кипения 170 – 320 гр. С.Поскольку выход керосина не велик для Бакинской нефти 25 – 30%, нефтепромышленники делали керосин путем смешения более легких фракций с более тяжелыми. Такой продукт часто взрывался. Ввели параметры Температура вспышки паров над поверхностью и Температура воспламенения (возгорания жидкости).

В 1891 году инженеры Шухов и Гаврилов изобрели способ получения легких углеводородов расщеплением тяжелых углеводородов при высоком давлении и температуре. Процесс получил название Крекинга.В 1926 году была создана первая крекинговая установка.

Продукты переработки нефти: 1. топлива, 2. нефтяные масла, 3. парафины. цезерины, вазелины, 4.нефтяные битумы 5.осветительные керосины 6.растворители 7.прочие продукты (нефтяной кокс, сажу, консистентные смазки и т. д.

Http://studopedia. su/13_75300_pererabotka-nefti-i-gaza. html

Цель переработки нефти (нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой ее физическое разделение на фракции. Сначала промысловая нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей – этот процесс называется первичной сепарацией нефти.

Нефть поступает на НПЗ в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти.

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д.

Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг – каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С[2]. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

Каталитический крекинг – процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения изоуглеводородов (изопентан, изогексан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изопрен из изопентана) и высокооктановых компонентов автомобильных бензинов.

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают четыре основных варианта переработки нефти:

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При неглубокой переработке нефти отбор светлых нефтепродуктов составляет не более 40 – 45%, а выработка котельного топлива достигает 50 – 55% на исходную нефть. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится кминимуму.

Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка— гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы — каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. Более перспективным является вариант глубокой переработки нефти, при котором выход светлых нефтепродуктов составляет 65% на нефть, а котельное топливо (мазут) вырабатывается только для обеспечения собственных нужд НПЗ.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. Попутно с получением масел производят парафины и церезин, а из асфальтов и экстрактов, являющихся также продуктами установок очистки масел, получают битумную продукцию и нефтяной кокс.

Топливно-нефтехимический вариант переработки нефти предусматривает не только получение широкого ассортимента топлив, но и развитие нефтехимического производства. Нефтехимические производства используют в качестве сырья: прямогонный бензин, ароматические углеводороды, жидкие и твердые парафины. При переработке этого сырья получается целая гамма нефтехимической продукции: этилен и полиэтилен, дивинил и изопрен, бутиловые спирты и ксилолы, фенол и ацетон, стирол и полимерные смолы.

Http://helpiks. org/3-82415.html

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

III. Термокаталитические и термогидрокаталитические процессы технологии

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие (ГФУ) установки

Нефтяная промышленность сегодня – это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле – или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли – тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики.

Вторичная перегонка – разделение фракций, полученных при первичной перегонке, на более узкие погоны, каждый из которых затем используется по собственному назначению.

На НПЗ вторичной перегонке подвергаются широкая бензиновая фракция, дизельная фракция (при получении сырья установки адсорбционного извлечения парафинов), масляные фракции и т. п. Процесс проводится на отдельных установках или блоках, входящих в состав установок АТ и АВТ.

Перегонка нефти – процесс разделения ее на фракции по температурам кипения (отсюда термин «фракционирование») – лежит в основе переработки нефти и получения при этом моторного топлива, смазочных масел и различных других ценных химических продуктов. Первичная перегонка нефти является первой стадией изучения ее химического состава.

1. Бензиновая фракция – нефтяной погон с температурой кипения от н. к. (начала кипения, индивидуального для каждой нефти) до 150-205 0 С (в зависимости от технологической цели получения авто-, авиа-, или другого специального бензина).

Эта фракция представляет собой смесь алканов, нафтенов и ароматических углеводородов. Во всех этих углеводородах содержится от 5 до 10 атомов С.

2. Керосиновая фракция – нефтяной погон с температурой кипения от 150-180 0 С до 270-280 0 С. В этой фракции содержатся углеводороды С10-С15.

Используется в качестве моторного топлива (тракторный керосин, компонент дизельного топлива), для бытовых нужд (осветительный керосин) и др.

3. Газойлевая фракция – температура кипения от 270-280 0 С до 320-350 0 С. В этой фракции содержатся углеводороды С14-С20. Используется в качестве дизельного топлива.

4. Мазут – остаток после отгона выше перечисленных фракций с температурой кипения выше 320-350 0 С.

Мазут может использоваться как котельное топливо, или подвергаться дальнейшей переработке – либо перегонке при пониженном давлении (в вакууме) с отбором масляных фракций или широкой фракции вакуумного газойля (в свою очередь, служащего сырьем для каталитического крекинга сцелью получения высокооктанового компонента бензина), либо крекингу.

5. Гудрон – почти твердый остаток после отгона от мазута масляных фракций. Из него получают так называемые остаточные масла и битум, из которого путем окисления получают асфальт, используемый при строительстве дорог и т. п. Из гудрона и других остатков вторичного происхождения может быть получен путем коксования кокс, применяемый в металлургической промышленности.

Вторичная перегонка бензинового дистиллята представляет собой либо самостоятельный процесс, либо является частью комбинированной установки входящей в состав нефтеперерабатывающего завода. На современных заводах установки вторичной перегонки бензинового дистиллята предназначены для получения из него узких фракций. Эти фракции используют в дальнейшем как сырье каталитического риформинга — процесса, в результате которого получают индивидуальные ароматические углеводороды — бензол, толуол, ксилолы, либо бензин с более высоким октановым числом. При производстве ароматических углеводородов исходный бензиновый дистиллят разделяют на фракции с температурами выкипания: 62—85°С (бензольную), 85—115 (120) °С (толуольную) и 115 (120)—140 °С (ксилольную).

Бензиновая фракцияиспользуется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций, путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец (IV), Рb(С2 Н5 )4 . Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлорэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца (II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом (II), образуя бромид свинца (II). Поскольку бромид свинца (II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом прокачивается через теплообменники и подается в первый змеевик печи, а затем в ректификационную колонну. Головной продукт этой колонны — фракция н. к. — 85 °С, пройдя аппарат воздушного охлаждения и холодильник, поступает в приемник. Часть конденсата насосом подается как орошение на верх колонны, а остальное количество — в другую колонну. Снабжение теплом нижней части колонны осуществляется циркулирующей флегмой (фракция 85— 180 °С), прокачиваемой насосом через второй змеевик печи и подается в низ колонны, Остаток с низа колонны направляется насосом в другую колонну.

Уходящие с верха колонны, пары головной фракции (н. к. — 62 °С) конденсируются в аппарате воздушного охлаждения; конденсат, охлажденный в водяном холодильнике, собирается в приемнике. Отсюда конденсат насосом направляется в резервуар, а часть фракции служит орошением для колонны. Остаточный продукт — фракция 62— 85 °С — по выходе из колонны снизу направляется насосом через теплообменник и холодильники в резервуар. В качестве верхнего продукта колонны получают фракцию 85—120 °С, которая, пройдя аппараты, поступает в приемник. Часть конденсата возвращается на вверх колонны в качестве орошения, а балансовое его количество отводится с установки насосом в резервуар.

Http://mirznanii. com/a/192540/sovremennye-tekhnologii-pererabotki-nefti-i-gaza

Соединения сырой нефти – это сложные вещества, состоящие из пяти элементов – C, H, S, O и N, причем содержание этих элементов колеблется в пределах 82-87% углерода, 11-15% водорода, 0,01-6% серы, 0-2% кислорода и 0,01-3% азота.

Обычная сырая нефть из скважины – это зеленовато-коричневая легко воспламеняющаяся маслянистая жидкость с резким запахом. Добываемая на промыслах нефть, помимо растворенных в ней газов, содержит некоторое количество примесей – частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц и воды затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти (мазутов и гудронов), содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти. С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерным износом нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке.

