Процесс переработки нефти

Установки от экстрасенса 700х170

Перегонка нефти была известна еще в начале нашей эры. Этот способ применяли для уменьшения неприятного запаха нефти при ее использовании в лечебных целях. В небольшом количестве нефть перегоняли в колбах, а в большем ─ в кубах.

В 1823 г. завод по перегонке нефти соорудили вблизи Моздока крепостные крестьяне, мастера смолокурения братья Дубинины. Нефтеперегонная установка представляла с собой железный куб с медной крышкой, вмазанный в печь. Из крышки куба выходила трубка, проходящая через бочку с водой. Пары нефти, выделяющиеся при ее нагреве, охлаждались водой и конденсировались. Как только эта жидкость начинала темнеть, топку тушили, а густой остаток в кубе – мазут – выбрасывали. Из 40 ведер нефти получали 16 ведер фотогена (аналога керосина). Двадцать ведер оставалось в кубе в виде мазута, а 4 «угорали» – терялись в процессе перегонки.

Совершенствовалась техника перегонки нефти. Если первоначально она производилась в кубах периодического действия, аналогичных тем, что использовали братья Дубинины. Однако такая технология перегонки не обеспечивала надежного разделения нефти на фракции, поскольку температурные границы отбираемых фракций определялись «на глазок».

Со временем кубовые установки превратились в кубовые батареи – набор соединявшихся друг с другом кубов, каждый из которых служил для получения определенной нефтяной фракции. К концу XIX в. были разработа-ны кубовые батареи непрерывного действия. В них использовался принцип регенерации тепла: получаемые горячие нефтяные фракции отдавали свое тепло нефти, поступающей на переработку. Это позволило резко увеличить производительность установок. Так, установка, предложенная в 1886 г. В. Г. Шуховым Ф. А. Инчиком, позволяла ежесуточно перегонять количество нефти, в 27 раз превышающее объем аппарата, тогда как аналогичный показатель для куба периодического действия равен 1,5, а для кубовой батареи – 4.

На протяжении почти всего XIX в. целью перегонки нефти было, в основном, получение керосина. Его качество и выход зависели от природы нефти, технологии ее перегонки и других факторов.

Наряду с перегонкой развивались и другие способы нефтепереработ-ки. В 1879 г. при консультации Д. И. Менделеева недалеко от Ярославля был построен первый в мире завод для производства смазочных масел из мазута. А в 1891 г. В. Г. Шухов и С. Гаврилов изобрели способ получения легких углеводородов расщеплением тяжелых углеводородов при высоких температуре и давлении. Данный процесс получил название крекинга. Авторство этого изобретения пытался присвоить себе американский химик Ум. Бартон. Судебное дело по крекинг-процессу возникло в результате скандала двух американских фирм, затеявших между собой патентную тяжбу. Однако международный суд установил, что изобретателями крекинг-процесса являются российские ученые, а все изобретенное в последствии – это просто усовершенствование.

С момента поступления на нефтеперерабатывающий завод нефть и получаемые из нее нефтепродукты проходят следующие основные этапы:

Для обеспечения высоких показателей работы установок по переработке нефти в них необходимо подавать нефть с содержанием солей не более 6 г/л и воды 0,2%. Поэтому нефть, поступающую на нефтеперераба-

Тывающий завод (НПЗ), подвергают дополнительному обезвоживанию и обессоливанию.

Эта доочистка осуществляется на электрообессоливающих установках ЭЛОУ. Нефть двумя потоками с помощью насосов прокачивается через подогреватели, где нагревается отработавшим паром. После этого в нее добавляется деэмульгатор и нефть поступает в отстойники, где от нее отделяется вода. Для вымывания солей в нефть добавляют щелочную воду.

Основное ее количество затем отделяют в электродегидраторе первой ступени. Окончательное обезвоживание нефти осуществляется в электордегидраторе второй ступени.

Переработка нефти начинается с ее Перегонки. Нефть представляет собой сложную смесь большого количества взаимно растворимых углево-

Дородов, имеющих различные температуры начала кипения. В ходе пере-

Гонки, повышая температуру, из нефти выделяют углеводороды, выкипа-

Для получения данных фракций применяют процесс, называемый Ректификацией и осуществляемый в Ректификационной колонне. Ректификация ─ это процесс разделения нестабильного газового бензина на отдельные компоненты.

В зависимости от внутреннего устройства, обеспечивающего контакт между восходящими парами и нисходящей жидкостью (флегмой), ректификационные колонны делятся на Насадочные, Тарельчатые, Роторные и др. В зависимости от давления они делятся на ректификационные колонны Высокого давления, Атмосферные и Вакуумные. Первые применяют в процессах стабилизации нефти и бензина, газофракционирования, на установках крекинга и гидрогенизации. Атмосферные и вакуумные ректификационные колоны в основном применяют при перегонке нефти, остаточных нефтепродуктов и дистилляторов.

Ректификационная колонна представляет собой вертикальный цилиндрический аппарат высотой 20…30 м и диаметром 2…4 м. Внутренность колонны разделена на отдельные отсеки большим количеством горизонтальных дисков, в которых имеются отверстия для прохождения через них паров нефти и жидкости.

Перед закачкой в ректификационную колонну нефть нагревают в трубчатой печи до температуры 350…360 0 С. При этом легкие углеводороды, бензиновая, керосиновая и дизельная фракции переходят в парообразное состояние, а жидкая фаза с температурой кипения выше 350 0 С представляет собой мазут.

После ввода данной смеси в ректификационную колонну мазут стекает вниз, а углеводороды, находящиеся в парообразном состоянии, поднимаются вверх. Кроме того, вверх поднимаются пары углеводородов, испаряющиеся из мазута, нагреваемого в нижней части колонны до 350 0 С.

Поднимаясь вверх, пары углеводородов постепенно остывают, их температура в верхней части колонны становится равной 100 …180 0 С. Этому способствуют как теплоотдача в окружающую среду, так и искусственное охлаждение паров в колонне путем распыливания части сконденсированных паров (орошение).

По мере остывания паров нефти конденсируются соответствующие углеводороды. Технологический процесс рассчитан таким образом, что в самой верхней части колонны конденсируется бензиновая фракция, ниже ─ керосиновая, еще ниже ─ фракция дизельного топлива. Несконденсировавшиеся пары направляются на гаофракционирование, где из них получают сухой газ (метан, этан), пропан, бутан и бензиновую фракцию.

Перегонка нефти с целью получения указанных фракций (по топливному варианту) производится на атмосферных трубчатых установках (АТ). Для более глубокой переработки нефти используются атмосферно-вакуумные трубчатые установки (АВТ), имеющие кроме атмосферного вакуумный блок, где из мазута выделяют масляные фракции (дистилляты), вакуумный газойль, оставляя в остатке гудрон.

Методы вторичной переработки нефти делятся на две группы ─ термические и каталитические.

К Термическим методам относятся термический крекинг, коксование и пиролиз.

Термический крекинг ─ это процесс разложения высокомолекулярных углеводородов на более легкие при температуре

470 . 540 0 С и давлении 4 …6 МПа. Сырьем для термического крекинга является мазут и другие тяжелые нефтяные остатки. При высокой температуре и давлении длинноцепочные молекулы сырья расщепляются и образуются более легкие углеводороды, формирующие бензиновую и керосиновую фракции, а также газообразные углеводороды.

Коксование ─ это форма термического крекинга, осуществляемого при температуре 450 …550 0 С и давлении 0,1 …0,6 МПа. При этом получаются газ, бензин, керосиногазойлевые фракции, а также кокс.

Пиролиз ─ это термический крекинг, проводимый при температуре 750 … 900 0 С и давлении близком к атмосферному, с целью получения сырья для нефтехимической промышленности. Сырьем для пиролиза являются легкие углеводороды, содержащиеся в газах, бензины первичной перегонки, керосины термического крекинга, керосиногазойлевая фракция. В результате пиролиза получают газы ─ этилен, пропилен, бутадиен, ацетилен, а также жидкие продукты ─ бензол, толуол, ксилол, нафталин и другие ароматические углеводороды.

К Каталитическим методам относятся каталитический крекинг, риформинг, гидрогенизационные процессы.

Каталитический крекинг ─ это процесс разложения высокомолекулярных углеводородов при температурах 450 …500 0 С и давлении 0,2 МПа в присутствии катализаторов ─ веществ, ускоряющих реакцию крекинга и позволяющих осуществлять ее при более низких, чем при термическом крекинге, давлениях.

Сырьем для каталитического крекинга являются вакуумный газойль, а также продукты термического крекинга и коксования мазутов и гудронов. Получаемые продукты ─ газ, бензин, кокс, легкий и тяжелый газойли.

Риформинг ─ это разновидность каталитического крекинга, осуществляемого при температуре около 500 0 С и давлении 2 … 4 МПа с применением катализаторов из окиси молибдена или платины. Риформингу подвергают обычно низкооктановый бензин прямой гонки с целью получе – ния высокооктанового бензина. Кроме того, при риформинге можно полу – чать ароматические углеводороды ─ бензол и толуол.

Гидрогенизационными называются процессы переработки газой – лей, мазутов, гудронов и других продуктов в присутствии водорода, вводи – мого в систему извне. Гидрогенизационные процессы протекают в присутствии катализаторов при температуре 260 …430 0 С и давлении 2 …32 МПа. В этих условиях введенный извне водород присоединяется к разорван – ным длинно-цепочным молекулам, образуя большое количество легких углеводородов, соответственно количество кокса на выходе уменьшается.

Таким образом, применение гидрогенизационных процессов позволяет углубить переработку нефти, обеспечив увеличение выхода светлых нефтепродуктов.

Данные процессы требуют больших капиталовложений и резко увеличивают эксплуатационные расходы, что ухудшает технико-экономические показатели заводов. Затраты тем больше, чем выше давление, применяемое в процессе, чем более тяжелым по плотности и фракционному составу является сырье и чем больше в нем серы.

Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. Состав и концентрация примесей, содержащихся в дистиллятах, зависят от вида используемого сырья, применяемого процесса его переработки, технологического режима установки. Для удаления вредных примесей дистилляты подвергаются очистке.

Http://works. doklad. ru/view/AdAKlKE5rPU. html

Сырая нефть содержит растворенные в ней газы, называемые попутными, воду, минеральные соли, различные механические примеси. Подготовка нефти к переработке сводится к выделению из нее этих включений и нейтрализации химически активных примесей.

Выделение из нефти попутных газов производится в газоотделителях путем уменьшения растворимости газов за счет снижения давления. Затем газы направляются для дальнейшей переработки на газобензиновый завод, где из них извлекают газовый бензин, этан, пропан, бутан.

В специальных подогревателях выделяют из нефти легкие бензиновые фракции, а затем, добавив деэмульгатор, направляют в отстойные резервуары. Здесь происходит освобождение нефти от песка и глины и обезвоживание. Более качественным способом разрушения эмульсий и удаления воды является электрический способ, заключающийся в пропускании нефти между электродами, включенными в цепь переменного электрического тока высокого напряжения (30-45 тыс. В). При обезвоживании нефти происходит и удаление значительной части солей (обессоливание). Установки, служащие для удаления солей из нефти способом, сочетающим термохимическое отстаивание с обработкой эмульсии в электрическом поле, называются электрообессоливающими (ЭЛОУ).

Присутствующие в нефти химические активные примеси в виде серы, сероводорода, солей, кислот нейтрализуются с помощью растворов щелочей или аммиака. Этот процесс, имеющий целью предотвращение коррозии аппаратуры, называется защелачиванием нефти.

Кроме того, подготовка нефти к переработке включает сортировку и смешение нефтей для получения более равномерного по составу сырья.

Существуют первичные и вторичные методы переработки нефти. Первичными являются процессы разделения нефти на фракции перегонкой, вторичные процессы – это деструктивная переработка нефти и очистка нефтепродуктов.

К первичной перегонке относятся процессы атмосферной перегонки нефти и вакуумной перегонки мазута. Их назначение состоит в разделении нефти на фракции для последующей их переработки или использования как товарных продуктов. Первичную переработку осуществляют соответственно в атмосферных трубчатых (АВ) и вакуумных трубчатых (ВТ) или атмосферно-вакуумных трубчатых (АВТ) установках.

На установках АТ осуществляют неглубокую переработку нефти с получением бензиновых, керосиновых, дизельных фракций и мазута. Установки ВТ предназначены для углубления переработки нефти. Получаемые в них из мазута газойлевые, масляные фракции и гудрон используют в качестве сырья в процессах вторичной переработки нефти для производства смазочных масел, кокса, битума и других нефтепродуктов.

Продукты перегонки нефти на установках АВТ имеет следующий состав:

Углеводородный газ состоит преимущественно из пропана и бутанов, которые в растворенном виде содержатся в поступающей на переработку нефти. Пропан-бутановую фракцию используют для производства индивидуальных углеводородов на газофракционирующих установках в качестве бытового топлива.

Бензиновые фракции (62-180 0 С) служат сырьем во вторичных процессах изомеризации, каталитического риформинга с целью производства индивидуальных ароматических углеводородов (бензола, толуола, ксилолов), высокооктановых компонентов автомобильных и авиационных бензинов; их применяют в качестве сырья пиролиза при получения этилена.

Керосиновые фракции (120-240 0 С) используются как топливо для реактивных двигателей в виде осветленного керосина и для производства лаков и красок.

Дизельные фракции (140-340 0 С) служат дизельным топливом и сырьем для получения жидких парафинов депарафинизацией.

Мазут – остаток атмосферной перегонки нефти – используется как котельное топливо и в качестве сырья во вторичных процессах переработки (каталитический крекинг, гидрокрекинг).

Гудрон – остаток вакуумной переработки мазута – подвергается деасфальтизации, коксованию с целью углубления переработки нефти и используется в производства битума.

Http://studopedia. ru/3_72558_protsessi-pererabotki-nefti. html

Подготовка нефти к переработке. Добываемая на промыслах нефть помимо растворенных в ней газов содержит некоторое количество примесей – частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц в неочищенной нефти обычно не превышает 1,5 %, а количество воды может изменяться в широких пределах. С увеличением продолжительности эксплуатации месторождения возрастает обводнение нефтяного пласта и содержание воды в добываемой нефти. В некоторых старых скважинах жидкость, получаемая из пласта, содержит 90 % воды. В нефти, поступающей на переработку, должно быть не более 0,3 % воды. Присутствие в нефти механических примесей затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти (мазутов и гудронов), содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти (метан, этан, пропан и т. д., включая бензиновые фракции) до 5 % от фракций, выкипающих до 100 °С.

С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерным износом нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке.

Для сокращения потерь легких компонентов осуществляют стабилизацию нефти, а также применяют специальные герметические резервуары хранения нефти. От основного количества воды и твердых частиц нефть освобождают путем отстаивания в резервуарах на холоде или при подогреве. Окончательно ее обезвоживают и обессоливают на специальных установках.

Однако вода и нефть часто образуют трудноразделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти. В общем случае эмульсия есть система из двух взаимно нерастворимых жидкостей, в которых одна распределена в другой во взвешенном состоянии в виде мельчайших капель. Существуют два типа нефтяных эмульсий: нефть в воде, или гидрофильная эмульсия, и вода в нефти, или гидрофобная эмульсия. Чаще встречается гидрофобный тип нефтяных эмульсий. Образованию стойкой эмульсии предшествуют понижение поверхностного натяжения на границе раздела фаз и создание вокруг частиц дисперсной фазы прочного адсорбционного слоя. Такие слои образуют третьи вещества эмульгаторы. К гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал. Гидрофобными являются хорошо растворимые в нефтепродуктах щелочноземельные соли органических кислот, смолы, а также мелкодисперсные частицы сажи, глины, окислов металлов и т. п., легче смачиваемые нефтью, чем водой.

– отстаивание – применяется к свежим, легко разрушаемым эмульсиям – расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии – процесс ускоряется нагреванием до 120-160 °С под давлением в течение 2-3 ч, не допуская испарения воды;

– центрифугирование – отделение механических примесей нефти под воздействием центробежных сил; в промышленности применяется редко;

– разрушение эмульсий достигается путем применения поверхностно-активных веществ – деэмульгаторов; разрушение достигается адсорбционным вытеснением действующего эмульгатора веществом с большей поверхностной активностью;

– растворением (разрушением) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором;

Химический метод применяется чаще механического, обычно в сочетании с электрическим.

– при попадании нефтяной эмульсии в переменное электрическое поле частицы воды, сильнее реагирующие на поле чем нефть, начинают колебаться, сталкиваясь друг с другом, что приводит к их объединению, укрупнению и более быстрому расслоению с нефтью; применяют установки, называемые электродегидраторами (ЭЛОУ – электроочистительные установки), с рабочим напряжением до 33000 В при давлении, группами по 6-8 шт. с производительностью 250-500 т нефти в сутки каждая; в сочетании с химическим этот метод имеет наибольшее распространение в промышленной нефтепереработке.

Сортировка и смешивание нефти. Различные нефти и выделенные из них соответствующие фракции отличаются друг от друга физико-химическими и товарными свойствами. Так, бензиновые фракции некоторых нефтей характеризуются высокой концентрацией ароматических, нафтеновых или изопарафиновых углеводородов и поэтому имеют высокие октановые числа, тогда как бензиновые фракции других нефтей содержат в значительных количествах парафиновые углеводороды и имеют очень низкие октановые числа. Важное значение в дальнейшей технологической переработке нефти имеет серность, масляничность, смолистость нефти и др. Таким образом, существует необходимость отслеживания качественных характеристик нефтей в процессе транспортировки, сбора и хранения с целью недопущения потери ценных свойств компонентов нефти.

Раздельные сбор, хранение и перекачка нефтей в пределах месторождения с большим числом нефтяных пластов осложняет нефтепромысловое хозяйство и требует больших капиталовложений. Поэтому близкие по физико-химическим и товарным свойствам нефти на промыслах смешивают и направляют на совместную переработку.

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и потребностью в товарных нефтепродуктах. Различают три основных варианта переработки нефти:

По ТопливномуВарианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы: каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива.

По Топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. В этом случае для выработки высококачественных масел требуется минимальное количество технологических установок. Масляные фракции (фракции, выкипающие при температуре выше 350 °С), выделенные из нефти, сначала подвергаются очистке избирательными растворителями: фенолом или фурфуролом, чтобы удалить часть смолистых веществ и низкоиндексные углеводороды, затем проводят депарафинизацию при помощи смесей метилэтилкетона или ацетона с толуолом для понижения температуры застывания масла. Заканчивается обработка масляных фракций доочисткой отбеливающими глинами. Последние технологии получения масел используют процессы гидроочистки взамен селективной очистки и обработки отбеливающими глинами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуется деасфальт и асфальт. Деасфальт подвергается дальнейшей обработке, а асфальт перерабатывают в битум или кокс.

Нефтехимический вариант переработки нефти по сравнению с предыдущими отличается большим ассортиментом нефтехимической продукции и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных топлив и масел проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза и осуществляются сложнейшие физико-химические процессы, связанные с многотоннажным производством синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и др.

Нефть представляет собой сложную смесь парафиновых, нафтеновых и ароматических углеводов, различных по молекулярной массе и температуре кипения. Кроме того, в нефти содержатся сернистые, кислородные и азотистые органические соединения. Для производства многочисленных продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти:

Используются ее потенциальные возможности по ассортименту, количеству и

• ко вторичным относят процессы деструктивной переработки нефти и

Очистки нефтепродуктов, предназначенные для изменения ее химического

Состава путем термического и каталитического воздействия; при помощи

Этих методов удается получить нефтепродукты заданного качества и в

Перегонка нефти. Различают перегонку с однократным, многократным и постепенным испарением. При перегонке с однократным испарением нефть нагревают до определенной температуры и отбирают все фракции, перешедшие в паровую фазу. Перегонка нефти с многократным испарением производится с поэтапным нагреванием нефти и отбором на каждом этапе фракций нефти с соответствующей температурой перехода в паровую фазу. Перегонку нефти с постепенным испарением в основном применяют в лабораторной практике для получения особо точного разделения большого количества фракций. Отличается от других методов перегонки нефти низкой производительностью.

Процесс первичной переработки нефти (прямой перегонки) с целью получения нефтяных фракций, различающихся по температуре кипения без термического распада, осуществляют в кубовых или трубчатых установках при атмосферном и повышенном давлениях или в вакууме. Трубчатые установки отличаются более низкой температурой кипения перегоняемого сырья, меньшим крекингом сырья и большим КПД. Поэтому на современном этапе нефтепереработки трубчатые установки входят в состав всех нефтеперерабатывающих заводов и служат поставщиками как товарных нефтепродуктов, так и сырья для вторичных процессов (термического и каталитического крекинга, риформинга).

В настоящее время перегонку нефти в промышленности производят на непрерывно действующих трубчатых установках. Устанавливается трубчатая печь, для конденсации и разделения паров сооружаются огромные ректификационные колонны, а для приёма продуктов перегонки выстраиваются целые городки резервуаров.

Трубчатая печь представляет собой помещение, выложенное внутри огнеупорным кирпичом. Внутри печи расположен многократно изогнутый стальной трубопровод. Длина труб в печах достигает километра. По этим трубам непрерывно с помощью насоса подаётся нефть с большой скоростью – до 2 м/сек. Печь обогревается горящим мазутом, подаваемым в неё при помощи форсунок. В трубопроводе нефть нагревается до 350-370 °С. При такой температуре более летучие вещества нефти превращаются в пар.

Так как нефть это смесь углеводородов различной молекулярной массы, имеющих разные температуры кипения, то перегонкой её разделяют на отдельные фракции. При перегонке нефти получают светлые нефтепродукты: бензин (tКИП – 90-200 °С), лигроин (tКИП – 150-230 °С), керосин (tКИП – 180-300 °С), легкий газойль соляровое масло (tКИП – 230-350 °С), тяжелый газойль (tКИП – 350-430 °С), а в остатке — вязкую черную жидкость мазут (tКИП – выше 430 °С). Мазут подвергают дальнейшей переработке. Его перегоняют под уменьшенным давлением (чтобы предупредить разложение) и выделяют смазочные масла.

При перегонке с однократным испарением нефть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре парожидкостная смесь покидает подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одна и та же.

Перегонка с многократным испарением состоит из двух или более однократных процессов перегонки с повышением рабочей температуры на каждом этапе.

Четкость разделения нефти на фракции при перегонке с однократным испарением меньше по сравнению с перегонкой с многократным и постепенным испарением. Но если высокой четкости разделения фракций не требуется, то метод однократного испарения экономичнее: при максимально допустимой температуре нагрева нефти 350-370 °С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением. Для отбора из нефти фракций, выкипающих при температуре выше 350-370 °С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расходования топлива на нагрев сырья.

В результате перегонки нефти при атмосферном давлении и температуре 350-370 °С остается мазут, для перегонки которого необходимо подобрать условия, исключающие возможность крекинга и способствующие отбору максимального количества дистиллятов. Самым распространенным методом выделения фракций из мазута является перегонка в вакууме. Вакуум понижает температуру кипения углеводородов и тем самым позволяет при 410-420 °С отобрать дистилляты, имеющие температуры кипения до 500 °С (в пересчете на атмосферное давление). Нагрев мазута до 420 °С сопровождается некоторым крекингом углеводородов, но если получаемые дистилляты затем подвергаются вторичной переработке, то присутствие следов непредельных углеводородов не оказывает существенного влияния. При получении масляных дистиллятов их разложение сводят к минимуму, повышая расход водяного пара, снижая перепад давления в вакуумной колонне и др. Существующие промышленные установки способны поддерживать рабочее давление в ректификационных колоннах 20 мм рт. ст. и ниже.

Рассмотренные методы перегонки нефти позволяют провести разделение на компоненты, однако оказываются непригодными, когда из нефтяных фракций требуется выделить индивидуальные углеводороды высокой чистоты (96-99 %), которые служат сырьем для нефтехимической промышленности (бензол, толуол, ксилол и др.) При первичной перегонке нефть подвергается только физическим изменениям. От неё отгоняются лёгкие фракции, т. е. отбираются её части, кипящие при низких температурах и состоящие из разных по величине углеводородов. Сами углеводороды остаются при этом неизменёнными. Выход бензина в этом случае составляет лишь 10-15 %. Такое количество бензина не может удовлетворить всё возрастающий спрос на него со стороны авиации и автомобильного транспорта.

Технологическая схема установки первичной переработки нефти дана на рис. 5. Нефть забирается насосом из сырьевого резервуара и проходит теплообменники, где подогревается за счет теплоты отхо­дящих продуктов, после чего поступает в электродегидраторы. В электродегидраторах под действием электрического поля, повышенной температуры, деэмульгаторов происходит разрушение водонефтяной эмульсии и отделение воды от нефти. Вода сбрасывается в канализацию (или подается на упарку с выделением солей), а нефть проходит вторую группу теплообменников и поступает в отбензинивающую колонну. В колонне из нефти выделяется легкая бензиновая фрак­ция, которая конденсируется в холодильнике-конденсаторе и поступает в рефлюксную емкость. Полуотбензиненная нефть с низа колонны подается через трубчатую печь в атмосферную колонну. Часть потока полуотбензиненной нефти возвращается в отбензинивающую колонну, сообщая дополнительное количество теплоты, необходимое для ректификации. В колонне нефть разделяется на несколько фракций. Верхний продукт колонны – тяжелый бензин – конденсируется в холодильнике-конденсаторе и поступает в рефлюксную емкость. Керосиновая и дизельная фракции выводятся из колонны боковыми по­гонами и поступают в отпарные колонны. В них из боковых погонов удаляются (отпариваются) легкие фракции. Затем керосиновая и дизельная фракции через теплообменники подогрева нефти и концевые холодильники выводятся с уста­новки. С низа выходит мазут, который через печь подается в колонну вакуумной перегонки.

В вакуумной колонне мазут разделяется на вакуумный дистиллят, который отбирается в виде бокового погона, и гудрон. С верха колонны с помощью пароэжекторного насоса отсасываются водяные пары, газы разложения, воздух и некоторое количество легких нефтепродуктов (дизельная фракция). Вакуумный дистиллят и гудрон через теплообменники подогрева нефти и конце­вые холодильники выводится из установки.

Для снижения температуры низа колонн и более полного извле­чения дистиллятных фракций в них подается водяной пар. Избыточная теплота снимается с помощью циркулирующих орошений.

Бензин из рефлюксных емкостей после подогрева подается в стабилизационную колонну. С верха уходит головка стабилизации – сжиженный газ, а с низа – стабильный бензин. Необходимая для ректификации теплота подводится циркуляцией части стабильного бензина через печь.

4. Каково аппаратурно-технологическое оформление процесса первичной перегонки нефти?

6. Охарактеризуйте фракционный состав продуктов прямой перегонки нефти.

Http://studopedia. su/12_48697_pervichnie-protsessi-pererabotki-nefti. html

Цель переработки нефти (Нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой её физическое разделение на фракции. Сначала промышленная нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей — этот процесс называется первичной сепарацией нефти [1] .

Нефть поступает на НПЗ (нефтеперерабатывающий завод) в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины, и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

    Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д. Облагораживающие: риформинг, гидроочистка, изомеризация и т. д. Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг — каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С [2] . В результате риформинга бензиновая фракция обогащается ароматическими соединениями, и октановое число бензина повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения индивидуальных ароматических углеводородов, таких как бензол, толуол и ксилолы.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки.

Каталитический крекинг — процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит водородсодержащий газ, образующийся при риформинге бензиновых фракций. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изоп из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

Http://wikiredia. ru/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BD%D0%B5%D1%84%D1%82%D0%B8

Характеристика способов переработки нефтяного сырья путем его преобразования под действием высокой температуры, высокой температуры и катализатора или только катализатора. Основы каталитического крекинга. Характеристика сырьевой базы вторичных процессов.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пояснительная записка 71 с., 10 рис., 3 табл., 14 источников и 1 прил.

НЕФТЬ, ВТОРИЧНАЯ ПЕРЕРАБОТКА, ПРОЦЕСС, ХИМИЗМ, ТЕХНОЛОГИЯ, СЫРЬЕ, КРЕКИНГ, КАТАЛИЗАТОР, ОБОРУДОВАНИЕ, РЕАКТОР, ЭНЕРГИЯ, ПРОДУКЦИЯ, ЖИЗНЕННЫЙ ЦИКЛ, ЭКОЛОГИЯ

Целью выполнения курсового проекта является изучение технологии вторичной переработки нефти. Объектом исследования является процесс и установка каталитического крекинга.

В проекте проведен литературный обзор процессов вторичной переработки нефти, где представлена характеристика способов переработки нефтяного сырья путем его преобразования под действием высокой температуры (термические процессы), высокой температуры и катализатора (термокаталитические процессы) или только катализатора (низкотемпературные каталитические процессы); приведена характеристика сырьевой базы вторичных процессов.

Подробно изучены физико-химические основы процесса каталитического крекинга: механизм реакций, протекающих при каталитическом крекинге, кинетика и термодинамика процесса, основные физические параметры технологического режима, которые определяют выход и качество получаемых продуктов; изучены свойства современных катализаторов крекинга.

Разработана технологическая схема установки каталитического крекинга и представлена характеристика основного технологического оборудования процесса, проведен анализ использования сырья и материалов, воды и энергоресурсов.

Проведена оценка жизненного цикла основной продукции и рассмотрены основные источники загрязнений окружающей среды в процессе эксплуатации установок вторичной переработки нефти.

5. Жизненный цикл продукции и основные виды воздействия процесса вторичной переработки нефти

5.2 Воздействие процесса вторичной переработки нефти на окружающую среду

Рациональное использование нефти невосполнимого источника энергии и сырья для производства множества нефтехимических продуктов, смазочных масел, битума, кокса и др. является важнейшей государственной задачей. Показателем уровня развития нефтеперерабатывающей промышленности, принятым не только в нашей стране, но и во всем мире, является глубина переработки нефти, представляющая собой процент выхода всех нефтепродуктов на нефть, за вычетом выхода топочного мазута и величины безвозвратных потерь [1].

Переработка нефти и нефтепродуктов это процесс комплексной обработки нефти, состоящий из нескольких стадий. Результатом нефтепереработки является получение целого комплекса продуктов, которые отличаются между собой по ряду критериев. Повысить глубину переработки возможно за счет более полного извлечения топливных фракций из нефти при ее первичной перегонке, подбора наиболее благоприятного состава топливных продуктов (бензин, реактивное топливо, дизельное топливо), а самое главное, за счет развития деструктивных процессов переработки нефтяных остатков с получением ценных топливных и нефтехимических продуктов. К таким процессам относятся термические, каталитические и гидрогенизационные технологии переработки вакуумных дистиллятов, мазутов и гудронов.

Из тяжёлых нефтепродуктов посредством осуществления термического крекинга получается газойль, который широко применяется для производства автомобильного топлива и кокса. Выход готового продукта в данном случае невысокий – до двадцати процентов от перерабатываемой массы. При проведении пиролиза или так называемого, высокотемпературного крекинга, при довольно высокой температуре и атмосферном давлении, из нефтяного сырья получают газ, который применяют при изготовлении бензола, нафталина и прочих химических веществ.

При применении каталитического крекинга имеется возможность получить бензин с высоким октановым числом, а также дизельное топливо. При данном процессе осуществляется разложение тяжёлых фракций нефти с помощью катализаторов этого процесса. Использование каталитического крекинга способствует росту качества бензина по сравнению с применением термического крекинга.

Переработка нефти и нефтепродуктов, имеющих тяжёлые фракции, в которых содержится значительное количество серы и смолы, а также их соединений, осуществляется с применением гидрокрекинга – процесса крекинга, в котором используется водород. Следует отметить, что в ходе данного процесса выход готового продукта может увеличиться до семидесяти процентов.

Вторичные процессы являются также источником получения сырья для нефтехимии (газообразные и жидкие олефины, индивидуальные ароматические углеводороды высокой чистоты), на основе которого производят пластические массы, синтетический каучук, синтетические волокна и другие материалы.