Для сокращения потерь легких компонентов осуществляют стабилизацию нефти, а также применяют специальные герметические резервуары хранения нефти. От основного количества воды и твердых частиц нефть освобождают путем отстаивания в резервуарах на холоду или при подогреве. Окончательно их обезвоживают и обессоливают на специальных установках. Однако вода и нефть часто образуют трудно разделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти. Существуют два типа нефтяных эмульсий:

Отстаивание – применяется к свежим, легко разрушимым эмульсиям. Расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии. Процесс ускоряется нагреванием до 120-160°С под давлением 8-15 атмосфер в течение 2-3 ч, не допуская испарения воды.

Центрифугирование – отделение механических примесей нефти под воздействием центробежных сил. В промышленности применяется редко, обычно сериями центрифуг с числом оборотов от 350 до 5000 в мин., при производительности 15-45 м3 /ч каждая.

Разрушение эмульсий достигается путем применения поверхностно-активных веществ – деэмульгаторов. Разрушение достигается а) адсорбционным вытеснением действующего эмульгатора веществом с большей поверхностной активностью, б) образованием эмульсий противоположного типа (инверсия ваз) и в) растворением (разрушением) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором. Химический метод применяется чаще механического, обычно в сочетании с электрическим.

При попадании нефтяной эмульсии в переменное электрическое поле частицы воды, сильнее реагирующие на поле чем нефть, начинают колебаться, сталкиваясь друг с другом, что приводит к их объединению, укрупнению и более быстрому расслоению с нефтью. Установки, называемые электродегидраторами.

Важным моментом является процесс сортировки и смешения нефти. Близкие по физико-химическим и товарным свойствам нефти на промыслах смешивают и направляют на совместную переработку.

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Различают глубокую и неглубокую топливную переработку. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Сюда относятся каталитические процессы – каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла, дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуется деасфальт и асфальт. Деасфальт подвергается дальнейшей обработке, а асфальт перерабатывают в битум или кокс. Нефтехимический вариант переработки нефти – помимо выработки высококачественных моторных топлив и масел не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза, но и осуществляются сложнейшие физико-химические процессы, связанные с многотоннажным производством азотных удобрений, синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и многих других химикалий. Основным способом переработки нефти является ее прямая перегонка.

Перегонка — дистилляция (отекание каплями) — разделение нефти на отличающиеся по составу фракции (отдельные нефтепродукты), основанное на различии в температурах кипения ее компонентов. Перегонку нефтепродуктов с температурами кипения до 370°С ведут при атмосферном давлении, а с более высокими — в вакууме или с применением водяного пара (для предупреждения их разложения).

Нефть под давлением подают насосами в трубчатую печь, где ее нагревают до 330…350°С. Горячая нефть вместе с парами попадает в среднюю часть ректификационной колонны, где она вследствие снижения давления испаряется и испарившиеся углеводороды отделяются от жидкой части нефти – мазута. Пары углеводородов устремляются вверх по колонне, а жидкий остаток стекает вниз. В ректификационной колонне по пути движения паров устанавливают тарелки, на которых конденсируется часть паров углеводородов. Более тяжелые углеводороды конденсируются на первых тарелках, легкие успевают подняться вверх по колонне, а самые в смеси с газами проходят всю колонну, не конденсируясь, и отводятся сверху колонны в виде паров. Так углеводороды разделяются на фракции в зависимости от температуры их кипения.

При перегонке нефти получают светлые нефтепродукты: бензин (tкип 90-200°С), лигроин (tкип 150-230°С), керосин (tкип 180-300°С), легкий газойль – соляровое масло (tкип 230-350°С), тяжелый газойль (tкип 350-430°С), а в остатке – вязкую черную жидкость – мазут (tкип выше 430°С). Мазут подвергают дальнейшей переработке. Его перегоняют под уменьшенным давлением (чтобы предупредить разложение) и выделяют смазочные масла. Перегонка с многократным испарением состоит из двух или более однократных процессов перегонки с повышением рабочей температуры на каждом этапе. Продукты, получаемые способом прямой перегонки, обладают высокой химической стабильностью, так как в них отсутствуют непредельные углеводороды. Использование для переработки нефти крекинг-процессов позволяет увеличить выход бензиновых фракций.

Крекинг — процесс переработки нефти и ее фракций, основанный на разложении (расщеплении) молекул сложных углеводородов в условиях высоких температур и давлений. Существуют следующие виды крекинга: термический, каталитический, а также гидрокрекинг и каталитический риформинг. Термический крекинг используют для получения бензина из мазута, керосина и дизельного топлива. Бензин, получаемый посредством термического крекинга, имеет недостаточно высокое октановое число (66. 74) и большое содержание непредельных углеводородов (30. 40 %), т. е. он обладает плохой химической стабильностью, и его используют в основном только в качестве компонента при получении товарных бензинов.

Новые установки для термического крекинга в настоящее время уже не строят, так как получаемые с их помощью бензины при хранении окисляются с образованием смол и в них необходимо вводить специальные присадки (ингибиторы), резко снижающие темп осмоления. Термический крекинг разделяют на парофазный и жидкофазный.

Парофазный крекинг – нефть нагревают до 520…550°С при давлении 2…6 атм. В настоящее время не применяется по причине низкой производительности и большого содержания (40%) непредельных углеводородов в конечном продукте, которые легко окисляются и образуют смолы.

Жидкофазный крекинг – температура нагрева нефти 480…500°С при давлении 20…50 атм. Увеличивается производительность, снижается количество (25…30%) непредельных углеводородов. Бензиновые фракции термического крекинга используются в качестве компонента товарных автомобильных бензинов. Однако, для топлив термического крекинга характерна низкая химическая стабильность, которую улучшают путем введения в топлива специальных антиокислительных добавок. Выход бензина 70% – из нефти, 30% – из мазута.

Каталитический крекинг — это процесс получения бензина, основанный на расщеплении углеводородов и изменении их структуры под действием высокой температуры и катализатора. Расщепление молекул углеводородов протекает в присутствии катализаторов и при температуре и атмосферном давлении. Одним из катализаторов является специально обработанная глина. Такой крекинг называется крекингом с пылевидным катализатором. Катализатор потом отделяется от углеводородов. Углеводороды идут своим путём на ректификацию и в холодильники, а катализатор – в свои резервуары, где его свойства восстанавливаются. В качестве сырья при каталитическом крекинге используют газойлевую и соляровую фракции, получаемые при прямой перегонке нефти. Продукты каталитического крекинга являются обязательными компонентами при производстве бензинов марок А-72 и А-76.

Гидрокрекинг — процесс переработки нефтепродуктов, сочетающий в себе крекирование и гидрирование сырья (газойлей, нефтяных остатков и др.). Это разновидность каталитического крекинга. Процесс разложения тяжелого сырья происходит в присутствии водорода при температуре 420…500°С и давлении 200 атм. Процесс происходит в специальном реакторе с добавлением катализаторов (окиси W, Mo, Pt). В результате гидрокрекинга получают топливо.

Риформинг – (от англ. reforming – переделывать, улучшать) промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высококачественных бензинов и ароматических углеводородов. В качестве сырья для каталитического риформинга обычно используют бензиновые фракции первичной перегонки нефти, выкипающие уже при 85. 180″С. Риформинг проводят в среде водородосодержащего газа (70. 90 % водорода) при температуре 480. 540 °С и давлении 2. 4 МПа в присутствии молибденового или платинового катализатора. Для улучшения свойств бензиновых фракций нефти они подвергаются каталитическому риформингу, который проводится в присутствии катализаторов из платины или платины и рения. При каталитическом риформинге бензинов происходит образование ароматических углеводородов (бензола, толуола, ксилола и др.) из парафинов и циклопарафинов. Риформинг при использовании молибденового катализатора называется гидроформинг, а при использовании платинового катализатора — платформинг. Последний, являющийся более простым и безопасным процессом, в настоящее время применяется значительно чаще.

Пиролиз. Это термическое разложение углеводородов нефти в специальных аппаратах или газогенераторах при температуре 650°С. Применяется для получения ароматических углеводородов и газа. В качестве сырья можно применять как нефть, так и мазут, но наибольший выход ароматических углеводородов наблюдается при пиролизе легких фракций нефти. Выход: 50% газа, 45% смолы, 5% сажи. Из смолы получают ароматические углеводороды путем ректификации.