Различают процессы первичной и вторичной переработки нефти. Процессы первичной переработки нефти, к которым относятся прямая перегонка под атмосферным давлением (получение топливных дистиллятов и мазута) и под вакуумом (получение масляных дистиллятов, гудрона), основываются на законах физического разделения нефти на узкие фракции. Продукты первичной переработки нефти, как правило, не являются товарными нефтепродуктами. В связи с этим, полученные при первичной переработке светлые нефтепродукты далее поступают на установки вторичных процессов, призванные осуществить улучшение качества нефтепродуктов и углубление переработки нефти.

Ко вторичным относятся процессы деструктивной переработки нефти, предназначенные для изменения ее химического состава путем термического и каталитического воздействия (каталитический крекинг, риформинг, изомеризация, гидроочистка и др.).

Сырьем для процессов вторичной переработки нефти являются нефтепродукты, полученные при первичной переработке нефти [2]. Сырьевая база для процессов вторичной переработки нефти представлена в таблице 1.

Одной из причин, обуславливающих необходимость вторичных процессов, является то, что прямая перегонка дает только тот выход светлых нефтепродуктов, который обусловлен природными свойствами нефти. Применение термокаталитических процессов позволяет получать дополнительное количество светлых нефтепродуктов из тяжелых нефтяных фракций. Например, каталитический крекинг вакуумного газойля (фракция 350-500°С, составляющая 20-30% масс. на нефть) может дать до 45-50% масс. бензина, т. е. дополнительно 10-15% бензина в пересчете на нефть. Одновременно получается фракция легкого газойля, которую после соответствующего облагораживания можно использовать в качестве дизельного топлива. Не менее важной причиной является и то, что прямая перегонка нефтей (в основном парафинистых) не может дать бензин удовлетворительных качеств [3].

Простейшей схемой первичной перегонки нефти является атмосферная трубчатая установка (AT). Из сырых нестабильных нефтей извлекают компоненты светлых нефтепродуктов бензина, керосина, дизельных топлив. Остатком атмосферной перегонки является мазут. Он подвергается вакуумной перегонке. При этом получают вакуумные газойли или масляные фракции и тяжелый

Остаток гудрон. Для получения из мазута вакуумных газойлей или масляных фракций сооружают атмосферно-вакуумные установки (АВТ). Получаемые на них газойлевые, масляные фракции и гудрон используют в качестве сырья процессов последующей (вторичной) переработки их с получением топлив, смазочных масел, кокса, битумов и других нефтепродуктов.

Каталитический крекинг, гидрокрекинг, товарная продукция, смешение мазутов

При первичной перегонке нефти получают широкий ассортимент фракций и нефтепродуктов, различающихся по температурным границам кипения, углеводородному и химическому составу, вязкости, температурам вспышки, застывания и другим свойствам, связанным с областью их применения и использования.

Углеводородный газ состоит преимущественно из пропана и бутанов, которые в растворенном виде содержатся в поступающих на переработку нефтях. В зависимости от технологии первичной перегонки нефти пропан-бутановую фракцию получают в сжиженном или газообразном состоянии. Ее используют в качестве сырья газофракционирующих установок с целью производства индивидуальных углеводородов, бытового топлива, компонента автомобильного бензина.

Бензиновая фракция 28-180°С преимущественно подвергается вторичной перегонке (четкой ректификации) для получения узких фракций (28-62, 62-85, 85-105, 105-140, 85-40, 85-180°С), служащих сырьем процессов изомеризации, каталитического риформинга с целью производства индивидуальных ароматических углеводородов (бензола, толуола, ксилолов), высокооктановых компонентов автомобильных и авиационных бензинов; применяется в качестве сырья пиролиза при получении этилена, реже как компонент товарных бензинов.

Керосиновая фракция 120-230(240)°С используется как топливо для реактивных двигателей, при необходимости подвергается демеркаптанизации, гидроочистке; фракцию 150-280°С из малосернистых нефтей используют как осветительные керосины, фракцию 140-200°С как растворитель (уайт-спирит) для лакокрасочной промышленности.

Дизельная фракция 140-320(340)°С используется в качестве дизельного топлива зимнего, фракция 180-360(380)°С в качестве летнего. При получении из сернистых и высокосернистых нефтей требуется предварительное обессеривание фракций. Фракции 200-320°С и 200-340°С из высокопарафиновых нефтей используют как сырье для получения жидких парафинов депарафинизацией.

Мазут остаток атмосферной перегонки нефти применяется как котельное топливо, его компонент или в качестве сырья установок вакуумной перегонки, а также термического, каталитического крекинга и гидрокрекинга.

Широкая масляная фракция 350-500 и 350-540(580)°С вакуумный газойль используется в качестве сырья каталитического крекинга и гидрокрекинга.

Узкие масляные фракции 320(350)-400, 350-420, 400-450, 420-490, 450-500°С используют как сырье установок производства минеральных масел различного назначения и твердых парафинов.

Гудрон остаток вакуумной перегонки мазута подвергают деасфальтизации, коксованию с целью углубления переработки нефти, используют в производстве битума, остаточных базовых масел.

Получаемая на атмосферном блоке бензиновая фракция содержит газы (в основном пропан и бутан) в объеме, превышающем требования по качеству, и не может использоваться ни в качестве компонента автобензина, ни в качестве товарного прямогонного бензина. Кроме того, процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции. Этим обусловлено включение в технологическую схему первичной переработки нефти процесса вторичной перегонки, при которой от бензиновой фракции отгоняются сжиженные газы, и осуществляется её разгонка на 2-5 узких фракций на соответствующем количестве колонн. Процесс осуществляется на отдельных установках или блоках, входящих в состав AT и АВТ. Сырьем для вторичной перегонки является широкая бензиновая фракция н. к.-180°С.

1) фракция н. к.-62°С используется как компонент товарного автомобильного бензина и сырье установок изомеризации;

2) фракция 62-85°С является сырьем установок каталитического риформинга, на которых вырабатывается бензол;

3) фракция 85-105°С служит сырьем установок каталитического риформинга, на которых вырабатывается толуол;

4) фракция 105-140°С применяется в качестве сырья установок каталитического риформинга, на которых вырабатываются ксилолы;

5) фракция 140-180°С используется как компонент товарного автобензина и авиакеросина, сырье установок каталитического риформинга, работающих в режиме получения высокооктанового бензина и установок гидроочистки керосина.

Основное назначение процесса вакуумной перегонки мазута получение вакуумного газойля широкого фракционного состава (350-500°С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза и в некоторых случаях термического крекинга с получением дистиллятного крекинг-остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов. При вакуумной перегонке мазута топливного профиля получают следующие продукты:

2) легкий вакуумный газойль 250-380°С компонент дизельного, котельного и газотурбинного топлива;

4) (350-550°С) на гидроочистку и каталитический крекинг с получением ценных моторных топлив;

5) гудрон выше 500(550)°С на коксование или висбкрекинг, на получение битума, как компонент котельного топлива.

1) масляная фракция 350-420(420-500)°С на селективную очистку, депарафинизацию, гидроочистку с получением базовых дистиллятных масел;

2) гудрон выше 500°С деасфальтизация, селективная очистка, получение базового масла.

Поскольку приописании процессов вторичной переработки используются наименования групп углеводородов, входящих в состав нефти и нефтепродуктов, приведем краткие описания данных групп и влияние углеводородного состава на показатели качества нефтепродуктов [4].

Парафины насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвленного строения. Подразделяются на следующие основные группы:

- нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп.

- изопарафины с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками (например, изооктан эталонное вещество с октановым числом 100) и пониженной, по сравнению с нормальными парафинами, температурой застывания.

- нафтены (циклопарафины) насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

- ароматические углеводороды – ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом. Поэтому процесс, направленный на повышение октанового числа прямогонных фракций – каталитический риформинг, предусматривает превращение других групп углеводородовв ароматические углеводороды. При этом предельное содержание ароматических углеводородов и, в первую очередь, бензола в бензинах ограничивается стандартами.

- олефины – углеводороды нормального, разветвлённого или циклического строения, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

Четкая классификация вторичных процессов переработки нефтяного сырья затруднительна. Ниже приводится краткая характеристика вторичных процессов, частично сгруппированных по родственным признакам [3].

2.1.1 Термические процессы. К Этим процессам, получившим широкое Распространение, относятся:

А) термический крекинг при повышенном давлении (2,0-4,0 МПа) жидкого (в настоящее время в основном тяжелого) сырья с получением газа и жидких продуктов;

Б) коксование тяжелых остатков или высокоароматизированных тяжелых дистиллятов при невысоком давлении (до 0,5 МПа) с получением кокса, газа и жидких продуктов;

В) пиролиз (высокотемпературный крекинг) жидкого или газообразного сырья при невысоком давлении (0,2-0,3 МПа) с получением газа, богатого непредельными углеводородами, и жидкого продукта;

Эта группа процессов характеризуется высокими температурами в зоне реакции от 450 до 900°С. Под действием высокой температуры нефтяное сырье разлагается (собственно крекинг). Этот процесс сопровождается вторичными реакциями уплотнения вновь образовавшихся углеводородных молекул.

Термический крекинг под давлением применяли ранее для переработки различного сырья-лигроина, газойлей, мазутов – с целью получения автомобильного бензина. При переработке тяжелых нефтяных остатков (полугудроны, гудроны) целевым продуктом обычно является котельное топливо, получаемое за счет снижения вязкости исходного остатка. Такой процесс неглубокого разложения сырья носит название легкого крекинга, или висбрекинга. Висбрекинг проводят при давлении

Коксование нефтяных остатков проводят в направлении их «декарбонизации», когда асфальто-смолистые вещества, содержащиеся в исходном сырье, концентрируются в твердом продукте – коксе; в результате получаются более богатые водородом продукты – газойль, бензин и газ. Обычно целью процесса является получение кокса, но остальные продукты также находят квалифицированное применение.

Разновидность термического крекинга нефтяных остатков при невысоком давлении – деструктивная перегонка – направлена на получение максимального выхода соляровых фракций при минимальном количестве тяжелого жидкого остатка.

Пиролиз – наиболее жесткая форма термического крекинга. Сырье пиролиза весьма разнообразно. Температура процесса 700-900°С, давление близко к атмосферному. Цель процесса – получение газообразных непредельных углеводородов, в основном этилена и пропилена; в качестве побочных продуктов образуются ароматические углеводороды (бензол, толуол, нафталин).

К разновидности термических процессов часто относят и термоокислительные процессы (производство битума, газификация кокса, углей и др.).

Г) гидрогенизационные процессы (гидроочистка, гидрообессеривание, гидрокрекинг).

Основное назначение каталитического крекинга – получение высококачественного бензина; кроме того, получают газ, богатый бутан-бутиленовой фракцией (сырье для производства компонента высокооктановых бензинов), и газойлевые фракции. Катализаторы – алюмосиликаты, аморфные или более совершенные – кристаллической структуры (цеолиты). По температурному режиму процесс аналогичен термическому крекингу (470-540°С), но скорость реакций на несколько порядков больше, а качество получаемого бензина гораздо выше.

Сущность каталитического риформинга – ароматизация бензиновых фракций, протекающая в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Продуктами являются высокооктановый ароматизированныйбензин или (после соответствующих операций с целью их извлечения) индивидуальные ароматические углеводороды (бензол, толуол, ксилолы), которые используют в нефтехимической промышленности. Процесс осуществляют на катализаторах (платформинг) при 480-540°С и 2-4 МПа.

Каталитическая изомеризация легких бензиновых углеводородов (н-пентан и н-гексан) служит для повышения их октанового числа и использования в качестве компонентов высокооктановых бензинов. Подобно риформингу процесс осуществляют на алюмо-платиновых катализаторах под давлением водорода.

В результате термокаталитических преобразований нефтяного сырья под давлением водорода можно получать продукты весьма благоприятного состава. В зависимости от глубины воздействия водорода и назначения различают три разновидности гидрогенизационных процессов:

1. Гидроочистку проводят с целью облагораживания бензинов, дизельных топлив, масел и других нефтепродуктов путем разрушения содержащихся в них сернистых соединений и удаления серы в виде сероводорода. Наряду с обессериванием происходит насыщение непредельных углеводородов, а при более глубокой форме процесса – гидрирование ароматических углеводородов до нафтеновых.

2. Целью гидрообессеривания является снижение содержания серы в тяжелых остатках сернистых нефтей с целью использования этих остатков в качестве котельного топлива.

3. Гидрокрекинг – глубокое термокаталитическое превращение нефтяного сырья (в основном тяжелых сернистых дистиллятов) для получения бензина, реактивного и дизельного топлив.

Основные формы промышленных гидрогенизационных процессов характеризуются последовательным использованием катализаторов гидрообессеривания (А1-Со-Мо или А1-Ni-Мо) и катализаторов расщепления (Pt и Pd на носителе). Температуры лежат в пределах 350-500°С; давление в зависимости от глубины процесса меняется от 3 МПа (гидроочистка) до 15-20 МПа (гидрокрекинг).

2.1.3 Низкотемпературный каталитический процесс Каталитическое Алкилирование изобутана олефинами на основе заводских газов.

- нефтехимическое или комплексное (топливно-нефтехимическое или топливно-масляно-нефтехимическое).

При топливном направлении нефти и газовый конденсат в основном перерабатываются на моторные и котельные топлива. Переработка нефти на НПЗ топливного профиля может быть глубокой и неглубокой. Технологическая схема НПЗ с неглубокой переработкой отличается небольшим числом технологических процессов и небольшим ассортиментом нефтепродуктов. Выход моторных топлив по этой схеме не превышает 55-60 % масс. и зависит в основном от фракционного состава перерабатываемого нефтяного сырья. Выход котельного топлива составляет 30-35 %.

При глубокой переработке стремятся получить максимально высокий выход высококачественных моторных топлив путём вовлечения в их производство остатков атмосферной и вакуумной перегонки, а также нефтезаводских газов. Выход котельного топлива в этом варианте сводится к минимуму. Глубина переработки нефти при этом достигается до 70-90 % масс.

По топливно-масляному варианту переработки нефти наряду с моторными топливами получают различные сорта смазочных масел. Для производства последних подбирают обычно нефти с высоким потенциальным содержанием масляных фракций с учётом их качества.

Нефтехимическая и комплексная переработка нефти предусматривает наряду с топливами и маслами производство сырья для нефтехимии (ароматические углеводороды, парафины, сырьё для пиролиза и др.), а в ряде случаев – выпуск товарной продукции нефтехимического синтеза.

Глубокая степень переработки нефти достигается широким использованием вторичных процессов, таких как каталитический крекинг (36%), каталитический риформинг (19%), гидроочистка (41%), гидрокрекинг (9,3%), коксование, алкилирование, изомеризация и др.

На рисунке 2 представлена схема глубокой переработки нефтина НПЗ топливного профиля.

Рассмотрим наиболее значимые процессы вторичной переработки нефти.

Сырьем установок термического крекинга являются мазуты, гудроны, асфальты, экстракты, тяжелые газойли каталитического крекинга, нефтяные остатки с очистных сооружений.

Основной реакцией при термическом крекинге является реакция разложения (расщеплении, крекинга). Легче всего подвергаются крекингу парафиновые углеводороды, затем нафтеновые; наиболее устойчивы ароматические углеводороды. В каждом гомологическом ряду легче подвергаются крекингу углеводороды большей молекулярной массы. Таким образом, более тяжелые фракциинефтяных продуктов менее стабильны и крекируются значительно легче, чем более легкие.

При крекинге технического парафина, состоящего главным образом из углеводородов С24Н50, С25Н52 и C26H54. образуются парафиновые углеводороды и олефины, состоящие из 12,13 и 14 атомов углерода, т. е. приблизительно из половины углеродных атомов исходного парафина. Это указывает на то, что разрыв С-С-связей при крекинге парафинов высокой молекулярной массы происходит в средней части молекулы. В результате крекинга вновь образовавшиеся парафиновые углеводороды в свою очередь могут распадаться на более простые молекулы, образуя также одну молекулу парафинового углеводорода и одну молекулу олефинового.

При крекинге нафтеновых углеводородов основными реакциями являются деалкилирование (отщепление парафиновых боковых цепей) и дегидрогенизация шестичленных нафтеновых углеводородов в ароматические углеводороды; эти реакции могут происходить одновременно.

В процессе термокрекинга, наряду с реакциями разложения, в результате которых получаются газ и бензин, идут вторичные реакции уплотнения образовавшихся продуктов, в результате которых получается крекинг-остаток и кокс. На химизм процесса оказывают влияние его продолжительность (время пребывания углеводородов в реакционной зоне), характер исходного сырья, давление.

Поскольку сырье для промышленных установок термического крекинга является смесью многих углеводородов сложного строения, детально объяснить механизм термического крекинга невозможно вследствие одновременного протекания различных реакций. Однако считают, что большинство реакций термического крекинга можно объяснить, основываясь на теории образования свободных радикалов.

Промышленный процесс термического крекинга проводится в двух печах. В одной из печей легкому крекингу (при 470-485°С и 4-4,5 МПа) подвергают тяжелую часть мазута, а во второй печи при том же давлении, что и в первой, глубокому крекингу при 500-510°С керосино-газойлевые фракции, содержащиеся в исходном сырье (мазуте) и образующиеся после его легкого крекинга.

Повышение температуры увеличивает скорость протекающих реакций, глубину процесса, а также приводит к преобладанию реакций расщепления по сравнению с реакциями уплотнения. Глубина процесса оценивается выходом бензина, газа и кокса и их соотношением. Ее выбирают в зависимости от склонности исходного сырья к коксообразованию или газообразованию. С увеличением глубины превращения выход бензина вначале растет, затем достигает некоторого максимума и начинает снижаться. Данное явление связано с тем, что скорость разложения бензина на газ начинает превышать скорость образования бензина.

Давление заметно не влияет на скорость крекинга и образование бензина при обычных его выходах. Однако крекинг под давлением обеспечивает наиболее желательные условия для распределения тепла и устранения местного перегрева и поэтому дает меньший выход смол и кокса, протекает с максимальным эффектом и минимальным расходом топлива. Повышение давления позволяет увеличить производительность установок.

К основным продуктам превращения термического крекинга относятся:

1. Газ содержит сероводород, непредельные и предельные углеводороды, направляется для дальнейшей переработки на ГФУ.

2. Бензин имеет октановое число 54-70, содержит много непредельных углеводородов, после гидроочистки и риформирования применяется как компонент высокооктановых бензинов. При использовании бензинов крекинга малосернистых остатков в, качестве компонента автомобильного бензина с целью предотвращения осмоления к ним добавляют ингибиторы окисления.

3. Газойлевые фракции используются в производстве технического углерода (сажи), как компонент котельного топлива, а после гидроочистки для приготовления дизельных и газотурбинных топлив.

4. Крекинг-остаток направляется на установки замедленного коксования для производства кокса, применяется как компонент котельного топлива.

Выход бензина при термическом крекинге зависит наряду с прочими условиями от вида сырья: он составляет (по массе) для гудрона 10-12%, мазута 30-35, газойля 50-55, керосина 60-65. Бензины термического крекинга содержат непредельные углеводороды и имеют низкое качество.

Автомобильные бензины, приготовляемые смешением бензинов первичной перегонки нефти и термического крекинга мазута, в последние годы перестали удовлетворять требованиям потребителей по октановой характеристике (из-за повышения степени сжатия горючей смеси в цилиндрах двигателей). Поэтому роль термического крекинга уменьшилась и на смену ему пришли каталитический крекинг, каталитический риформииг и другие каталитические процессы. Эти процессы позволяют получать бензин, более стабильный и с большим октановым числом (83-95 по моторному и 90-103 по исследовательскому методу). Поэтому новых установок термического крекинга сейчас не строят, а старые, в том числе и двухпечные, приспосабливают для термической обработки сырья для сажи, реконструируют или демонтируют.

Реконструкция установок термического крекинга осуществляется в двух направлениях: для легкого крекинга (висбрекиига) гудронов с получением из них стандартных (по вязкости) топочных топлив и сортовых мазутов и для первичной перегонки нефти.

Коксование тяжелых нефтяных остатков можно рассматривать как форму более глубокого термического крекинга, который осуществляют обычно при 445-540°С и давлении от атмосферного до 0,6 МПа. Для коксования характерны те же химические превращения, которые происходят при термическом крекинге. Аналогично влияютна процесс такие факторы, как температура, давление, продолжительность пребывания в реакционной зоне. При коксованииважное место приобретают вопросы получения кокса с заданными показателями, которые решаются путем подготовки сырья и подбора условий коксования с учетом принципов физико-химической механики нефтяных дисперсных систем.

Сырьем установок коксования являются остатки перегонки нефти мазуты, гудроны, производства масел асфальты, экстракты, термокаталитических процессов крекинг-остатки, тяжелая смола пиролиза, тяжелый газойль каталитического крекинга. За рубежом, кроме того, используют каменноугольные и нефтяные пеки, гильсонит, тяжелую нефть и др. Основные требования к качеству сырья определяются назначением процесса и типом установки; в частности, для установок замедленного коксования при производстве электродного кокса содержание компонентов подбирается так, чтобы обеспечить, во-первых, получение кокса заданного качества, во-вторых, достаточную агрегативную устойчивость, позволяющую нагреть сырье до заданной температуры в змеевике печи; в-третьих, повышенную коксуемость для увеличения производительности единицы объема реактора по коксу. Значения показателей качества сырья устанавливают экспериментально, исходя из сырьевых ресурсов конкретного завода.

1. Нефтяной кокс применяется в производстве анодов и графитированных электродов, используемых для электролитического получения алюминия, стали, магния, хлора и т. д., в производстве карбидов, в ядерной энергетике, в авиационной и ракетной технике, в электро – и радиотехнике, в металлургической промышленности, в производстве цветных металлов в качестве восстановителя и сульфидсодержащего материала.

2. Газ по составу близок к газу термического крекинга. Газ направляют на ГФУ или используют в качестве топлива. При коксовании сернистых остатков газ коксования предварительно очищают от сероводорода. Газ коксования содержит значительно меньше непредельных углеводородов, чем газ термического крекинга. Например, в газе термического крекинга содержится 20-26% олефинов С2-С4, а в газе замедленного коксования 5-15%, поэтому он является менее ценным сырьем для дальнейшей переработки.

3. Бензин отличается повышенным содержанием непредельных углеводородов, имеет низкую химическую стабильность, после гидроочистки и риформирования его применяют как компонент бензина.

4. Легкий газойль (фр. 160-350°С) используется в качестве компонента дизельного, печного, газотурбинного топлива непосредственно или после гидроочистки.

5. Тяжелый газойль (фр. >350°С) добавляют в котельное топливо или подвергают термическому крекингу для получения сажевого сырья и дистиллятного крекинг-остатка; последний применяют для производства кокса «игольчатой» структуры.

К технологическому оборудованию, с помощью которого проводится процесс коксования, относятся трубчатые печи, коксовые камеры, колонная аппаратура, насосы, запорная и переключающая арматура, теплообменники, конденсаторы и др.

Пиролизу присуще глубокое преобразование исходного сырья, приводящее к легким газообразным углеводородам, к ароматическим моно – и полициклическим углеводородам, а также к продуктам глубокого уплотнения (кокс и сажа).

Если обратиться к графику изменения энергии Гиббса для некоторых углеводородов в зависимости от температуры, станет очевидным, что в области высоких температур наиболее стабильны олефины и ароматические углеводороды. Выше 790°С этилен становится стабильнее этана; при еще более высоких температурах (>1120°С) наиболее стабилен ацетилен; таким образом, интервал 790-1120°С является термодинамически возможным для получения этилена из этана. Аналогичные соображения для пиролиза пропана с целью получения этилена позволяют установить примерный температурный интервал от 660 до 930°С.

Реакции образования ароматических углеводородов при пиролизе весьма многообразны. В результате термической сополимеризации непредельных образуются циклоолефины, которые далее дегидрируются до ароматических углеводородов. Эта и подобные ей реакции, относящиеся к так называемому диеновому синтезу, свойственны пиролизу и обусловливают ароматизированный состав смолы.

В процессе пиролиза бензина (нафты) получают пирогаз (по С4 включительно), пиробензин (С5-190°С), пироконденсат тяжелое масло (выше 190°С) и пар. Получаемый при пиролизе этилен используется для производства оксида этилена, этилового спирта, полимеров (полиэтилена), стирола, пластмасс и др. Пропилен является исходным мономером для производства полипропилена, акрилонитрила и бутадиена.

Основные направления использования жидких продуктов пиролиза бензола и других ароматических углеводородов, нефтеполимерных смол, как компонент автобензинов, котельных топлив, сырья для производства технического углерода, пеков, высококачественных коксов и др.

Сырьём в процессах пиролиза служат газообразные и жидкие углеводороды: газы, лёгкие бензиновые фракции, газоконденсаты, рафинаты каталитического риформинга и реже керосиногазойлевые фракции.

От сырья и технологического режима пиролиза зависят выходы продуктов. Наибольший выход этилена получается при пиролизе этана. По мере утяжеления сырья выход этилена снижается и увеличивается выход жидких продуктов смол пиролиза.

Из технологических параметров на выход низших олефинов наибольшее влияние оказывает температура, время контакта и парциальное давление углеводородов в реакционной зоне.

При данной температуре с увеличением времени контакта (ф) концентрация олефина в пиролизе (следовательно, и его выход) растёт, достигает максимального значения при фопт, затем падает. С повышением температуры величина максимума выхода олефинов растёт, и этот максимум достигается при меньших значениях фопт. Причём для каждого индивидуального олефина имеется свой оптимальный режим пиролиза, обеспечивающий максимум его выхода (этиленовый, пропиленовый или бутиленовые режимы пиролиза).

Увеличению выхода олефинов способствует также снижение парциального давления сырья в реакционной зоне путём разбавления его водяным паром или, что более эффективно, водородом.

Разбавление сырья пиролиза водяным паром и особенно водородом приводит не только к увеличению выхода этилена, но, и, что исключительно важно, эффективно замедляет скорость вторичных реакций синтеза, приводящих к образованию пироуглерода. Водород в условиях пиролиза является не только разбавителем, но и гидрирующим компонентом, тормозящим образование тяжёлых продуктов конденсации, в том числе пироуглерода.

Современные установки пиролиза очень сложны. Основными частями их являются: печи, секции конденсации, абсорбции H2S и СО2, секции осушки, сжижения, группа колонн для выделения отдельных фракций и углеводородов, узел закалочного охлаждения, оборудование для обеспечения холода в регенерации тепла и др. На современных установках пиролиз углеводородов сырья осуществляют в трубчатых печах с повышенной теплонапряженностью и малым временем пребывания сырья в зоне реакции. На установках предусмотрено максимальное использование тепла и получение пара высокого давления до 12 МПа (120 кгс/см 2 ), применяемого для привода турбокомпрессоров и пара среднего давления, используемого для разбавления и нагрева сырья пиролиза.

Существенные недостатки печей установок пиролиза (необходимость остановок для выжигания кикса, большая металлоемкость, в том числе и высококачественных легированных сталей) явились причиной поисков других методов пиролиза. За последнее время интенсивно изучены и опробованы термоконтактный пиролиз, особенно в псевдоожиженном слое теплоносителя, гомогенный пиролиз в токе водяного пара, предварительно перегретого до 2000°С, а также пиролиз углеводородного сырья в условиях конденсации паров таких металлов, как кадмий, цинк и свиней.

Битумы принято классифицировать по назначению на дорожные, кровельные, изоляционные, строительные и специальные. Они представляют сложную коллоидную систему, состоящую из асфальтенов, высокомолекулярных смол и масел: асфальтены придают твёрдость и высокую температуру размягчения; смолы повышают цементирующие свойства и эластичность; масла являются разжижающей средой, в которой растворяются смолы и набухают асфальтены.

Для производства нефтяных битумов используют три основных способа:

1) концентрирование ТНО (тяжёлые нефтяные остатки) путём их перегонки под вакуумом (остаточные битумы);

3) компаундирование остаточных и различных ТНО (компаундированные битумы).

Битумы вырабатываются в основном их тяжёлых нефтяных остатков: гудронов, мазутов тяжёлых нефтей, асфальтов деасфальтизации, крекинг-остатков и др. Оптимальным сырьём для производства битумов являются остатки из асфальто-смолистых нефтей нафтенового или нафтено-ароматического основания. Чем выше в нефти отношение асфальтенов к смолам и ниже содержание твёрдых парафинов, тем лучше качество получаемых из них битумов и проще технология их производства. Нефти, из остатков которых вырабатывают битумы должны быть хорошо обессолены. Наличие сернистых и других гетеросоединений в сырье не ухудшает товарных свойств битумов.

Основными факторами процесса окисления (окислительной дегидроконденсации) являются температура, расход воздуха, давление.

Чем выше температура окисления, тем быстрее протекает процесс. Но при слишком высокой температуре ускоряются реакции образования карбенов и карбоидов, что недопустимо.

Чем больше вводится в зону реакции воздуха, тем меньше времени требуется для окисления (то есть кислород является инициатором процесса). При слишком большой подаче воздуха температура в реакционной зоне может подняться выше допустимой. Так как реакция окисления экзотермическая, то изменением расхода воздуха можно регулировать температуру процесса.

С повышением давления в зоне реакции процесс окисления интенсифицируется и качество окисленных битумов улучшается благодаря конденсации части масляных паров. В частности, повышается пенетрация битума при одинаковой температуре его размягчения. Обычно давление колеблется от 0,3 до 0,8 МПа.

Основным аппаратом установок непрерывного действия для производства битума является либо трубчатый реактор, либо окислительная колонна.

Окислительные колонны предпочтительны для производства дорожных битумов, трубчатые реакторы – в производстве строительных битумов. Отдельные установки в своём составе имеют оба аппарата.

Физико-химические основы процесса каталитического крекинга подробно описаны в разделе 3.

В качестве сырья в процессе каталитического крекинга традиционно используется вакуумный газойль (дистиллят) широкого фракционного состава 350-500°С. В ряде случаев в сырьё каталитического крекинга вовлекаются газойлевые фракции термодеструктивных процессов, гидрокрекинга, рафинаты процессов деасфальтизации мазутов и гудронов, полупродукты масляного производства и др.

Наилучшим для процесса каталитического крекинга по выходу целевых продуктов (бензина и сжиженных газов) является сырье с преобладанием парафиновых и циклоалкановых углеводородов. Полициклические арены и смолы сырья в условиях крекинга дают мало бензина и много тяжёлых фракций и кокса. Сернистые и кислородные соединения однотипного по химическому составу сырья не оказывают существенного влияния на материальный баланс каталитического крекинга, но ухудшают качество продуктов. Однако следует отметить, что с увеличением содержания гетероорганических соединений в сырье, как правило, одновременно повышается содержание в нем полициклических углеводородов и смол.

Целевые продукты процесса авиационные и высокооктановые автомобильные бензины (октановое число 90-92 по исследовательскому методу, выход на сырье до 50%), а также газойли, которые после облагораживания используют как дизельное топливо или компоненты котельных топлив. В процессе каталитического крекинга образуется газ, который разделяется на сухой газ (0,5-5% на сырье), используемый в качестве топлива, и жирный газ (6,5-22% на сырье, пропан-пропиленовая и бутан-бутиленовая фракции), который служит сырьем для нефтехимии. Кокс (2,5-6%) является нежелательным продуктом. Высокие результаты крекинга сырья при использовании цеолитсодержащих катализаторов обеспечиваются при содержании кокса на них после реактора не более 0,8-1,0% и при остаточном коксе после регенерации катализатора не более 0,05-0,10%. Содержание кокса на катализаторе зависит от кратности циркуляции катализатора в процессе.

Состав и выход продуктов каталитического крекинга зависят от характеристики сырья, свойств катализаторов (их активности и селективности), температурного режима в аппарате, кратности циркуляции катализатора и типа установки. В процессах каталитического крекинга применяют алюмосиликатные и цеолитсодержащие катализаторы в виде шариков диаметром 3-4 мм или микросфер со средним диаметром 60-65 мм. Подробно данные аспекты описаны в разделе 3.

Процесс каталитического крекинга в своем развитии претерпел ряд стадий, отличающихся способами контактирования сырья с катализатором: 1) крекинг в стационарном слое в аппаратах, работающих периодически в сменно-циклическом режиме реакции и регенерации; 2) крекинг в непрерывно работающих аппаратах с плотным движущимся слоем катализатора; 3) крекинг с псевдоожиженным слоем катализатора в реакторе и регенераторе; 4) установки с лифтами-реакторами, где реакция крекинга осуществляется в сквозном потоке при пневмотранспорте катализатора. Такое многообразие аппаратурного исполнения процесса связано с совершенствованием состава и свойств катализаторов, что обеспечивает возможность сокращения времени их контактирования с сырьем от 600-1800 с для установок с движущимся плотным слоем, до 90-180 с для установок с псевдоожиженныи слоем и до 2-6 с для лифтов-реакторов.