Http://studwood. ru/1652203/tovarovedenie/metody_pererabotki_nefti_gaza

Переработка нефти и газа представляет собой совокупность физических и химико-технологических процессов на нефтегазоперерабатывающих заводах(НПЗ) с целью получения товарных нефтепродуктов и полупродуктов для нефтехимической отрасли.

Процесс переработки нефти на нефтеперерабатывающих заводах включает в себя следующие этапы:

    Первичная — обезвоживание и обессоливание нефти с последующим разделением на фракции при помощи атмосферной и вакуумной перегонки (ЭЛОУ, ЭЛОУ-АТ, ЭЛОУ-АВТ); Вторичная — переработка полученных фракций путем химических превращений (термодеструкция, каталитические процессы, селективная очистка и др.), направленных на увеличение выхода и улучшение качества основных товарных светлых нефтепродуктов (бензин, керосин, дизельное топливо), масел и производство нефтехимического сырья; Товарное производство — смешение компонентов с вовлечением, при необходимости, различных присадок, с целью получения товарных нефтепродуктов с требуемыми/заданными показателя качества.

Основной единицей НПЗ является технологическая установка, позволяющая осуществить полный цикл соответствующего технологического процесса. Одной из основных задач НПЗ является непрерывная эксплуатация технологических установок и увеличение межремонтного цикла.

ГК «Миррико» предлагает химические и технологические решения для снижения операционных затрат за счёт защиты от коррозии и нежелательных отложений оборудования производства и, тем самым, обеспечения бесперебойной работы технологического оборудования; минимизации отрицательного воздействия на природную среду; а также для улучшения качества товарных нефтепродуктов.

Добытое углеводородное сырье (нефть, нефтяной и природный газ) проходит долгую цепочку преобразований: при помощи процесса переработки (первичного и вторичного) выделяются важные и ценные компоненты, из которых в дальнейшем будут получены пригодные к использованию нефтепродукты.

Постоянное изменение состава сырья, увеличение доли высокосернистых нефтей, а также неудовлетворительное качество подготовки нефти на промыслах вызывает ряд проблем на установках первичной переработки нефти:

    недостаточная глубина обессоливания; усиление коррозионных процессов шлемовых трактов и конденсационно-холодильного оборудования (КХО).

Коррозионные процессы наблюдаются также и на установках вторичной переработки нефти, преимущественно на узлах фракционирования и аминовой очистки.

На технологических установках, где оказывается высокотемпературное воздействие на сырье (нагрев в печах, теплообменниках), а также имеется склонность сырья к полимеризации и образованию кокса, существенным фактором эффективной эксплуатации оборудования становится сохранение достаточной теплопередачи (закоксовывание печей, теплообменников). Кроме того, забивке коксовыми отложениями подвергаются и колонны фракционирования на установках висбрекинга и ультразвукового контроля.

Вышеперечисленные проблемы приводят к преждевременному выходу технологического оборудования из строя, что существенно снижает экономическую эффективность установки.

Для обеспечения эффективной химико-технологической защиты колонного и ёмкостного оборудования от коррозии, закоксовывания и снижения операционных затрат ГК «Миррико» предлагает поставку химических реагентов собственного производства:

Для очистки колонного и ёмкостного оборудования от загрязнений и нефтешламов ГК «Миррико» предлагает инновационную услугу «Роботизированный метод очистки резервуаров от отложений с дальнейшей переработкой и утилизацией» – мобильную автономную роботизированную установку MARTin. Модифицированный робот, входящий в состав комплекса, – мобильный, технически совершенный и легкий в управлении. Видеопрезентацию по работе робота можно посмотреть здесь.

Мобильная автономная роботизированная установка MARTin имеет ряд преимуществ перед ручным и механизированным методами очистки резервуаров: значительное сокращение сроков очистки и соответствие международным стандартам безопасности труда и охраны окружающей среды.

Для каталитических процессов ГК «Миррико» предлагает гранулированный катализатор крекинга Atren Cat™ собственного производства.

Бизнес-единица ГК «Миррико» «Сервис водооборотных систем» предлагает эффективные технологии для реагентной обработки водооборотных циклов нефтегазоперерабатывающих предприятий. Применение реагентов «Миррико» позволит снизить расход энергии, повысить эффективность теплопередачи и, как следствие, снизить эксплуатационные затраты на предприятии.

В целом оценить эффективность системы водного хозяйства, водооборотных циклов и систем водоподготовки на предприятии поможет услуга «Обследование оборудования водного хозяйства». По результатам аудита специалисты «Миррико» готовят рекомендации и разрабатывают концепцию модернизации или реконструкции водного хозяйства с учетом производственных мощностей нефтеперерабатывающего предприятия.

Для доведения качества товарных нефтепродуктов до соответствия требованиям действующих стандартов ГК «Миррико» предлагает химические реагенты собственного производства:

    депрессорные присадки для средних дистиллятов и мазутов; поглотители сероводорода в светлых и темных нефтепродуктах;

    противоизносная – повышает смазывающую способность дизельных топлив; депрессорно-диспергирующая – улучшает низкотемпературные характеристики дизельных топлив, препятствует расслоению при холодном хранении; цетаноповышающая – способствует улучшению пусковых и эксплуатационных характеристик.

Http://www. mirrico. ru/services-products/processing-oil-gas/

Цель переработки нефти (Нефтепереработки) — производство нефтепродуктов, прежде всего, различных топлив (автомобильных, авиационных, котельных и т. д.) и сырья для последующей химической переработки

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой ее физическое разделение на фракции.

Нефть поступает на НПЗ в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида: Углубляющие. Каталитический крекинг, термический крекинг, висбрекинг, замедленное коксования, гидрокрекинг, производство битумов и т. д. Облагораживающие. Риформинг, гидроочистка, изомеризация и т. д. Прочие. Процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С [1] . В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных(пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения углеводородов изостроения (изопентан, изогексан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства(изопрен из изопентана) и высокооктановых компонентов автомобильных бензинов.

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Глубина переработки нефти — Нефтеперерабатывающий завод Shell в городе Мартинез (Калифорния). Глубина переработки нефти  величина, показывающая отношение объёма продуктов переработки нефти к общему объёму затрачен … Википедия

Геология нефти — Содержание 1 Миграция нефти 2 Нефтеносные породы и скопления нефти … Википедия

Переработка нефти — Нефтеперерабатывающий завод компании Shell в Калифорнии Цель переработки нефти (нефтепереработки)  производство нефтепродуктов … Википедия

Перепроизводство нефти в 1980-х годах — Номинальные (красная линия) и сопоставимые (зеленая линия) цены на нефть на мировом рынке с 1968 по 2006 гг.[ … Википедия

Плавучая установка для добычи, хранения и отгрузки нефти — Портал «Нефть и газ» Плавучая установка для добычи, хранения и отгрузки нефти (англ. Floating Production, Storage and … Википедия

Геология нефти и газа — (геология углеводородов, нефтегазовая геология)  прикладной раздел геологии, изучающий образования и скопления углеводородов в недрах земли, с целью научно обоснованного прогноза нахождения залежей нефти и газа, выбора рационального… … Википедия

Плавучая установка для хранения и отгрузки нефти — Плавучая установка для добычи, хранения и отгрузки нефти (англ. Floating Production, Storage and Offloading (FPSO)) вид нефтепромысловой платформы, используемой при добыче нефти в открытом море. Нефть и газ поступют в установку с близлежащих… … Википедия

Добыча нефти вторичным методом — Третичный метод нефтедобычи (англ. EOR) один из методов нефтедобычи, осуществляемый при искусственном поддержании энергии пласта или искусственном изменении физико химических свойств нефти. Такая добыча приводит к повышению нефтеотдачи… … Википедия

Добыча нефти — (Extraction of oil) Понятие нефтедобыча, методы и технологии добычи нефти Добыча нефти, описание методов и технологий добычи нефти Содержание Термин «» в современном мировом лексиконе стал синонимом общепринятого словосочетания «черное золото». И … Энциклопедия инвестора

Нефтеперерабатывающий завод — Shell в городе Мартинез (Калифорния). Запрос «НПЗ» перенаправляется сюда; см. также другие значения. Нефтеперерабатывающий завод  промышленное предприятие, о … Википедия

Http://dic. academic. ru/dic. nsf/ruwiki/14858

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

III. Термокаталитические и термогидрокаталитические процессы технологии

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие (ГФУ) установки

Нефтяная промышленность сегодня — это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания — около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле – или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли — тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

Нефть — наше национальное богатство, источник могущества страны, фундамент ее экономики.