Процесс каталитического крекинга эндотермичен и требует подвода тепла. Тепло, выделяемое при регенерации катализатора, частично поступает с катализатором в реактор, а его избыток используется для получения водяного пара.

Технологическая схема процесса каталитического крекинга приведена в разделе 4.

Особенностью каталитического риформинга является его протекание в среде водородсодержащего газа при высоких температурах, сравнительно низких давлениях и с применением высокоактивных катализаторов. При этом образуется избыток водорода, который выводят из системы в виде водородсодержащего газа (в нем содержится до 80% об. водорода). Этот водород значительно дешевле водорода, получаемого на специальных установках; его используют при гидроочистке нефтяных дистиллятов.

Http://otherreferats. allbest. ru/manufacture/00420644_0.html

Прямая перегонка дает только тот выход светлых дистиллятов, который обусловлен природными свой­ствами нефти.

Вторичные процессы являются источником получения сырья для нефтехимии (газообразные и жидкие олефины, индиви­дуальные ароматические углеводороды высокой чистоты), на ос­нове которого производят пластические массы, синтетический кау­чук, синтетические волокна и другие материалы.

Четкая классификация вторичных процессов переработки неф­тяного сырья затруднительна. Ниже приводится краткая характе­ристика вторичных процессов, частично сгруппированных по род­ственным признакам.

А) термический крекинг при повышенном давлении (2,0-4,0 МПа) жидкого (в настоящее время в основном тяжелого) сырья с получением газа и жидких продуктов;

Б) коксование тяжелых остатков или высокоароматизированных тяжелых дистиллятов при невысоком давлении (до 0,5 МПа) с получением кокса, газа и жидких продуктов;

В) пиролиз (высокотемпературный крекинг) жидкого или га­зообразного сырья при невысоком давлении (0,2-0,3 МПа) с по­лучением газа, богатого непредельными углеводородами и жидкого продукта.

Эта группа процессов характеризуется высокими температура­ми в зоне реакции 450-900 °С. Под действием высокой температуры нефтяное сырье разлагается (собственно крекинг). Этот процесс сопровождается вторичными реакциями уплотнения вновь образовавшихся углеводородных молекул.

Крекинг изобрёл русский инженер Шухов в 1891 г. В 1913 г. изобретение Шухова начали применять в США. Крекингом называется процесс расщепления углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов углерода в молекуле. Процесс ведётся при более высоких температурах (до 600 °С), часто при повышенном давлении. При таких температурах крупные молекулы углеводородов расщепляются на более мелкие. Аппаратура та же, что и для перегонки нефти. Это – печи, колонны. Но режим переработки другой. Сырье – мазут.

Мазут – остаток первичной перегонки – состоит из сложных и крупных молекул углеводородов. Когда на крекинг-установках мазут снова подвергается переработке, часть составляющих его углеводородов расщепляется на более мелкие. А из мелких углеводородов состоят лёгкие нефтяные продукты – бензин, керосин, лигроин.

Термический крекинг под давлением применяли для переработки различного сырья-лигроина, газойлей, ма­зутов с целью получения автомобильного бензина. При перера­ботке тяжелых нефтяных остатков (полугудроны, гудроны) целе­вым продуктом обычно является котельное топливо, получаемое за счет снижения вязкости исходного остатка. Такой процесс не­глубокого разложения сырья носит название легкого крекин­га, или висбрекинга. Висбрекинг проводят при Р = 2 МПа и температуре 450-500 °С. Процессы термического крекинга, разработанные в 1913 году, связаны с нагревом дистиллятных топлив тяжелой нефти под давлением в больших барабанах, до тех пор пока они не расщепляются в меньшие молекулы с лучшими антидетонационными характеристиками. Этот метод, который был связан с образованием большого количества твердого нежелательного кокса, эволюционировал в современные процессы термического крекинга, включая легкий крекинг, паровой крекинг и коксование.

Легкий крекинг – мягкая форма термического крекинга, которая уменьшает температуру текучести парафиновых остатков и значительно понижает вязкость компонента без воздействия на диапазон температур кипения. Остатки из колонны атмосферной перегонки мягко расщепляются в нагревателе при атмосферном давлении, затем охлаждаются холодным газойлем для предотвращения чрезмерно глубокого крекинга и испаряются в колонне перегонки. Термически крекированный оставшийся гудрон, который скапливается на дне колонны фракционирования, стабилизируется в вакууме в секции отпаривания, а дистиллят рециркулирует. Паровой крекинг производит олефины путем термического крекинга исходных материалов больших углеводородных молекул при давлениях, которые превышают атмосферные и при очень высоких температурах. Остаток парового крекинга смешивается с тяжелым топливом. Нафта, полученная в результате парового крекинга, обычно содержит бензол, который извлекается до гидроочистки. При крекинге нефть подвергается химическим изменениям, меняется строение углеводородов. В крекинг-установках происходят сложные химические реакции. Выход бензина из нефти значительно увеличивается (до 65-70 %) путем расщепления углеводородов с длинной цепью, содержащихся, например, в мазуте, на углеводороды с меньшей молекулярной массой.

Расщепление молекул углеводородов протекает при более высокой температуре (470-550 °С) и давлении 2-7 МПа. Процесс протекает медленно, образуются углеводороды с неразветвленной цепью. Таким способом получают автомобильный бензин. Выход его из нефти достигает 70 %.

В бензине, полученном в результате термического крекинга, наряду с предельными углеводородами содержится много непредельных углеводородов. Этот бензин обладает большей детонационной стойкостью, чем бензин прямой перегонки, но в нем содержатся непредельные углеводороды, которые легко окисляются и полимеризуются. Поэтому этот бензин менее устойчив при хранении. При его сгорании могут засориться различные части двигателя. Для устранения этого вредного действия к такому бензину добавляют окислители.

Если в нагреваемую на сильном пламени трубку (заполненную железными стружками для улучшения теплопередачи) пускать из воронки по каплям керосин или смазочное масло, очищенные от непредельных углеводородов, то в U-образной трубке вскоре будет собираться жидкость, а в цилиндре над водой – газ. Полученная жидкость обесцвечивает бромную воду, т. е. содержит непредельные соединения. Собранный газ хорошо горит и также обесцвечивает бромную воду. Результаты опыта объясняются тем, что при нагревании произошёл распад углеводородов, например:

Образовалась смесь предельных и непредельных углеводородов с меньшими молекулярными массами, аналогичная бензину. Получившиеся жидкие вещества частично могут разлагаться далее, например:

Эти реакции приводят к образованию большого количества газообразных веществ. Выделившийся в процессе крекинга этилен широко используется в качестве сырья для химической промышленности: производства полиэтилена и этилового спирта.

Расщепление молекул углеводородов протекает по радикальному механизму. Вначале образуются свободные радикалы:

Свободные радикалы химически очень активны и могут участвовать в различных реакциях. В процессе крекинга один из радикалов отщепляет атом водорода (а), а другой – присоединяет (б):

Технологическая схема установки термического крекинга приведена на рис. 6. Сырье подогревается в теплообменнике и делится на два потока. Один из них подается в нижнюю часть ректифи­кационной колонны, а второй – в верхнюю часть испарителя низкого дав­ления. Поступивший поток обогащается тяжелыми газойлевыми фракциями и переходит в ректификационную колонну. С низа колонны остаток подается в печь тяжелого сырья. Колонна разделена на две части «глухой» тарелкой. Скапливающаяся на этой тарелке жидкость поступает на глубокий крекинг в печь легкого сырья.

Продукты крекинга из печей объединяются и идут в выносную реакционную камеру, а затем в испаритель высокого давления. В нем от парожидкостной смеси отделяется крекинг-остаток, перетекающий в испаритель низкого давления, в котором из крекинг-остатка выделяются пары газойлевой фракции. Эта колонна также разделена на две части «глухой» тарелкой. В верхней части пары керосино-газойлевой фракции контактируют с движу­щимся им навстречу жидким сырьем. При этом контакте часть паров керосино-газойлевой фракции конденсируется. Несконденсировавшиеся пары керосино-газойлевой фракции уходят с верха, конденсируются в конденсаторе и собираются в емкость. Из нее уходит товарный продукт – керосино-газойлевая фракция. Поток паров из верхней части испарителя поступает на разделение в ректификацион­ную колонну, с верха которой уходят пары бензина и газ, с «глухой» тарелки – сырье в печь легкого сырья, с низа – сырье в печь тяжелого сырья. Верхний продукт охлаждается в конденсаторе-холодильнике и в газо­сепараторе разделяется на нестабильный бензин и газ. Газ подается на газофракционирующую установку, а бензин через теплообменник поступает в стабилизатор, в котором из бензина удаляются легкие углеводороды, которые уходят с верха. Они охлаждаются, после чего в сепараторе де­лятся на головку стабилизации и несконденсировавшийся газ. Газ и головка стабилизации поступают на ГФУ. С низа уходит стабильный бензин.

Коксование нефтяных остатков проводят в направлении их «декарбонизации», когда асфальто-смолистые вещества, содержа­щиеся в исходном сырье, концентрируются в твердом продукте – коксе; в результате получаются более богатые водородом продук­ты – газойль, бензин и газ. Обычно целью процесса является по­лучение кокса, но остальные продукты также находят квалифици­рованное применение. Коксование – сильная форма термического крекинга, используемая для получения бензина прямого погона (нефть установки коксования) и различных фракций среднего дистиллята, используемых в качестве исходного сырья каталитического крекинга. Этот процесс так полно восстанавливает водород из углеводородной молекулы, что остаток является формой почти чистого углерода, названного коксом. Два наиболее типичных процесса коксования – замедленное коксование и непрерывное (контактное или жидкое) коксование, которые, в зависимости от механизма реакции, времени, температуры и исходного сырья, производят три типа кокса – губчатый, пористый и игольчатый. При замедленном коксовании исходное сырье сначала загружается во фракционирующую колонну для отделения более легких углеводородов, а затем объединяется с тяжелой оборотной нефтью.

П-1 – печь тяжелого сырья, П-2 – печь легкого сырья, К-1 – выносная реакционная камера, К-2 – испаритель высокого давления, К-3 – ректификационная колонна, К-4 – испаритель низкого давления, К-5 – стабилизатор, ХК-1-3 – конденсаторы-холодильники, Т-1-Т-3 – теплообменники, Т-2 – кипятильник, Е-1 – Е-3 – рефлюксные емкости, Н-1-Н-7 – насосы;

I – сырье, II – газ, III – головка стабилизации, IV – стабильный бензин, V – керосино-газойлевая фракция, VI – крекинг-остаток

Тяжелое исходное сырье подается в коксовую печь и нагревается до высоких температур при низком давлении с целью предотвращения преждевременного коксования в трубах нагревателя, производя частичное выпаривание и мягкий крекинг. Смесь жидкости/пара откачивается из нагревателя к одному или большему числу барабанов – установок для коксования, где горячий материал находится приблизительно 24 часа (замедление) при низком давлении до тех пор, пока он не расщепляется на более легкие продукты. После того как кокс достигает заранее определенного уровня в одном барабане, поток ответвляется к другому барабану для сохранения непрерывного процесса. Пары из барабанов возвращаются в установку фракционирования для разделения газа, нафты и газойлей и для рециркулирования более тяжелых углеводородов через печь. Полный барабан стерилизуется водяным паром для отпаривания некрекированных углеводородов, охлаждается посредством вбрызгивания воды и механически очищается от нагара с помощью сверла, поднимающегося со дна барабана, или гидравлически – путем разрыва пласта кокса с помощью высокого давления воды, выброшенной от вращающегося резца. Непрерывное (контактное или жидкое) Коксование – процесс с движущимся слоем, который функционирует при более низких давлениях и более высоких температурах, чем замедленное коксование. При непрерывном коксовании термический крекинг происходит путем использования тепла, передаваемого от частиц горячего оборотного кокса к исходному сырью в радиальном смесителе, называемом реактором. Газы и пары берутся из реактора, охлаждаются с целью остановки дальнейшей реакции и фракционируются. После реактора кокс входит в барабан и поднимается к подающему устройству, где большие частицы кокса удаляются. Оставшийся кокс спускается в подогреватель реактора для рециркуляции вместе с исходным сырьем. Процесс является автоматическим, имеется непрерывный поток кокса и исходного сырья, а коксование происходит как в реакторе, так и в барабане.

Технологическая схема установки замедленного коксования дана на рис. 7. Нагре­тое в печах сырье поступает в нижнюю часть ректификационной ко­лонны на верхнюю каскадную тарелку. Под нижнюю каскадную тарелку подаются пары продуктов коксования из коксовых камер. Обогащенное рециркулятом и дополнительно нагретое сырье с низа колонны поступает в реакционные змеевики печей, а затем в камеры на коксование. Для предотвращения образования кокса в змеевиках печей в сырье подается турбулизатор – водяной пар. На установке имеются четыре камеры, работающие попарно. Пары продуктов из камер, работающих в режиме коксования, направляются в колонну. В верхней части, над «глухой» тарелкой, происходит разделение продуктов коксования на фракции. С верха уходят газ и пары бензина, в качестве боковых погонов – фракция 180-350 °С, фракция 350-450 °С, фракция выше 450 °С.

После конденсации и охлаждения верхний продукт поступает в газосепаратор. Здесь происходит сепарация воды и отделение газа от бензина. Нестабильный, содержащий легкие углеводороды бензин и газ самостоя­тельными потоками направляются в газовый блок, где в результате применения процессов абсорбции и стабилизации выделяются сухой газ, содержащий в основ­ном углеводороды С1-С2, головка стабилизации, содержащая углеводороды С3-С4, и стабильный бензин. Боковые погоны поступают в секции отпарной колонны, где из них удаляются легкие фракции, а затем через соответствую­щие теплообменники и холодильники выводятся с установки. Реакционные камеры установки работают по циклу: реакция – охлажде­ние кокса – выгрузка кокса – разогрев камеры.

Кокс из камеры удаляется при помощи гидравлической резки подачей струи воды под высоким давлением. Удаленный из камеры кокс попадает в дро­билку, где измельчается на куски размером не более 150 мм. Раздробленный кокс обезвоживается и элеватором подается на двухситовый грохот, с помощью которого сортируется на три фракции: 150-25; 25-6 и 6-0 мм. Камеру, из которой выгружен кокс, опрессовывают и прогревают сначала острым водяным паром, а затем горячими продуктами коксования из работающей камеры. Переключение камеры на режим реакции проводится, когда тем­пература в ней повысится до 360 °С.

Продолжительность операции (в ч); подача сырья – 24; переключение камер, пропаривание камер водяным паром и охлаждение кокса водой – 9; бурение отверстий в коксе, удаление кокса гидрорезаком – 6; испытание и разогрев камеры – 9.

Разновидность термического крекинга нефтяных остатков при невысоком давлении – деструктивная перегонка – на­правлена на получение максимального выхода соляровых фрак­ций при минимальном количестве тяжелого жидкого остатка. Коксование и деструктивную перегонку проводят при температуре 450-550 °С.

Р-1-Р-4 – коксовые камеры; П-1, П-2-печи; К-1 – ректификационная колонна> К-2 – отпарная колонна; Т-1-Т4 – теплообменники; ХК-1 – конденсатор-холодильник; Е-1 – газосепаратор; Е-2 – емкость для воды;

I – сырье; II – сухой газ; III – головка стабилизации; IV – стабильный бензин; V – керосино-газойлевая фракция; VI – легкий газойль; VII – тяжелый газойль; VIII – водяной пар; IX – вода

Пиролиз — наиболее жесткая форма термического крекинга нефтя­ного и газового сырья, осуществляемая обычно при 700-900 °С с целью получения углеводородного газа с высоким содержанием непредельных. Режим может быть направлен на получение макси­мального выхода этилена, пропилена или бутиленов и бутадиена. Наряду с газом образуется некоторое количество жидкого про­дукта – смолы, содержащей значительные количества моноциклических (бензол, толуол, ксилолы) и полициклических ароматиче­ских углеводородов (нафталин, антрацен). Долгое время, пока не был разработан процесс каталитического риформинга, пиролиз яв­лялся практически единственным промышленным методом получе­ния ароматических углеводородов из нефти.

В настоящее время целевым продуктом пиролиза является газ, богатый непредельными, из которых основная роль принадлежит этилену. Области использования этилена весьма разнообразны. Более 40 % этилена расходуется на производство полиэтилена; значительную долю занимают производства этилового спирта и стирола (сырье для производства синтетического каучука). Все большее значение приобретают и другие газообразные не­предельные углеводороды. Пропилен используют для получения полипропилена, высокоокта­нового компонента бензина (алкилированием изобутана), жидких полимеров С6—С12, используемых в качестве топливных компонен­тов (полимербензин), моющих средств и др. Бутадиен (дивинил), используемый в производстве синтетического каучука, получают не только путем пиролиза жидких нефтепродуктов, но и каталитиче­ским дегидрированием н-бутана. Однако в последние годы доля бутадиена, вырабатываемого пиролизом, возросла, так как эконо­мически этот процесс более благоприятен.

Выход смолы пиролиза тем больше, чем тяжелее сырье. Сырье для пиролиза весьма различно. Пиролизу подвергают газообразные углеводороды (этан, пропан, бутан и их смеси) и жидкие (низкооктановые бензины, керосино-газойлевые фракции, нефтяные остатки). Выбор сырья определяется в первую очередь целью пиролиза. Для производства этиленсодержащего газа при­годно любое сырье, но наибольший выход этилена дает этан. Для получения высокой концентрации пропилена в газе пиролиз этана непригоден, так как этан в основном дегидрируется до этилена. Соответственно, для получения высоких выходов бутадиена не используют ни этан, ни пропан.

При выборе сырья учитывают также его ресурсы, связанные с направлением и уровнем развития нефтеперерабатывающей и га­зовой промышленности данной страны. Известно, что в США из-за большого парка легковых автомашин по­требление бензина наиболее значительно, поэтому преобладающим сырьем пиролиза в этой стране являлись природные газы. В это же время в России и странах Западной Европы глубина переработки нефти значительно ниже. Повышение требова­ний к моторным качествам бензинов дало возможность использо­вать как сырье пиролиза и газовый бензин, и низкооктановые бен­зины прямой гонки. Одновременно в качестве сырья использовали и газообразные углеводороды природных и заводских газов. Пиро­лиз газообразного сырья (особенно этана) дает более высокие вы­ходы этилена, чем пиролиз жидкого сырья.

С середины 70-х годов в связи с повсеместным углублением пе­реработки нефти и ростом цен на бензин возникает интерес к пи­ролизу более тяжелого сырья – керосино-газойлевых фракций, вакуумного газойля. Был также разработан пиролиз сырой нефти с использованием перегретого до 2000 °С водяного пара в качест­ве теплоносителя.

Наиболее распространенная форма промышленного процесса – пиролиз в трубчатых печах. Совершенствование конструкций печей позволило расширить фракционный состав сырья. Одновременно возвращаются к не получившим вначале широкого распростране­ния термоконтактным процессам пиролиза остаточного сырья и к пиролизу сырой нефти.

Следует иметь в виду, что наряду с максимальными выходами этилена использование газообразного сырья по­зволяет работать с рециркуляцией, т. е. с возвратом непревращен­ного этана или пропана (после установки газоразделения) в зону реакции. Для жидкого сырья это неприменимо, так как смола пи­ролиза является высокоароматизированным продуктом глубокого превращения, частично совпадающим по фракционному составу с сырьем, возврат ее на повторный пиролиз вызвал бы закоксовывание труб печи.

Теоретические основы процесса. Пиролизу присуще глубокое преобразование исходного сырья, при­водящее к образованию легких газообразных углеводородов, ароматических моно – и полициклических углеводородов, а также продуктов глубокого уплотнения (кокса и сажи). Реакции образования ароматических углеводородов при пиролизе весьма многообразны. В результате термической сополимеризации непредельных образуются циклоолефины, которые далее дегидрируются до ароматических углеводородов. Так протекает, например, взаимодействие бутадиена и этилена с образованием бензола:

Эта и подобные ей реакции, относящиеся к так называемому ди­еновому синтезу, свойственны пиролизу и обусловливают аромати­зированный состав смолы.

Результаты пиролиза оценивают по выходу целевого продукта, например этилена. Поскольку основными факторами пиролиза яв­ляются температура и длительность реакции, каждой температуре соответствует некоторое оптимальное время контакта, при кото­ром выход целевого продукта максимален.

Сравнительные данные по пиролизу различного газообразного сырья показывают, что выход ароматических углеводородов наибо­лее высок при пиролизе олефинов; это подтверждает их роль в об­разовании ароматических углеводородов. Аналогичное явление можно наблюдать и при пиролизе бензинов, содержащих непредельные углеводороды.

Наличие ароматических углеводородов в сырье пиролиза сни­жает газообразование из-за высокой термической стабильности этих углеводородов, однако их состав может изменяться за счет термического деалкилирования при углублении процесса.

В связи с переходом на пиролиз утяжеленного сырья представ­ляет интерес влияние би – и полициклических ароматических углеводородов, присущих керосино-тазойлевым фракциям на процесс. Установлено, что эти углеводороды тормозят образование легких олефинов, причем тормозящее действие бициклических углеводородов слабее, чем полициклических. При частичном удалении полициклических углеводородов повышается выход этилена и суммы газообразных олефинов.

Для каждого вида сырья существует оптимальное сочетание температуры и продолжительности пиролиза. Выбор температуры на промышленной установке опреде­ляется и аппаратурным оформлением. Термоконтактный пиролиз можно осуществлять при более высоких температурах, а в трубчатых печах применение высоких температур (1000 °С и более) затрудняется из-за необходимости подбора жароупорных материалов, забивания труб сажей и коксом, а также сохранения малого времени контакта. Кроме того, имеет значение концентрация нежелательных компо­нентов в получаемом газе. Так, пиролиз углеводородного газа с получением этилена при 1000 °С сопровождается заметным обра­зованием ацетилена; избежать этого можно при более мягком режиме.

«Этиленовому» режиму пиролиза соответствует пониженный выход пропилена, так как он при этом частично превращается в этилен. Наиболее мягкие «бутиленовый» и «бутилен-бутадиено­вый» режимы из-за наименьшей термической стабильности этих уг­леводородов.

Значительное газообразование при пиролизе жидкого сырья и образование более легких, чем сырье, компонентов при пиролизе газообразного сырья вызывают большое увеличение (обычно в 1,5-2 раза) удельного объема паровой (газовой) фазы. Известно, что реакциям, протекающим с увеличением объема, способствует низкое давление в реакционной зоне или низкое парциальное давление продуктов. Для уменьшения роли реакций уплотнения пиролиз ведут при максимально низком давлении. В случае применения трубчатых реакционных аппаратов на входе в змеевик приходится поддерживать некоторое избыточное давление, чтобы преодолеть гидравлическое сопротивление в трубах печи и в последующей аппаратуре (обычно на выходе из печи давление 0,2-0,25 МПа).

Для компенсации отрицательного влияния давления, общего улучшения показателей процесса практикуется подача в печь вместе с сырьем перегретого водяного пара, снижающего парциальное давление паров продуктов пиролиза и препятствующего реакциям уплотнения.

На материальный баланс пиролиза благоприятно влияет легкий газообраз­ный разбавитель, поэтому было предло­жено проводить процесс в присутствии водорода. Он не только является разба­вителем, при увеличении концентрации он активно взаимодейст­вует с компонентами реакционной смеси, что объясняется смеще­нием равновесия реакции в сторону соединений, богатых водородом. До­стоинство водорода как разбавителя – повышение выхода этилена, снижение выхода ацетилена, тяжелой части смолы и кокса; недостатки процесса – увеличение объема газа и снижение выхо­да пропилена.

Промышленное оформление процесса Пиролиза и закалки продуктов. В настоящее время промышленный пиролиз осуществляется почти исключительно в трубчатых печах (рис. 8). Этот способ имеет ряд существенных преимуществ: он хорошо изучен, его технология и аппаратурное оформление относительно просты и на­дежны, процесс легко поддается управлению и регулированию. Основные аппа­раты пиролизной установки: трубчатая пиролизная печь, состоящая из радиантной и конвекционной камер; закалочно-испарительный аппарат, в котором продукты пиролиза охлаждаются с большой скоростью; ряд аппаратов типа промывных колонн, в которых продукты подвергаются дальнейшему охлаждению, а тяжелая часть продукта конденсируется и отделяется от газообразной части, поступающей на компримирование и далее на газоразделение.

Основные трудности, связанные с промышленным оформлением пиролиза, таковы:

– необходимость четкого регулирования продолжительности реакции, которая при высоких температурах обычно составляет доли секунды;

– отложение кокса и сажи в реакционной зоне и при быстром охлаждении газа пиролиза (в «закалочном» аппарате);

– ограничение пропускной способности установки вследствие значительного удельного объема реакционной смеси, обусловленного высокой температурой, низким давлением и разбавлением сырья водяным паром. Последнее заставляет на установках средней и высокой пропускной способности использовать несколько (иногда 8-10 печей).

Технологическая схема установки пиролиза бензина дана на рис.9 .Бензин из емкости подается насосами через теплообменник в трубчатую печь на пиролиз. В теплообменнике бензин нагревается до 80-110 °С за счет теплоты циркулирующего тяжелого масла (продукт пиролиза). Бензин разделяется перед печью на несколько потоков (на рис.- четыре потока). В каждый из потоков подается пар. Разбавление сырья паром используется для уменьшения скорости вторичных реакций и количества тяже­лых жидких продуктов и кокса, образующихся в результате протекания этих реакций. Смесь бензина и пара поступает в конвекционную камеру печи, где нагревается за счет теплоты дымовых газов. Смешение углеводородного сырья и пара осуществляется перед входом в печь. Однако может быть предусмотрено предварительное раздельное испарение не более 80 % сырья и перегрев пара в конвекционной камере, дальнейший нагрев смеси сырья и пара до 520-600 °С проводится в той же конвекционной камере. В некоторых печах в отдельных змеевиках конвекционной камеры ведется подогрев питательной воды для закалочно-испарительных аппаратов и перегрев пара высокого давления, получаемого в этих аппаратах. Нагретая смесь паров бензина и воды поступает в змеевик радиантной части печи, где происходит ее дополнительный подогрев и при температуре 810-870 °С проводится пиролиз. Теплота в радиантный змеевик подводится за счет сжигания газового топлива в горелках беспламенного горения, расположенных вертикально в стенках печи. На выходе из зоны радиации змеевики объединяются попарно, и пирогаз поступает на охлаждение в закалочно-испарительные аппа­раты. Теплота пирогаза используется в аппаратах для выработки пара давлением 11-13 МПа. Питательная вода подается в пароводяной сепаратор, а отсюда самотеком поступает в ЗИА. Пар высокого давления из барабана сепа­ратора направляется в конвекционную секцию печи или через регули­рующий клапан непосредственно в линию пара высокого давления.

1 – газоходы; 2 – конвекционная камера и пароперегреватель; 3 – «закалочно»-испаритель­ные аппараты и паросборники; 4 – каркас; 5 – реакционный змеевик; 6 – металлический кожух и термоизоляция; 7 – радиантная камера; 8 – горелки; 9 – подвесные стены из ша­мотного кирпича

Е–1 – емкость; Н-1-Н-5 – насосы; Т-1-Т-3 – теплообменники; П-1 – печь; А-1 – закалочно-испарительный аппарат; А-2 – аппарат дозакалки; А-3 – испаритель; А-4 – отстойник; С-1 – сепаратор; К-1 – колонна первичного фракционирования; К-2 – колонна водной промывки; Ф-1 – фильтр

I – бензин со склада; II – пар-разбавитель; III – дымовые газы; IV – питательная вода; V – пар высокого давления; VI – пирогаз на компримирование; VII –паровой конденсат; VIII – вода на охлаждение; IX – пироконденсат с установки; X – вода в канализацию; XI – масло с установки; XII – пар; XIII – конденсат

Продукты пиролиза из аппаратов ЗИА поступают в колонну первичного фрак­ционирования после дополнительного охлаждения в аппарате дозакалки до температуры 180-200°С. В колонне первичного фракционирования продукты пиролиза разделяются на тяжелые жидкие продукты (пиролизное тяжелое-масло), выходящие из куба колонны, и газообразные продукты (пирогаз).

Пиролизное масло насосами через фильтры и теплообменники подается на охлаждение пирогаза в аппарат дозакалки, часть пиролизного масла после теплообменников направляется на подогрев бензина в теплооб­менники, затем поступает на верх кубовой части колонны. Теплота, отдаваемая циркулирующим пиролизным маслом в теплообменниках, исполь­зуется в испарителе для выработки пара, расходуемого на разбавление, недостающее количество теплоты подводится паром через теплообменники. Избыток пиролизного масла после фильтров поступает в сборник.

Пирогаз с верха колонны с температурой 95-100 °С направляется в колонну водной промывки, где охлаждается циркулирующей водой до 30-38 °С. Циркуляционная вода вместе с выпавшим из пирогаза конденсатом (пиробензин) поступает в отстойник. Вода насосами через холодиль­ник вновь подается на колонну. Пиробензин вместе с избытком воды перетекает в разделительный отсек отстойника, откуда вода откачивается в канализацию, а пироконденсат подается на верх колонны первичного фракционирования. Избыток пиробензина отводится в емкости.

Выход жидких продуктов в основном зависит от качества сырья, при пиролизе керосино-газойлевых фракций около половины сырья превращается в жидкие продукты, поэтому только рациональное и полное их использование обеспечит рентабельность установок пиролиза.

Качество жидких продуктов зависит и от сырья, и от жестко­сти режима. Фракционный состав жидких продуктов изменяется с утяжелением исходного сырья. После перегонки жидких продуктов с установки уходят четыре фракции: С5 (до 70 °С), 70-130 °С (бензольно-толуольная), 130-190 °С(С8—С9) и >190 °С (тяжелая смола).

Фракция С5 более чем наполовину представлена непредельными: из них примерно 50 % приходится на циклопентадиен и изопрен. Циклопентадиен – весьма реакционноспособный углеводород, используемый в ряде синтезов (получение пестицидов, пластификаторов и т. д.). Изо­прен – исходное сырье для производства синтетического каучука. Фракцию 70-130 °С подвергают гидрированию (для насыщения непредельных углеводородов), экстракции или адсорбции (для вы­деления бензола и толуола) и последующему разделению ректи­фикацией. Потребность в бензоле все возрастает, поэтому для увеличения его выхода толуол иногда подвергают дегидроалкилированию.

Фракция 130-190 °С содержит некоторое количество ксилолов и этилбензола (10-12 % масс.), но главными ее компонентами являются стирол (до 40 %) и другие алкенилароматические углеводороды, а также инден и дициклопентадиен. Из тяжелой части смолы отгоняют фракцию190-230 °С с целью выделения нафталина. Тяжелая часть смолы содержит САВ и используется как сырье для производства сажи или беззольного кокса.

1. Каково назначение термического крекинга и какое используют сырье для его получения?

5. Какое оборудование используется в технологическом оформлении процессов пиролиза?

Http://studfiles. net/preview/2827108/page:14/

Продукты первичной переработки нефти, как правило, не являются товарными нефтепродуктами. Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1,0% и более, тогда как норматив составляет, в зависимости от марки, от 0,005% до 0,2%. Кроме того, тёмные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

В связи с этим, нефтяные фракции поступают на установки вторичных процессов, призванные осуществить улучшение качества нефтепродуктов и углубление переработки нефти.

Поскольку при описании процессов вторичной переработки используются наименования групп углеводородов, входящих в состав нефти и нефтепродуктов, приведём краткие описания данных групп и влияние углеводородного состава на показатели качества нефтепродуктов.

Парафины – насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвлённого строения. Подразделяются на следующие основные группы:

1. Нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп.

2. Изопарафины – с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками (например, изооктан – эталонное вещество с октановым числом 100) и пониженной, по сравнению с нормальными парафинами, температурой застывания.