Вторичная перегонка – разделение фракций, полученных при первичной перегонке, на более узкие погоны, каждый из которых затем используется по собственному назначению.

На НПЗ вторичной перегонке подвергаются широкая бензиновая фракция, дизельная фракция (при получении сырья установки адсорбционного извлечения парафинов), масляные фракции и т. п. Процесс проводится на отдельных установках или блоках, входящих в состав установок АТ и АВТ.

Перегонка нефти – процесс разделения ее на фракции по температурам кипения (отсюда термин «фракционирование») – лежит в основе переработки нефти и получения при этом моторного топлива, смазочных масел и различных других ценных химических продуктов. Первичная перегонка нефти является первой стадией изучения ее химического состава.

1. Бензиновая фракция – нефтяной погон с температурой кипения от н. к. (начала кипения, индивидуального для каждой нефти) до 150-205 0С (в зависимости от технологической цели получения авто-, авиа-, или другого специального бензина).

Эта фракция представляет собой смесь алканов, нафтенов и ароматических углеводородов. Во всех этих углеводородах содержится от 5 до 10 атомов С.

2. Керосиновая фракция – нефтяной погон с температурой кипения от 150-180 0С до 270-280 0С. В этой фракции содержатся углеводороды С10-С15.

Используется в качестве моторного топлива (тракторный керосин, компонент дизельного топлива), для бытовых нужд (осветительный керосин) и др.

3. Газойлевая фракция – температура кипения от 270-280 0С до 320-3500С. В этой фракции содержатся углеводороды С14-С20. Используется в качестве дизельного топлива.

4. Мазут – остаток после отгона выше перечисленных фракций с температурой кипения выше 320-350 0С.

Мазут может использоваться как котельное топливо, или подвергаться дальнейшей переработке – либо перегонке при пониженном давлении (в вакууме) с отбором масляных фракций или широкой фракции вакуумного газойля (в свою очередь, служащего сырьем для каталитического крекинга сцелью получения высокооктанового компонента бензина), либо крекингу.

5. Гудрон — почти твердый остаток после отгона от мазута масляных фракций. Из него получают так называемые остаточные масла и битум, из которого путем окисления получают асфальт, используемый при строительстве дорог и т. п. Из гудрона и других остатков вторичного происхождения может быть получен путем коксования кокс, применяемый в металлургической промышленности.

Вторичная перегонка бензинового дистиллята представляет собой либо самостоятельный процесс, либо является частью комбинированной установки входящей в состав нефтеперерабатывающего завода. На современных заводах установки вторичной перегонки бензинового дистиллята предназначены для получения из него узких фракций. Эти фракции используют в дальнейшем как сырье каталитического риформинга — процесса, в результате которого получают индивидуальные ароматические углеводороды — бензол, толуол, ксилолы, либо бензин с более высоким октановым числом. При производстве ароматических углеводородов исходный бензиновый дистиллят разделяют на фракции с температурами выкипания: 62—85°С (бензольную), 85—115 (120) °С (толуольную) и 115 (120)—140 °С (ксилольную).

Бензиновая фракцияиспользуется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций, путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец (IV), Рb(С2 Н5 )4. Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлорэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца (II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом (II), образуя бромид свинца (II). Поскольку бромид свинца (II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом прокачивается через теплообменники и подается в первый змеевик печи, а затем в ректификационную колонну. Головной продукт этой колонны — фракция н. к. — 85 °С, пройдя аппарат воздушного охлаждения и холодильник, поступает в приемник. Часть конденсата насосом подается как орошение на верх колонны, а остальное количество — в другую колонну. Снабжение теплом нижней части колонны осуществляется циркулирующей флегмой (фракция 85— 180 °С), прокачиваемой насосом через второй змеевик печи и подается в низ колонны, Остаток с низа колонны направляется насосом в другую колонну.

Уходящие с верха колонны, пары головной фракции (н. к. — 62 °С) конденсируются в аппарате воздушного охлаждения; конденсат, охлажденный в водяном холодильнике, собирается в приемнике. Отсюда конденсат насосом направляется в резервуар, а часть фракции служит орошением для колонны. Остаточный продукт — фракция 62— 85 °С — по выходе из колонны снизу направляется насосом через теплообменник и холодильники в резервуар. В качестве верхнего продукта колонны получают фракцию 85—120 °С, которая, пройдя аппараты, поступает в приемник. Часть конденсата возвращается на вверх колонны в качестве орошения, а балансовое его количество отводится с установки насосом в резервуар.

Фракция 120—140°С отбирается из внешней отпарной колонны, снизу насосом. Эта фракция после охлаждения в теплообменнике и аппаратах поступает в резервуар.

Нижний продукт колонны — фракция 140— 180 °С — также направляется в резервуар насосом через теплообменник и аппараты.

Тепло, необходимое для работы отгонных секций ректификационных колонн, сообщается соответственно кипятильниками. Внешняя отпарная секция обслуживается кипятильником. В кипятильники соответствующие рециркуляты подаются насосами. Теплоносителем для кипятильников является водяной пар.

Материальный баланс установки зависит от потенциального содержания узких фракций в бензиновом дистилляте, а также от четкости ректификации.

Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.

Газойлевые фракции — используются в производстве технического углерода (сажи), как компонент котельного топлива, а после гидроочнстки — для приготовления дизельных и газотурбинных топлив. Крекинг-остаток — направляется на установки замедленного коксования для производства кокса, применяется как компонент котельного топлива.

Фракции, полученные из малосернистого сырья, могут быть использованы как тяжелое котельное топливо (мазут Ml00 малосернистый), другие фракции — как компоненты котельных топлив. Газойлевая фракция с глухой тарелки колонны откачивается горячим насосом ( производительностью до 50 м3 / ч) в печь легкого сырья для глубокого крекинга, где нагревается до более высоких температур, чем тяжелое сырье в печи. Далее продукты крекинга из обеих печей входят в верхнюю часть выносной реакционной камеры, где поддерживается давление 2 — 2 5 МПа. Продукты реакции снизу камеры направляются в испаритель высокого давления, работающий при давлении 0 8 — 1 0 МПа, где производится разделение продуктов крекинга на паровую и жидкую фазы. Регулировка давления и его снижение производится с помощью редукционного клапана, установленного на линии перетока продуктов крекинга из выносной реакционной камеры в испаритель высокого давления. Жидкая фаза в виде тяжелого крекинг-остатка самотеком поступает в испаритель низкого давления, где за счет уменьшения давления из него происходит выделение паров газойлевых фракций, которые через проход в глухой тарелке попадают в верхнюю часть колонны и вступают в контакт с исходным сырьем, подаваемым в верхнюю часть. Некоторое количество несконденсировавшихся в колонне паров и газов конденсируется и охлаждается в холодильнике, затем собираются в сборнике-газосепараторе, откуда насосом возвращается в верхнюю часть колонны в виде орошения.

Газойлевая фракция 195 — 270 С может быть использована (с учетом ее химического состава) как компонент низкозастывающего дизельного топлива. Фракция 270 — 420 С используется как сырье для технического углерода, а остаточная фракция, выкипающая выше 420 С — в качестве компонента сырья коксования или котельного топлива.

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

Коксование — квалифицированная переработка тяжёлых нефтяных остатков, как первичной, так и вторичной переработки, с получением нефтяного кокса, применяемого для производства электродов, используемых в металлургической промышленности, а также дополнительного количества светлых нефтепродуктов. В отличие от ранее описанных процессов, коксование является термическим процессом, не использующим катализатор.

Коксование – это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка — кокса. Последний находит широкое применение в различных отраслях народного хозяйства. Сырьем для коксования — в основном, является каменный уголь, в значительно меньших масштабах перерабатывают другие горючие ископаемые, а также высококипящие остаточные продукты дистилляции нефти, каменноугольный пек и т. д.