Нафтены (циклопарафины) – насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

Ароматические углеводороды – ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом. Поэтому процесс, направленный на повышение октанового числа прямогонных фракций – каталитический риформинг, предусматривает превращение других групп углеводородов в ароматические. При этом предельное содержание ароматических углеводородов и, в первую очередь, бензола в бензинах ограничивается стандартами.

Олефины – углеводороды нормального, разветвлённого, или циклического строения, в которых связи атомов углерода, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

Каталитический риформинг предназначен для повышения октанового числа прямогонных бензиновых фракций путём химического превращения углеводородов, входящих в их состав, до 92-100 пунктов. Процесс ведётся в присутствии алюмо-платино-рениевого катализатора. Повышение октанового числа происходит за счёт увеличения доли ароматических углеводородов. Научные основы процесса разработаны нашим соотечественником – выдающимся русским химиком в начале ХХ века.

Выход высокооктанового компонента составляет 85-90% на исходное сырьё. В качестве побочного продукта образуется водород, который используется на других установках НПЗ, которые будут описаны ниже.

Мощность установок риформинга составляет от 300 до 1000 тыс. тонн и более в год по сырью.

Оптимальным сырьём является тяжёлая бензиновая фракция с интервалами кипения 85-180°С. Сырьё подвергается предварительной гидроочистке – удалению сернистых и азотистых соединений, даже в незначительных количествах необратимо отравляющих катализатор риформинга.

Установки риформинга существуют 2-х основных типов – с периодической и непрерывной регенерацией катализатора – восстановлением его первоначальной активности, которая снижается в процессе эксплуатации. В России для повышения октанового числа в основном применяются установки с периодической регенерацией, но в 2000-х гг. в Кстово и Ярославле введены установки и с непрерывной регенерацией, которые эффективнее технологически (возможно получения компонента с октановым числом 98-100), однако, стоимость их строительства выше.

Процесс осуществляется при температуре 500-530°С и давлении 18-35 атм (2-3 атм на установках с непрерывной регенерацией). Основные реакции риформинга поглощают существенные количества тепла, поэтому процесс ведется последовательно в 3-4 отдельных реакторах, объёмом от 40 до 140 м3, перед каждым из которых продукты подвергаются нагреву в трубчатых печах. Выходящая из последнего реактора смесь отделяется от водорода, углеводородных газов и стабилизируется. Полученный продукт – стабильный риформат охлаждается и выводится с установки.

При регенерации осуществляется выжиг образующегося в ходе эксплуатации катализатора кокса с поверхности катализатора с последующим восстановлением водородом и ряд других технологических операций. На установках с непрерывной регенерацией катализатор движется по реакторам, расположенным друг над другом, затем подаётся на блок регенерации, после чего возвращается в процесс.

Каталитический риформинг на некоторых НПЗ используется также в целях производства ароматических углеводородов – сырья для нефтехимической промышленности. Продукты, полученные в результате риформинга узких бензиновых фракций, подвергаются разгонке с получением бензола, толуола и смеси ксилолов (сольвента).

Изомеризация также применяется для повышения октанового числа легких бензиновых фракций. Сырьём изомеризации являются легкие бензиновые фракции с концом кипения 62°С или 85°C. Повышение октанового числа достигается за счёт увеличения доли изопарафинов. Процесс осуществляется в одном реакторе при температуре, в зависимости от применяемой технологии, от 160 до 380°C и давлении до 35 атм.

На некоторых заводах, после ввода новых установок риформинга крупной единичной мощности, старые установки мощностью 300-400 тыс. тонн в год перепрофилируют на изомеризацию. Иногда риформинг и изомеризация объединяются в единый комплекс по производству высокооктановых бензинов.

Задача процесса – очистка бензиновых, керосиновых и дизельных фракций, а также вакуумного газойля от сернистых и азотсодержащих соединений. На установки гидроочистки могут подаваться дистилляты вторичного происхождения с установок крекинга или коксования, в таком случае идет также гидрирование олефинов. Мощность установок составляет от 600 до 3000 тыс. тонн в год. Водород, необходимый для реакций гидроочистки, поступает с установок риформинга.

Сырьё смешивается с водородсодержащим газом (далее – ВСГ) концентрацией 85-95% об., поступающим с циркуляционных компрессоров, поддерживающих давление в системе. Полученная смесь нагревается в печи до 280-340°C, в зависимости от сырья, затем поступает в реактор. Реакция идет на катализаторах, содержащих никель, кобальт или молибден под давлением до 50 атм. В таких условиях происходит разрушение сернистых и азотсодержащих соединений с образованием сероводорода и аммиака, а также насыщение олефинов. В процессе за счет термического разложения образуется незначительное (1,5-2%) количество низкооктанового бензина, а при гидроочистке вакуумного газойля также образуется 6-8% дизельной фракции. Продуктовая смесь отводится из реактора, отделяется в сепараторе от избыточного ВСГ, который возвращается на циркуляционный компрессор. Далее отделяются углеводородные газы, и продукт поступает в ректификационную колонну, с низа которой откачивается гидрогенизат – очищенная фракция. Содержание серы, например, в очищенной дизельной фракции, может снизиться с 1,0% до 0,005-0,03%. Газы процесса подвергаются очистке с целью извлечения сероводорода, который поступает на производство серы, или серной кислоты.

Каталитический крекинг – важнейший процесс нефтепереработки, существенно влияющий на эффективность НПЗ в целом. Сущность процесса заключается в разложении углеводородов, входящих в состав сырья (вакуумного газойля) под воздействием температуры в присутствии цеолитсодержащего алюмосиликатного катализатора. Целевой продукт установки КК – высокооктановый компонент бензина с октановым числом 90 пунктов и более, его выход составляет от 50 до 65% в зависимости от используемого сырья, применяемой технологии и режима. Высокое октановое число обусловлено тем, что при каткрекинге происходит также изомеризация. В ходе процесса образуются газы, содержащие пропилен и бутилены, используемые в качестве сырья для нефтехимии и производства высокооктановых компонентов бензина, легкий газойль – компонент дизельных и печных топлив, и тяжелый газойль – сырьё для производства сажи, или компонент мазутов.

Мощность современных установок в среднем – от 1,5 до 2,5 млн тонн, однако на заводах ведущих мировых компаний существуют установки мощностью и 4,0 млн. тонн.

Ключевым участком установки является реакторно-регенераторный блок. В состав блока входит печь нагрева сырья, реактор, в котором непосредственно происходят реакции крекинга, и регенератор катализатора. Назначение регенератора – выжиг кокса, образующегося в ходе крекинга и осаждающегося на поверхности катализатора. Реактор, регенератор и узел ввода сырья связаны трубопроводами (линиями пневмотранспорта), по которым циркулирует катализатор.

Наиболее удачная, хотя и не новая, отечественная технология используется на установках мощностью 2 млн. тонн в Уфе, Омске, Москве.

Мощностей каталитического крекинга на российских НПЗ в настоящее время явно недостаточно, и именно за счёт ввода новых установок решается проблема с прогнозируемым дефицитом бензина. При реализации декларируемых нефтяными компаниями программ реконструкции НПЗ, данный вопрос полностью снимается.

За последние несколько лет в Рязани и Ярославле реконструированы однотипные сильно изношенные и устаревшие установки, введенные в советский период, а в Нижнекамске построена новая. При этом использованы технологии компаний Stone&Webster и Texaco.

Сырьё с температурой 500-520°С в смеси с пылевидным катализатором движется по лифт-реактору вверх в течение 2-4 секунд и подвергается крекингу. Продукты крекинга поступают в сепаратор, расположенный сверху лифт-реактора, где завершаются химические реакции и происходит отделение катализатора, который отводится из нижней части сепаратора и самотёком поступает в регенератор, в котором при температуре 700°С осуществляется выжиг кокса. После этого восстановленный катализатор возвращается на узел ввода сырья. Давление в реакторно-регенераторном блоке близко к атмосферному. Общая высота реакторно-регенераторного блока составляет от 30 до 55 м, диаметры сепаратора и регенератора – 8 и 11 м соответственно для установки мощностью 2,0 млн тонн.

Продукты крекинга уходят с верха сепаратора, охлаждаются и поступают на ректификацию.

Каткрекинг может входить в состав комбинированных установок, включающих предварительную гидроочистку или легкий гидрокрекинг сырья, очистку и фракционирование газов.

Гидрокрекинг – процесс, направленный на получение высококачественных керосиновых и дизельных дистиллятов, а также вакуумного газойля путём крекинга углеводородов исходного сырья в присутствии водорода. Одновременно с крекингом происходит очистка продуктов от серы, насыщение олефинов и ароматических соединений, что обуславливает высокие эксплуатационные и экологические характеристики получаемых топлив. Например, содержание серы в дизельном дистилляте гидрокрекинга составляет миллионные доли процента. Получаемая бензиновая фракция имеет невысокое октановое число, её тяжёлая часть может служить сырьём риформинга. Гидрокрекинг также используется в масляном производстве для получения высококачественных основ масел, близких по эксплуатационным характеристикам к синтетическим.

Гамма сырья гидрокрекинга довольно широкая – прямогонный вакуумный газойль, газойли каталитического крекинга и коксования, побочные продукты маслоблока, мазут, гудрон.

Установки гидрокрекинга, как правило, строятся большой единичной мощности – 3-4 млн. тонн в год по сырью.

Обычно объёмов водорода, получаемых на установках риформинга, недостаточно для обеспечения гидрокрекинга, поэтому на НПЗ сооружаются отдельные установки по производству водорода путём паровой конверсии углеводородных газов.

Технологические схемы принципиально схожи с установками гидроочистки – сырьё, смешанное с водородосодержащим газом (ВСГ), нагревается в печи, поступает в реактор со слоем катализатора, продукты из реактора отделяются от газов и поступают на ректификацию. Однако, реакции гидрокрекинга протекают с выделением тепла, поэтому технологической схемой предусматривается ввод в зону реакции холодного ВСГ, расходом которого регулируется температура. Гидрокрекинг – один из самых опасных процессов нефтепереработки, при выходе температурного режима из-под контроля, происходит резкий рост температуры, приводящий к взрыву реакторного блока.

Аппаратурное оформление и технологический режим установок гидрокрекинга различаются в зависимости от задач, обусловленных технологической схемой конкретного НПЗ, и используемого сырья.

Например, для получения малосернистого вакуумного газойля и относительно небольшого количества светлых (лёгкий гидрокрекинг), процесс ведётся при давлении до 80 атм на одном реакторе при температуре около 350°С.

Для максимального выхода светлых (до 90%, в том числе до 20% бензиновой фракции на сырьё) процесс осуществляется на 2-х реакторах. При этом, продукты после первого реактора поступают в ректификационную колонну, где отгоняются полученные в результате химических реакций светлые, а остаток поступает во второй реактор, где повторно подвергается гидрокрекингу. В данном случае, при гидрокрекинге вакуумного газойля давление составляет около 180 атм, а при гидрокрекинге мазута и гудрона – более 300. Температура процесса, соответственно, варьируется от 380 до 450°С и выше.

В России до последнего времени процесс гидрокрекинга не использовался, но в 2000-х годах введены мощности на заводах в Перми, Ярославле и Уфе, на ряде заводов установки гидроочистки реконструированы под процесс лёгкого гидрокрекинга. Идёт монтаж установки в ООО "Киришинефтеоргсинтез", планируется строительство на заводах ОАО "Роснефть".

Совместное строительство установок гидрокрекинга и каталитического крекинга в рамках комплексов глубокой переработки нефти представляется наиболее эффективным для производства высокооктановых бензинов и высококачественных средних дистиллятов.

Назначение процесса – квалифицированная переработка тяжёлых нефтяных остатков, как первичной, так и вторичной переработки, с получением нефтяного кокса, применяемого для производства электродов, используемых в металлургической промышленности, а также дополнительного количества светлых нефтепродуктов.

В отличие от ранее описанных процессов, коксование является термическим процессом, не использующим катализатор.

Существуют различные технологические решения для данного процесса. На российских НПЗ используются установки замедленного коксования.

Замедленное коксование – полунепрерывный процесс, осуществляемый при температуре около 500°С и давлении, близком к атмосферному. Сырьё поступает в змеевики технологических печей, в которых идёт процесс термического разложения, после чего поступает в камеры, в которых происходит образование кокса. На установках сооружается 4 коксовые камеры, работающие попеременно. Камера в течении суток работает в режиме реакции, заполняясь коксом, после чего в течение суток осуществляются технологические операции по выгрузке кокса и подготовке к следующему циклу.

Кокс из камеры удаляется при помощи гидрорезака, представляющего собой бур с расположенными на конце соплами, через которые под давлением 150 атм подаётся вода, которая раздробляет кокс.

Раздробленный кокс сортируется на фракции, в зависимости от размера частиц.

Сверху коксовых камер уходят пары продуктов и поступают на ректификацию. Светлые фракции, полученные при коксовании, характеризуются низким качеством из-за большого содержания олефинов и поэтому желательно их дальнейшее облагораживание.

Выход кокса составляет порядка 25% при коксовании гудрона, выход светлых фракций – около 35%.

Ранее рассмотрены основные технологические процессы топливного производства, применяемые на НПЗ России.

Однако, в ходе указанных процессов вырабатываются только компоненты моторных, авиационных и котельных топлив с различными показателями качества. Например, октановое число прямогонного бензина составляет около 65, риформата – 95-100, бензина коксования – 60. Другие показатели качества (например, фракционный состав, содержание серы) у компонентов также различаются. Для получения же товарных нефтепродуктов организуется смешение полученных компонентов в соответствующих емкостях НПЗ в соотношениях, которые обеспечивают нормируемые показатели качества.

Расчёт рецептуры смешения (компаундирования) компонентов осуществляется при помощи соответствующих модулей математических моделей, используемых для планирования производства по НПЗ в целом. Исходными данными для моделирования являются прогнозные остатки сырья, компонентов и товарной продукции, план реализации нефтепродуктов в разрезе ассортимента, плановый объём поставок нефти. Таким образом возможно рассчитать наиболее эффективные соотношения между компонентами при смешении.

Зачастую на заводах используются устоявшиеся рецептуры смешения, которые корректируются при изменении технологической схемы.

Компоненты нефтепродуктов в заданном соотношении закачиваются в ёмкость для смешения, куда также могут подаваться присадки. Полученные товарные нефтепродукты проходят контроль качества и откачиваются в соответствующие ёмкости товарно-сырьевой базы, откуда отгружаются потребителю.

Основной способ доставки нефтепродуктов в России – перевозка железнодорожным транспортом. Для погрузки продукции в цистерны используются наливные эстакады. Поставки нефтепродуктов по России и на экспорт осуществляются также по системе магистральных нефтепродуктопроводов АК "Транснефтепродукт", речным и морским транспортом.

Одними из основных свойств моторного масла являются его вязкость и ее зависимость от температуры в широком диапазоне (от температуры окружающего воздуха в момент холодного пуска зимой до максимальной температуры масла в двигателе при максимальной нагрузке летом). Наиболее полное описание соответствия вязкостно-температурных свойств масел требованиям двигателей содержится в общепринятой на международном уровне классификации SAE J300.

Эта классификация подразделяет моторные масла 12 классов от 0W до 60: 6 зимних (0W, 5W, 10W, 15W, 20W, 25W) и 6 летних (10, 20, 30, 40, 50, 60) классов вязкости.

Буква W перед цифрой означает, что масло приспособлено к работе при низкой температуре (Winter – зима). Для этих масел кроме минимальной вязкости при 100°C дополнительно дается температурный предел прокачиваемости масла в холодных условиях. Предельная температура прокачиваемости означает минимальную температуру, при которой насос двигателя в состоянии подавать масло в систему смазки. Это значение температуры можно рассматривать как минимальную температуру, при которой возможен безопасный пуск двигателя.

Всесезонные масла обозначаются сдвоенным номером, первый из которых указывает максимальные значения динамической вязкости масла при отрицательных температурах и гарантирует пусковые свойства, а второй – определяет характерный для соответствующего класса вязкости летнего масла диапазон кинематической вязкости при 100°С и динамической вязкости при 150°С.

Методы испытаний, заложенные в оценку свойств масел по SAE J300, дают потребителю информацию о предельной температуре масла, при которой возможно проворачивание двигателя стартером и масляный насос прокачивает масло под давлением в процессе холодного пуска в режиме, недопускающем сухого трения в узлах трения.