Среди термических процессов наиболее широкое распространение в нашей стране и за рубежом получил процесс замедленного коксования, который позволяет перерабатывать самые различные виды тяжелых нефтяных остатков (ТНО) с выработкой продуктов, находящих достаточно квалифицированное применение в различных отраслях народного хозяйства.

Замедленное коксование – это непрерывный процесс, осуществляемый при температуре около 500°С и давлении, близком к атмосферному. Сырьё поступает в змеевики технологических печей, в которых идёт процесс термического разложения, после чего поступает в камеры, в которых происходит образование кокса. На установках сооружается 4 коксовые камеры, работающие попеременно. Камера в течении суток работает в режиме реакции, заполняясь коксом, после чего в течение суток осуществляются технологические операции по выгрузке кокса и подготовке к следующему циклу.

Кокс из камеры удаляется при помощи гидрорезака, представляющего собой бур с расположенными на конце соплами, через которые под давлением 150 атм. подаётся вода, которая раздробляет кокс.

Раздробленный кокс сортируется на фракции, в зависимости от размера частиц.

Сверху коксовых камер уходят пары продуктов и поступают на ректификацию. Светлые фракции, полученные при коксовании, характеризуются низким качеством из-за большого содержания олефинов и поэтому желательно их дальнейшее облагораживание.

Выход кокса составляет порядка 25% при коксовании гудрона, выход светлых фракций — около 35%.

Достоинства замедленного коксования — высокий выход малозольного кокса. Из одного и того же количества сырья, этим методом можно получить в 1,5-1,6 раза больше кокса, чем при непрерывном коксовании. Поэтому замедленное коксование применяют, как правило, для производства нефтяного кокса.

Установка замедленного коксования предназначена для получения крупнокускового нефтяного кокса, который используется в производствах цветных металлов, кремния, абразивных материалов, в электротехнической промышленности.

В качестве сырья на установках используют тяжёлые нефтяные остатки, такие как гудрон, мазут, крекинг-остатки, тяжёлая смола пиролиза.

В качестве побочных продуктов на установке замедленного коксования получают углеводородный газ, бензиновую фракцию и газойлевые дистилляты. Полученные газойлевые фракции и бензин коксования перед дальнейшим использованием необходимо подвергнуть гидрооблагораживанию из-за повышенного (по сравнению с прямогонными дистиллятами) содержания непредельных и гетероорганических соединений.

Процесс основан на термолизе тяжелых нефтяных остатков в течение достаточно длительного времени при повышенных температурах (до 500° С), в результате которого образуются легкие фракции крекинга и продукт уплотнения – кокс.

Режим работы коксовой камеры составляет 48 часов: 24 часа коксовая камера заполняется коксом, и в течение 20-22 часов осуществляется выгрузка кокса из коксовых камер при помощи струи воды под высоким давлением (до 14 МПа).

Технологические схемы установок замедленного коксования включают в себя следующие основные блоки:

· Нагревательный (сюда относится конвекционная секция печи установки, нижняя секция ректификационной колонны, где происходит нагрев продуктами коксования, радиантная секция печи);

· Реакционный (представляет собой две/четыре полые камеры, работающие попеременно, где непосредственно происходит процесс замедленного коксования тяжёлых нефтяных остатков);

· Фракционирующий (разделение полученных лёгких фракций коксования: газ, бензин, газойль);

· Блок механической обработки кокса, его выгрузки, сортировки и транспортировки.

Процессы коксования в слое теплоносителя имеют существенное преимущество перед процессом замедленного коксования: Сырье, предварительно нагретое в теплообменнике, контактирует в реакторе с нагретым и находящимся во взвешенном состоянии инертным теплоносителем (обычно порошкообразный кокс с размером частиц до 0,3 мм, реже более крупные гранулы) и коксуется на его поверхности в течение 6-12 мин.

Образовавшийся кокс и теплоноситель выводят из зоны реакции и подают в регенератор (коксонагреватель). В последнем слой теплоносителя поддерживается во взвешенном состоянии с помощью воздуха, в токе которого выжигается до 40% кокса, а большая его часть направляется потребителю. Благодаря теплоте, выделившейся при выжигании части кокса, теплоноситель нагревается и возвращается в реактор. Для перемещения теплоносителя используется пневмотранспорт частиц кокса, захватываемых потоком пара или газа. Дистиллятные фракции и газы выводят из реактора и разделяют так же, как при замедленном коксовании. Типичные параметры процесса: температура в теплообменнике, реакторе и регенераторе 300-320, 510-540 и 600-620 °С соответственно, давление в реакторе и регенераторе 0,14-0,16 и 0,12-0,16 МПа соответственно, соотношение по массе сырье теплоноситель = (6,5-8,0).

Коксование в кипящем слое используют для увеличения производства светлых нефтепродуктов. Кроме того, сочетание непрерывного коксования с газификацией образующегося кокса, может быть применено для получения дизельных и котельных топлив.

III. Термокаталитические и термогидрокаталитические Процессы технологии пер Еработки нефти

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Гидроочистки подвергаются следующие фракции нефти:

2. Керосиновые фракции; 3. Дизельное топливо; 4. Вакуумный газойль; 5. Моторные масла. Гидроочистка керосиновыхФракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закокcовывают форсунки двигателей. Одновременно снижается коррозионная агрессивность топлив и уменьшается образование осадка при их хранении. Типичным сырьем при гидроочистке керосиновых дистиллятов являются фракции 130—240 и 140— 230°С прямой перегонки нефти. Однако при получении некоторых видов топлив, верхний предел выкипания может достигать 315°С. Целевым продуктом процесса является гидроочищенная керосиновая фракция, выход которой может достигать 96—97% (масс.).

Керосиновая фракция 120—230 (240) °С используется как топливо для реактивных двигателей, при необходимости подвергается демеркаптанизации, гидроочистке; фракцию 150—280 или 150—315 °С из малосернистых нефтей используют как осветительные керосины, фракцию 140—200 °С — как растворитель (уайт-спирит) для лакокрасочной промышленности.

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие установки (ГФУ)

На НПЗ для разделения нефтезаводских газов применяются преимущественно 2 типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации: ректификационный — сокращенно ГФУ, и абсорбционно-ректификационный АГФУ.

Назначение ГФУ – получение индивидуальных легких углеводородов или углеводородных фракций высокой чистоты из нефтезаводских газов. Газофракционирующие установки (ГФУ) подразделяются по типу перерабатываемого сырья на ГФУ предельных и ГФУ непредельных газов.

Сырье поступает на ГФУ в газообразном и жидком (головки стабилизации) виде. На ГФУ предельных газов подаются газы с установок первичной перегонки, каталитического риформинга, гидрокрекинга, на ГФУ непредельных газов – с установок термического и каталитического крекинга, коксования.

Продукцией ГФУ Предельных газов являются узкие углеводородные фракции:

· Этановая – применяется как сырье пиролиза, в качестве хладагента, на установках депарафинизации масел, выделения параксилола и др.;

· Пропановая – используется как сырье пиролиза, бытовой сжиженный газ, хладагент;

· Изобутановая – служит сырьем установок алкилирования и производства синтетического каучука;

· Бутановая – применяется как бытовой сжиженный газ, сырье производства синтетического каучука; в зимнее время добавляется к товарным автомобильным бензинам для обеспечения требуемого давления паров;

· Изопентановая – служит сырьем для производства изопренового каучука, компонентом высокооктановых бензинов;

· Пентановая – является сырьем для процессов изомеризации и пиролиза.

· Пропан-пропиленовая – применяется в качестве сырья для установок полимеризации и алкилирования, производства нефтехимических продуктов;

· Бутан-бутиленовая – используется в качестве сырья установок полимеризации, алкилирования и различных нефтехимических производств.

В блоке ректификации ГФУ из углеводородного газового сырья сначала в деэтанизаторе извлекают сухой газ, состоящий из метана и этана.

На верху колонны поддерживают низкую температуру подачей орошения, охлаждаемого в аммиачном конденсаторе-холодильнике.

Кубовый остаток деэтанизатора поступает в пропановую колонну, где разделяется на пропановую фракцию, выводимую с верха этой колонны, и смесь углеводородов С4 и выше, направляемую в бутановую колонну. Ректификатом этой колонны является смесь бутанов, которая в изобутановой колонне разделяется на изобутановую и бутановую фракции.

Кубовый продукт колонны подается далее в пентановую колонну, где в виде верхнего ректификата выводится смесь пентанов, которая в изопентановой колонне разделяется на н-пентан и изопентан.

Нижний продукт колонны — фракция С6 и выше — выводится с установки. На АГФУ сочетается предварительное разделение газов на легкую и тяжелую части абсорбционным методом с последующей их ректификацией.

Конденсационно-ректификационный метод заключается в частичной или полной конденсации газовых смесей с последующей ректификацией конденсатов. При необходимости продукты подвергаются дополнительной очистке от меркаптанов раствором щелочи.

Для деэтанизации газов каталитического крекинга на установках АГФУ используется фракционирующий абсорбер. Он представляет собой комбинированную колонну абсорбер-десорбер. В верхней части фракционирующего абсорбера происходит абсорбция, то есть поглощение из газов целевых компонентов (С3 и выше), а в нижней — частичная регенерация абсорбента за счет подводимого тепла. В качестве основного абсорбента на АГФУ используется нестабильный бензин каталитического крекинга. Для доабсорбции унесенных сухим газом бензиновых фракций в верхнюю часть фракционирующего абсорбера подается стабилизированный бензин. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции. Тепло в низ абсорбера подается с помощью «горячей струи». С верха фракционирующего абсорбера выводится сухой газ (С1-С2), а с низа вместе с тощим абсорбентом выводятся углеводороды С3 и выше.

Деэтанизированный бензин, насыщенный углеводородами С3 и выше, после подогрева в теплообменнике подается в стабилизационную колонну, нижним продуктом которого является стабильный бензин, а верхним — головка стабилизации. Из нее (иногда после сероочистки) в пропановой колонне выделяют пропан-пропиленовую фракцию. Кубовый продукт пропановой колонны разделяется в бутановой колонне на бутан-бутиленовую фракцию и остаток (С5 и выше), который объединяется со стабильным бензином.

Технологические установки перегонки нефти предназначены для разделения нефти на фракции и последующей переработки или использования их как компоненты товарных нефтепродуктов. Они составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырье для вторичных процессов и для нефтехимических производств. От их работы зависят ассортимент и качество получаемых компонентов и технико-экономические показатели последующих процессов переработки нефтяного сырья.

Компоненты, полученные после первичной переработки обычно не используются как готовый продукт. Легкие фракции проходят дополнительно крекинг, реформинг, гидрогенизационное облагораживание, целью которых является получение невысокой ценой наибольшего объема конечных продуктов с наиболее точными удовлетворительными качественными показателями. Тяжелые фракции после перегонки перерабатывают дополнительно на битумных, коксующих и других установках.

В результате первичной перегонки нефти при атмосферном давлении получаются следующие продукты:

·Сжиженный углеводородный газ, состоящий в основном из пропана и бутана.

1. Коршак А. А., Шаммазов А. М.: «Основы нефтегазового дела», издательство «Дизайнполиграфсервис», 2005. – 544с.

2. Шаммазов А. М. и др.: «История нефтегазового дела России», Москва, «Химия», 2001. – 316 с.

3. Ахметов С. А. Технология глубокой переработки нефти и газа. Уфа: «ГИЛЕМ», 2002. – 671с.;

4. Ахметов С. А. и др. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов; Под ред С. А. Ахметова. – СПб.: Недра,2006. – 868 с.

5. Капустин В. М. Основные каталитические процессы переработки нефти /В. М. Капустин, Е. А. Чернышева. – М.: Калвис, 2006. – 116 с.

6. Мановян А. К. Технология переработки природных энергоносителей. – М.: Химия, КолосС, 2004. – 456 с.

7. Магарил Р. З. Теоретические основы химических процессов переработки нефти: учебное пособие. – М.: КДУ, 2008. – 280 с.

8. Смидович Е. В. Технология переработки нефти и газа. Ч.2-я. – М.: Химия, 1980. – 376с.

Http://www. ronl. ru/referaty/promyshlennost-proizvodstvo/185005/

Просмотров: 10428 Комментариев: 6 Оценило: 2 человек Средний балл: 3 Оценка: неизвестно Скачать

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

III. Термокаталитические и термогидрокаталитические процессы технологии

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие (ГФУ) установки

Нефтяная промышленность сегодня – это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле – или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли – тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики.

Вторичная перегонка – разделение фракций, полученных при первичной перегонке, на более узкие погоны, каждый из которых затем используется по собственному назначению.

На НПЗ вторичной перегонке подвергаются широкая бензиновая фракция, дизельная фракция (при получении сырья установки адсорбционного извлечения парафинов), масляные фракции и т. п. Процесс проводится на отдельных установках или блоках, входящих в состав установок АТ и АВТ.

Перегонка нефти – процесс разделения ее на фракции по температурам кипения (отсюда термин «фракционирование») – лежит в основе переработки нефти и получения при этом моторного топлива, смазочных масел и различных других ценных химических продуктов. Первичная перегонка нефти является первой стадией изучения ее химического состава.

1. Бензиновая фракция – нефтяной погон с температурой кипения от н. к. (начала кипения, индивидуального для каждой нефти) до 150-205 0 С (в зависимости от технологической цели получения авто-, авиа-, или другого специального бензина).

Эта фракция представляет собой смесь алканов, нафтенов и ароматических углеводородов. Во всех этих углеводородах содержится от 5 до 10 атомов С.

2. Керосиновая фракция – нефтяной погон с температурой кипения от 150-180 0 С до 270-280 0 С. В этой фракции содержатся углеводороды С10-С15.

Используется в качестве моторного топлива (тракторный керосин, компонент дизельного топлива), для бытовых нужд (осветительный керосин) и др.

3. Газойлевая фракция – температура кипения от 270-280 0 С до 320-350 0 С. В этой фракции содержатся углеводороды С14-С20. Используется в качестве дизельного топлива.

4. Мазут – остаток после отгона выше перечисленных фракций с температурой кипения выше 320-350 0 С.

Мазут может использоваться как котельное топливо, или подвергаться дальнейшей переработке – либо перегонке при пониженном давлении (в вакууме) с отбором масляных фракций или широкой фракции вакуумного газойля (в свою очередь, служащего сырьем для каталитического крекинга сцелью получения высокооктанового компонента бензина), либо крекингу.

5. Гудрон – почти твердый остаток после отгона от мазута масляных фракций. Из него получают так называемые остаточные масла и битум, из которого путем окисления получают асфальт, используемый при строительстве дорог и т. п. Из гудрона и других остатков вторичного происхождения может быть получен путем коксования кокс, применяемый в металлургической промышленности.

Вторичная перегонка бензинового дистиллята представляет собой либо самостоятельный процесс, либо является частью комбинированной установки входящей в состав нефтеперерабатывающего завода. На современных заводах установки вторичной перегонки бензинового дистиллята предназначены для получения из него узких фракций. Эти фракции используют в дальнейшем как сырье каталитического риформинга — процесса, в результате которого получают индивидуальные ароматические углеводороды — бензол, толуол, ксилолы, либо бензин с более высоким октановым числом. При производстве ароматических углеводородов исходный бензиновый дистиллят разделяют на фракции с температурами выкипания: 62—85°С (бензольную), 85—115 (120) °С (толуольную) и 115 (120)—140 °С (ксилольную).

Бензиновая фракцияиспользуется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций, путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец (IV), Рb(С2 Н5 )4 . Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлорэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца (II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом (II), образуя бромид свинца (II). Поскольку бромид свинца (II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом прокачивается через теплообменники и подается в первый змеевик печи, а затем в ректификационную колонну. Головной продукт этой колонны — фракция н. к. — 85 °С, пройдя аппарат воздушного охлаждения и холодильник, поступает в приемник. Часть конденсата насосом подается как орошение на верх колонны, а остальное количество — в другую колонну. Снабжение теплом нижней части колонны осуществляется циркулирующей флегмой (фракция 85— 180 °С), прокачиваемой насосом через второй змеевик печи и подается в низ колонны, Остаток с низа колонны направляется насосом в другую колонну.

Уходящие с верха колонны, пары головной фракции (н. к. — 62 °С) конденсируются в аппарате воздушного охлаждения; конденсат, охлажденный в водяном холодильнике, собирается в приемнике. Отсюда конденсат насосом направляется в резервуар, а часть фракции служит орошением для колонны. Остаточный продукт — фракция 62— 85 °С — по выходе из колонны снизу направляется насосом через теплообменник и холодильники в резервуар. В качестве верхнего продукта колонны получают фракцию 85—120 °С, которая, пройдя аппараты, поступает в приемник. Часть конденсата возвращается на вверх колонны в качестве орошения, а балансовое его количество отводится с установки насосом в резервуар.

Фракция 120—140°С отбирается из внешней отпарной колонны, снизу насосом. Эта фракция после охлаждения в теплообменнике и аппаратах поступает в резервуар.

Нижний продукт колонны — фракция 140— 180 °С — также направляется в резервуар насосом через теплообменник и аппараты.

Тепло, необходимое для работы отгонных секций ректификационных колонн, сообщается соответственно кипятильниками. Внешняя отпарная секция обслуживается кипятильником. В кипятильники соответствующие рециркуляты подаются насосами. Теплоносителем для кипятильников является водяной пар.

Материальный баланс установки зависит от потенциального содержания узких фракций в бензиновом дистилляте, а также от четкости ректификации.

Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.

Газойлевые фракции – используются в производстве технического углерода (сажи), как компонент котельного топлива, а после гидроочнстки – для приготовления дизельных и газотурбинных топлив. Крекинг-остаток – направляется на установки замедленного коксования для производства кокса, применяется как компонент котельного топлива.

Фракции, полученные из малосернистого сырья, могут быть использованы как тяжелое котельное топливо (мазут Ml00 малосернистый), другие фракции – как компоненты котельных топлив. Газойлевая фракция с глухой тарелки колонны откачивается горячим насосом ( производительностью до 50 м3 / ч) в печь легкого сырья для глубокого крекинга, где нагревается до более высоких температур, чем тяжелое сырье в печи. Далее продукты крекинга из обеих печей входят в верхнюю часть выносной реакционной камеры, где поддерживается давление 2 – 2 5 МПа. Продукты реакции снизу камеры направляются в испаритель высокого давления, работающий при давлении 0 8 – 1 0 МПа, где производится разделение продуктов крекинга на паровую и жидкую фазы. Регулировка давления и его снижение производится с помощью редукционного клапана, установленного на линии перетока продуктов крекинга из выносной реакционной камеры в испаритель высокого давления. Жидкая фаза в виде тяжелого крекинг-остатка самотеком поступает в испаритель низкого давления, где за счет уменьшения давления из него происходит выделение паров газойлевых фракций, которые через проход в глухой тарелке попадают в верхнюю часть колонны и вступают в контакт с исходным сырьем, подаваемым в верхнюю часть. Некоторое количество несконденсировавшихся в колонне паров и газов конденсируется и охлаждается в холодильнике, затем собираются в сборнике-газосепараторе, откуда насосом возвращается в верхнюю часть колонны в виде орошения.

Газойлевая фракция 195 – 270 С может быть использована (с учетом ее химического состава) как компонент низкозастывающего дизельного топлива. Фракция 270 – 420 С используется как сырье для технического углерода, а остаточная фракция, выкипающая выше 420 С – в качестве компонента сырья коксования или котельного топлива.

2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя

Коксование – квалифицированная переработка тяжёлых нефтяных остатков, как первичной, так и вторичной переработки, с получением нефтяного кокса, применяемого для производства электродов, используемых в металлургической промышленности, а также дополнительного количества светлых нефтепродуктов. В отличие от ранее описанных процессов, коксование является термическим процессом, не использующим катализатор.

Коксование – это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка – кокса. Последний находит широкое применение в различных отраслях народного хозяйства. Сырьем для коксования – в основном, является каменный уголь, в значительно меньших масштабах перерабатывают другие горючие ископаемые, а также высококипящие остаточные продукты дистилляции нефти, каменноугольный пек и т. д.

Среди термических процессов наиболее широкое распространение в нашей стране и за рубежом получил процесс замедленного коксования, который позволяет перерабатывать самые различные виды тяжелых нефтяных остатков (ТНО) с выработкой продуктов, находящих достаточно квалифицированное применение в различных отраслях народного хозяйства.

Замедленное коксование – это непрерывный процесс, осуществляемый при температуре около 500°С и давлении, близком к атмосферному. Сырьё поступает в змеевики технологических печей, в которых идёт процесс термического разложения, после чего поступает в камеры, в которых происходит образование кокса. На установках сооружается 4 коксовые камеры, работающие попеременно. Камера в течении суток работает в режиме реакции, заполняясь коксом, после чего в течение суток осуществляются технологические операции по выгрузке кокса и подготовке к следующему циклу.

Кокс из камеры удаляется при помощи гидрорезака, представляющего собой бур с расположенными на конце соплами, через которые под давлением 150 атм. подаётся вода, которая раздробляет кокс.

Раздробленный кокс сортируется на фракции, в зависимости от размера частиц.

Сверху коксовых камер уходят пары продуктов и поступают на ректификацию. Светлые фракции, полученные при коксовании, характеризуются низким качеством из-за большого содержания олефинов и поэтому желательно их дальнейшее облагораживание.

Выход кокса составляет порядка 25% при коксовании гудрона, выход светлых фракций – около 35%.

Достоинства замедленного коксования – высокий выход малозольного кокса. Из одного и того же количества сырья, этим методом можно получить в 1,5-1,6 раза больше кокса, чем при непрерывном коксовании. Поэтому замедленное коксование применяют, как правило, для производства нефтяного кокса.

Установка замедленного коксования предназначена для получения крупнокускового нефтяного кокса, который используется в производствах цветных металлов, кремния, абразивных материалов, в электротехнической промышленности.

В качестве сырья на установках используют тяжёлые нефтяные остатки, такие как гудрон, мазут, крекинг-остатки, тяжёлая смола пиролиза.

В качестве побочных продуктов на установке замедленного коксования получают углеводородный газ, бензиновую фракцию и газойлевые дистилляты. Полученные газойлевые фракции и бензин коксования перед дальнейшим использованием необходимо подвергнуть гидрооблагораживанию из-за повышенного (по сравнению с прямогонными дистиллятами) содержания непредельных и гетероорганических соединений.

Процесс основан на термолизе тяжелых нефтяных остатков в течение достаточно длительного времени при повышенных температурах (до 500° С), в результате которого образуются легкие фракции крекинга и продукт уплотнения – кокс.

Режим работы коксовой камеры составляет 48 часов: 24 часа коксовая камера заполняется коксом, и в течение 20-22 часов осуществляется выгрузка кокса из коксовых камер при помощи струи воды под высоким давлением (до 14 МПа).

Технологические схемы установок замедленного коксования включают в себя следующие основные блоки:

· Нагревательный (сюда относится конвекционная секция печи установки, нижняя секция ректификационной колонны, где происходит нагрев продуктами коксования, радиантная секция печи);

· Реакционный (представляет собой две/четыре полые камеры, работающие попеременно, где непосредственно происходит процесс замедленного коксования тяжёлых нефтяных остатков);

· Фракционирующий (разделение полученных лёгких фракций коксования: газ, бензин, газойль);

· Блок механической обработки кокса , его выгрузки, сортировки и транспортировки.

Процессы коксования в слое теплоносителя имеют существенное преимущество перед процессом замедленного коксования: Сырье, предварительно нагретое в теплообменнике, контактирует в реакторе с нагретым и находящимся во взвешенном состоянии инертным теплоносителем (обычно порошкообразный кокс с размером частиц до 0,3 мм, реже более крупные гранулы) и коксуется на его поверхности в течение 6-12 мин.

Образовавшийся кокс и теплоноситель выводят из зоны реакции и подают в регенератор (коксонагреватель). В последнем слой теплоносителя поддерживается во взвешенном состоянии с помощью воздуха, в токе которого выжигается до 40% кокса, а большая его часть направляется потребителю. Благодаря теплоте, выделившейся при выжигании части кокса, теплоноситель нагревается и возвращается в реактор. Для перемещения теплоносителя используется пневмотранспорт частиц кокса, захватываемых потоком пара или газа. Дистиллятные фракции и газы выводят из реактора и разделяют так же, как при замедленном коксовании. Типичные параметры процесса: температура в теплообменнике, реакторе и регенераторе 300-320, 510-540 и 600-620 °С соответственно, давление в реакторе и регенераторе 0,14-0,16 и 0,12-0,16 МПа соответственно, соотношение по массе сырье теплоноситель = (6,5-8,0).

Коксование в кипящем слое используют для увеличения производства светлых нефтепродуктов. Кроме того, сочетание непрерывного коксования с газификацией образующегося кокса, может быть применено для получения дизельных и котельных топлив.

III. Термокаталитические и термогидрокаталитические Процессы технологии пер Еработки нефти

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Гидроочистки подвергаются следующие фракции нефти:

2. Керосиновые фракции; 3. Дизельное топливо; 4. Вакуумный газойль; 5. Моторные масла. Гидроочистка керосиновых Фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закокcовывают форсунки двигателей. Одновременно снижается коррозионная агрессивность топлив и уменьшается образование осадка при их хранении. Типичным сырьем при гидроочистке керосиновых дистиллятов являются фракции 130—240 и 140— 230°С прямой перегонки нефти. Однако при получении некоторых видов топлив, верхний предел выкипания может достигать 315°С. Целевым продуктом процесса является гидроочищенная керосиновая фракция, выход которой может достигать 96—97% (масс.).

Керосиновая фракция 120—230 (240) °С используется как топливо для реактивных двигателей, при необходимости подвергается демеркаптанизации, гидроочистке; фракцию 150—280 или 150—315 °С из малосернистых нефтей используют как осветительные керосины, фракцию 140—200 °С — как растворитель (уайт-спирит) для лакокрасочной промышленности.

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие установки (ГФУ)

На НПЗ для разделения нефтезаводских газов применяются преимущественно 2 типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации: ректификационный – сокращенно ГФУ, и абсорбционно-ректификационный АГФУ.

Назначение ГФУ – получение индивидуальных легких углеводородов или углеводородных фракций высокой чистоты из нефтезаводских газов. Газофракционирующие установки (ГФУ) подразделяются по типу перерабатываемого сырья на ГФУ предельных и ГФУ непредельных газов.

Сырье поступает на ГФУ в газообразном и жидком (головки стабилизации) виде. На ГФУ предельных газов подаются газы с установок первичной перегонки, каталитического риформинга, гидрокрекинга, на ГФУ непредельных газов – с установок термического и каталитического крекинга, коксования.

Продукцией ГФУ Предельных газов являются узкие углеводородные фракции:

· Этановая – применяется как сырье пиролиза, в качестве хладагента, на установках депарафинизации масел, выделения параксилола и др.;

· Пропановая – используется как сырье пиролиза, бытовой сжиженный газ, хладагент;

· Изобутановая – служит сырьем установок алкилирования и производства синтетического каучука;

· Бутановая – применяется как бытовой сжиженный газ, сырье производства синтетического каучука; в зимнее время добавляется к товарным автомобильным бензинам для обеспечения требуемого давления паров;

· Изопентановая – служит сырьем для производства изопренового каучука, компонентом высокооктановых бензинов;

· Пентановая – является сырьем для процессов изомеризации и пиролиза.

· Пропан-пропиленовая – применяется в качестве сырья для установок полимеризации и алкилирования, производства нефтехимических продуктов;

· Бутан-бутиленовая – используется в качестве сырья установок полимеризации, алкилирования и различных нефтехимических производств.

В блоке ректификации ГФУ из углеводородного газового сырья сначала в деэтанизаторе извлекают сухой газ, состоящий из метана и этана.

На верху колонны поддерживают низкую температуру подачей орошения, охлаждаемого в аммиачном конденсаторе-холодильнике.

Кубовый остаток деэтанизатора поступает в пропановую колонну, где разделяется на пропановую фракцию, выводимую с верха этой колонны, и смесь углеводородов С4 и выше, направляемую в бутановую колонну. Ректификатом этой колонны является смесь бутанов, которая в изобутановой колонне разделяется на изобутановую и бутановую фракции.

Кубовый продукт колонны подается далее в пентановую колонну, где в виде верхнего ректификата выводится смесь пентанов, которая в изопентановой колонне разделяется на н-пентан и изопентан.

Нижний продукт колонны – фракция С6 и выше – выводится с установки. На АГФУ сочетается предварительное разделение газов на легкую и тяжелую части абсорбционным методом с последующей их ректификацией.

Конденсационно-ректификационный метод заключается в частичной или полной конденсации газовых смесей с последующей ректификацией конденсатов. При необходимости продукты подвергаются дополнительной очистке от меркаптанов раствором щелочи.

Для деэтанизации газов каталитического крекинга на установках АГФУ используется фракционирующий абсорбер. Он представляет собой комбинированную колонну абсорбер-десорбер. В верхней части фракционирующего абсорбера происходит абсорбция, то есть поглощение из газов целевых компонентов (С3 и выше), а в нижней – частичная регенерация абсорбента за счет подводимого тепла. В качестве основного абсорбента на АГФУ используется нестабильный бензин каталитического крекинга. Для доабсорбции унесенных сухим газом бензиновых фракций в верхнюю часть фракционирующего абсорбера подается стабилизированный бензин. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции. Тепло в низ абсорбера подается с помощью «горячей струи». С верха фракционирующего абсорбера выводится сухой газ (С1-С2), а с низа вместе с тощим абсорбентом выводятся углеводороды С3 и выше.

Деэтанизированный бензин, насыщенный углеводородами С3 и выше, после подогрева в теплообменнике подается в стабилизационную колонну, нижним продуктом которого является стабильный бензин, а верхним – головка стабилизации. Из нее (иногда после сероочистки) в пропановой колонне выделяют пропан-пропиленовую фракцию. Кубовый продукт пропановой колонны разделяется в бутановой колонне на бутан-бутиленовую фракцию и остаток (С5 и выше), который объединяется со стабильным бензином.

Технологические установки перегонки нефти предназначены для разделения нефти на фракции и последующей переработки или использования их как компоненты товарных нефтепродуктов. Они составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырье для вторичных процессов и для нефтехимических производств. От их работы зависят ассортимент и качество получаемых компонентов и технико-экономические показатели последующих процессов переработки нефтяного сырья.

Компоненты, полученные после первичной переработки обычно не используются как готовый продукт. Легкие фракции проходят дополнительно крекинг, реформинг, гидрогенизационное облагораживание, целью которых является получение невысокой ценой наибольшего объема конечных продуктов с наиболее точными удовлетворительными качественными показателями. Тяжелые фракции после перегонки перерабатывают дополнительно на битумных, коксующих и других установках.

В результате первичной перегонки нефти при атмосферном давлении получаются следующие продукты:

·Сжиженный углеводородный газ, состоящий в основном из пропана и бутана.

1. Коршак А. А., Шаммазов А. М.: «Основы нефтегазового дела», издательство «Дизайнполиграфсервис», 2005. – 544с.

2. Шаммазов А. М. и др.: «История нефтегазового дела России», Москва, «Химия», 2001. – 316 с.

3. Ахметов С. А. Технология глубокой переработки нефти и газа. Уфа: «ГИЛЕМ», 2002. – 671с.;

4. Ахметов С. А. и др. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов; Под ред С. А. Ахметова. – СПб.: Недра,2006. – 868 с.

5. Капустин В. М. Основные каталитические процессы переработки нефти /В. М. Капустин, Е. А. Чернышева. – М.: Калвис, 2006. – 116 с.

6. Мановян А. К. Технология переработки природных энергоносителей. – М.: Химия, КолосС, 2004. – 456 с.

7. Магарил Р. З. Теоретические основы химических процессов переработки нефти: учебное пособие. – М.: КДУ, 2008. – 280 с.

8. Смидович Е. В. Технология переработки нефти и газа. Ч.2-я. – М.: Химия, 1980. – 376с.

Http://www. bestreferat. ru/referat-214809.html

Добавить комментарий