Аббревиатура HTHS расшифровывается как High Temperature High Shear Rate, т. е. "высокая температура – высокая прочность на сдвиг". С помощью данного испытания измеряется стабильность вязкостной характеристики масла в экстремальных условиях, при очень высокой температуре.

Большинство присутствующих сегодня на рынке моторных масел являются всесезонными, т. е. удовлетворяют требованиям по вязкости как при низких, так и при высоких температурах.

Пример маркировки всесезонного масла: SAE 15w-40. Перед дефисом цифра соответствует зимнему маслу класса 15w, а после дефиса — летнему маслу класса 40.

В обеих вязкостных классификациях (ГОСТ, SAE), чем меньше цифра в числителе с индексом «з» (ГОСТ) или перед буквой "w" (SAE), тем меньше вязкость масла при низкой температуре и, соответственно, легче холодный пуск двигателя. Чем больше цифра, стоящая в знаменателе (ГОСТ) или после дефиса (SAE), тем больше вязкость масла при высокой температуре и надежнее смазывание двигателя в летнюю жару.

API система классификации моторных масел (API Engine Service Classification System) развивалась с 1969 года в результате совместной работы API, ASTM и SAE. Система полностью изложена в стандартах ASTM D 4485 "Стандартная спецификация на качество эксплуатационных свойств моторных масел" (Standart Performance Specification for Performance of Engine Oils) и SAE J183 APR96 "Качество эксплуатационных свойств моторных масел и эксплуатационные классификации двигателей (за исключением энергосберегающих масел)" (Engine Oil Performance and Engine Service Classifications (Other than "Energy Conserving"). Новый качественный шаг в развитии качества и классификации моторных масел был сделан в годах, когда под руководством API и участии представителей производителей автомобилей (ААМА), двигателей (ЕМА) и технических союзов (ASTM и SAE) была создана и развита

"Система Лицензирования И Сертификации Моторных Масел EOLCS" (Engine Oil Licensing and Certification System, API Publication No. 1509). Эта система постоянно совершенствуется. В настоящее время аттестация моторных масел проводится согласно требованиям EOLCS и "Свода правил СМА" (СМА Code of Practice).

По системе API (ASTM D 4485, SAE J183 APR96) установлены три эксплуатационные категории (три ряда) назначения и качества моторных масел:

API SA, API SB, API SC, API SD, API SE, API SF, API SG, API SH и API SJ (категория SI – намеренно пропущена API, для исключения путаницы с Международной системой мер).

Категории API SA, API SB, API SC, API SD, API SE, API SF, API SG на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются, категория API SH является "условно действующей" и может использоваться только как дополнительная, например API CG-4/SH.

Класс SL введен 2001 г. и отличается от SJ существенно лучшими антиокислительными, противоизносными, противопенными свойствами, а также меньшей испаряемостью;

API СA, API СB, API СC, API СD, API СD-II, API CE, API CF, API CF-2, API CF-4, API CG-4 и API CH-4.

Категории API СA, API СB, API СC, API СD, API СD-II на сегодняшний день признаны недействительными, как устаревшие, однако в некоторых странах масла этих категорий еще выпускаются;

Моторные масла, отличающиеся низкой вязкостью как при низкой, так и при высокой температуре могут быть сертифицированы на соответствие категории API EC "энергосберегающее" масло ("Energy Conserving" Oil). Ранее энергосбережение определялось по методике Последовательности VI (Sequence VI, ASTM RR D02 1204). Данная методика использовалась для сертификации масел категории API SH на уровни (степени) энергосбережения: API SH/EC – 1,5% экономии топлива и API SH/ECII – 2,7% экономии топлива, по сравнению с эталонным маслом SAE 20w-30. Римские цифры после букв ЕС указывают уровень получаемой экономии топлива (ЕС II – 2,5%).

Тенденции развития техники направлены на повышение их экологической безопасности, увеличение интервалов техобслуживания при сохранении надежности работы. Естественно, это вносит свои коррективы в процесс совершенствования двигателей, отображаясь и на качествах смазывающих материалов. Следуя данным тенденциям, в ноябре 2004 года в классификации API появился класс на моторные масла для бензиновых двигателей – SM, предполагающий, по сравнению с SL, повышенные требования к смазывающим материалам относительно стойкости к окислению, защите от отложений, износа и т. д. С октября 2006 года пополнилась категория и для дизельных масел классом CJ-4.

(Действующая). API планировал разрабатывать проект PS-06 как следующую категорию API SK, но один из поставщиков моторных масел в Корее использует сокращение "SK" как часть своего корпоративного имени. Для исключения возможной путаницы буква "К" будет пропущена для следующей категории "S".

(Действующая). Категория утверждена 06.11.1995, лицензии стали выдаваться с 15.10.1996. Автомобильные масла данной категории предназначены для всех используемых в настоящее время бензиновых двигателей и полностью заменяют масла всех существовавших ранее категорий в более старых моделях двигателей. Максимальных уровень эксплуатационных свойств. Возможность сертификации по категории энергосбережения API SJ/EC.

(Условно действующая). Лицензированная категория, утвержденная в 1992 году. На сегодняшний день категория является условно действующей и может быть сертифицирована только как дополнительная к категориям API C (например API AF-4/SH). По требованиям соответствует категории ILSAC GF-1, но без обязательного энергосбережения. Автомобильные масла данной категории предназначены для бензиновых двигателей моделей 1996 года и старше. При проведении сертификации на энергосбережение, в зависимости от степени экономии топлива присваивались категории API SH/EC и API SH/ECII.

Лицензированная категория, утвержденная в 1988 году. Выдача лицензий прекращена в конце 1995 года. Автомобильные масла предназначены для двигателей моделей 1993 года и старше. Топливо – неэтилированный бензин с оксигенатами. Удовлетворяют требованиям, выдвигаемым к автомобильным маслам для дизельных двигателей категории API CC и API CD. Имеют более высокую термическую и противоокислительную стабильность, улучшенные противоизносные свойства, уменьшенную склонность к образованию отложений и шлама.

Автомобильные масла API SG заменяют масла категорий API SF, SE, API SF/CC и API SE/CC.

Автомобильные масла данной категории предназначены для двигателей моделей 1988 года и старше. Топливо – этилированный бензин. Они имеют более эффективные, чем предыдущие категории, противоокислительные, противоизносные, антикоррозийные свойства и обладают меньшей склонностью к образованию высоко – и низкотемпературных отложений и шлака.

Автомобильные масла API SF заменяют масла API SC, API SD и API SE в более старых двигателях.

Двигатели, работающие при умеренных нагрузках, используется только по требованию производителя.

Двигатели, работающие в легких условиях, используется только по требованию производителя.

Введена в 2006. Для быстроходных четырёхтактных двигателей, проектируемых для удовлетворения норм по токсичности отработавших газов 2007 года на магистральных дорогах. Масла CJ-4 допускают использование топлива с содержанием серы вплоть до 500 ррт (0,05% от массы). Однако работа с топливом, в котором содержание серы превышает 15 ррт (0,0015% от массы), может сказаться на работоспособности систем очистки выхлопных газов и/или интервалах замены масла.

Масла CJ-4 рекомендованы для двигателей, оборудованных дизельными сажевыми фильтрами и другими системами обработки выхлопных газов.

Масла со спецификацией CJ-4 превышают рабочие свойства CI-4, CI-4 Plus, CH-4, CG-4, CF-4 и могут применяться в двигателях, которым рекомендуются масла этих классов.

Введена в 2002 году. Для быстроходных четырёхтактных двигателей, проектируемых для удовлетворения нормам по токсичности отработавших газов, осуществляемым в 2002 году. Масла СI-4 допускают использование топлива с содержание серы вплоть до 0,5% от массы, а также применяются в двигателях с системой рециркуляции отработанных газов (EGR). Заменяет CD, СЕ, CF-4, CG 4 и СН-4 масла.

В 2004 году была введена дополнительная категория API CI-4 PLUS. Ужесточены требования к сажеобразованию, отложениям, вязкостным показателям, ограничение значения TBN.

Введена в 1998 году. Для быстроходных четырёхтактных двигателей, удовлетворяющих требования по токсичности выхлопных газов, введенных в США с 1998 года. Масла СН-4 позволяют использовать топливо с содержанием серы вплоть до 0,5% от массы. Можно использовать вместо CD, СЕ, CF-4 и CG-4 масел.

Введена в 1995 году. Для двигателей быстроходной дизельной техники, работающей на топливе с содержанием серы менее чем 0,5%. Масла CG-4 для двигателей, выполняющих требования по токсичности отработанных газов, введенные в США с 1994 года. Заменяет масла CD, СЕ и CF-4 категорий.

Введена в 1990 году. Для быстроходных четырехтактных дизельных двигателей с турбонаддувом и без него. Можно применять вместо CD и СЕ масел.

Введена в 1994 году. Улучшенные характеристики, используется вместо CD-II для двухтактных двигателей.

Введена в 1994 году. Масла для внедорожной техники, двигателей с разделительным впрыском, в том числе работающих на топливе с содержанием серы 0,5% от массы и выше. Заменяет масла CD.

Высокофорсированные перспективные двигатели с высоким турбонаддувом, работающие в тяжелых условиях, может использоваться вместо масел классов CC и CD.

Класс масел для скоростных дизельных двигателей с турбонаддувом и высокой удельной мощностью, работающих на больших скоростях и при высоких давлениях и требующих повышенных противоиносных свойств и предотвращения образования нагара.

Высокофорсированные двигатели (в том числе с умеренным наддувом), работающие в тяжелых условиях.

Среднефорсированные двигатели без наддува, работающие при повышенных нагрузках на сернистом топливе.

Двигатели, работающие при умеренных нагрузках на малосернистом топливе.

Универсальные масла для бензиновых двигателей и дизелей имеют обозначения обеих категорий, например API SG/CD, API SJ/CF.

Классы дизельных масел подразделяются дополнительно для Двухтактных (CD-2, CF-2) и Четырехтактных дизелей (CF-4, CG-4, СН-4).

В настоящее время API сертифицирует моторные масла классов SJ, SL, CF, CF-2, CF-4, CG-4, СН-4. Масла остальных классов по API, отмененных в США, следует использовать, если они допущены производителями автомобилей.

Масла, соответствующие требованиям действующих категорий качества и прошедшие официальные испытания API – SAE, имеют на своих этикетках графический круглый знак (donut mark) – "API символ обслуживания" (API Service Symbol), в котором указаны степень вязкости по SAE, категория качества и назначения по API и возможная степень энергосбережения.

3.Охлаждающие жидкости. Свойства, достоинства и недостатки. Пути улучшения. Перспективные охлаждающие жидкости.

Двигатель внутреннего сгорания необходимо охлаждать для обеспечения нормального теплового режима работы его узлов и деталей. Наиболее распространены системы охлаждения с принудительной циркуляцией жидкости. В процессе работы она может нагреваться до 100°C и иногда выше, а на стоянке остывать до температуры окружающего воздуха. От свойств жидкости во многом зависит эффективность системы охлаждения, надежность и долговечность двигателя. Она должна иметь высокую теплоемкость, теплопроводность, температуру кипения, подвижность, а также низкую температуру кристаллизации и коэффициент объемного расширения. Охлаждающая жидкость не должна вызывать коррозию металлов, разрушать резину уплотнений и вспениваться в процессе работы.

Старейшей охлаждающей жидкостью, порой использующейся и сегодня, является Вода. В природной воде растворены соли и минералы. Соли (преимущественно кальция и магния) в совокупности с хлоридами и сульфатами (в меньшей степени) обусловливают жесткость воды. Карбонатная жесткость воды приводит к образованию осадка в форме нетвердых отложений (взвеси) или накипи на металлических поверхностях системы охлаждения.

Солевые теплоизоляционные накипи снижают теплоотвод от тех частей системы охлаждения, которые особенно нуждаются в этом, что может вызвать серьезные проблемы, например, заклинивание поршня или образование трещин в блоке цилиндров. Кроме того, свободные сульфаты и хлориды приводят к увеличению коррозии металлов системы охлаждения. Но наиболее важные недостатки воды как хладагента заключаются в том, что она превращается в лед при 0°С, кипит при 100°С (при нормальном атмосферном давлении) и испаряется из открытых систем при температуре меньше 100°С.

Для увеличения температуры кипения, системы охлаждения двигателя герметизируют. Однако существенно увеличить температуру кипения благодаря такому поддавливанию нельзя по той простой причине, что не все части системы охлаждения выдерживают большое давление, например, шланги, резиновые уплотнения и радиатор, изготовленный из меди, латуни или алюминия с применением мягкого припоя.

Точку замерзания воды в свое время снижали, добавляя одноатомные спирты (метиловый, этиловый, изопропиловый). Однако все они имеют очень низкую температуру кипения (65-82°С), поэтому в настоящее время не используются. Высококипящий глицерин (290°С) также не используется по причине плохих низкотемпературных свойств (высокая вязкость при низкой температуре и, как следствие, плохая прокачиваемость).

Наиболее полно и корректно исправить недостатки воды и при этом не лишить ее достоинств позволяет водно-гликолевая смесь. Она представляет собой водный раствор этиленгликоля. Водный раствор этиленгликоля химически агрессивен и вызывает коррозию стальных, чугунных, алюминиевых, медных и латунных деталей системы охлаждения, а также припоев, используемых для пайки ее узлов, поэтому в охлаждающей жидкости присутствует комплекс противокоррозионных (ингибиторов), антивспенивающих и стабилизирующих присадок. Кроме того, этиленгликоль очень токсичен. Ядовит и может проникать в организм через кожу. Наиболее опасен, если его выпить (смертельная доза 35 см3).

Низкозамерзающие охлаждающие жидкости – антифризы (от англ. «antifreeze» – незамерзающий) заменили воду в системах охлаждения двигателей современных автомобилей. Наиболее широкое распространение получили низкозамерзающие жидкости на гликолевой основе, представляющие собой смесь этиленгликоля с водой. Иногда встречаются жидкости на основе пропиленгликоля – их нельзя смешивать с этиленгликолевыми.

Этиленгликоль (моноэтиленгликоль) – маслянистая желтоватая жидкость без запаха, умеренно вязкая, с плотностью 1,112-1,113 г/смз (при 20°С), температурой кипения 197°С и кристаллизации -11,5°С. При нагревании этиленгликоль и его водные растворы сильно расширяются. Для предотвращения выброса жидкости из системы охлаждения ее снабжают расширительным бачком и заполняют на 92–94% от общего объема.

Пропиленгликоль – по свойствам аналогичен этиленгликолю и менее токсичен, но примерно в 10 раз дороже. При низких температурах он более вязкий, чем этиленгликоль, и в связи с этим прокачиваемость у него хуже

Смесь этиленгликоля с водой характерна тем, что температура ее кристаллизации зависит от соотношения этих двух составляющих. У смеси она значительно ниже, чем по отдельности у воды и этиленгликоля. При различных пропорциях можно получить растворы с температурой кристаллизации от 0 до -75°С. Температура кристаллизации и кипения, а также плотность смеси этиленгликоля и воды в зависимости от содержания в ней этиленгликоля представлены на рисунке. Самое низкое значение температуры замерзания соответствует составу, в котором этиленгликоля 66,7% и воды 33,3%. В других случаях одну и ту же температуру замерзания можно получить при двух значениях соотношений этиленгликоля и воды. Экономически выгодно использовать вариант с большим количеством воды.

Определение соотношения этиленгликоля и воды в антифризе осуществляют по плотности, измеренной с помощью ареометра или гидрометра. На специальных приборах для удобства вместо шкалы плотности применяется двойная шкала, одновременно показывающая содержание этиленгликоля в процентах и температуру кристаллизации. При проверке нужно учитывать температурные поправки к показаниям прибора, указанные в инструкции к нему.

Требования к антифризам в России установлены по ГОСТу «Жидкости охлаждающие низкозамерзающие. Общие технические условия». Стандарт нормирует основные показатели охлаждающих жидкостей на основе этиленгликоля: внешний вид, плотность, температуру начала кристаллизации, коррозионное воздействие на металлы, вспениваемость, набухание резины и т. д. Обязательной сертификации охлаждающие жидкости не подлежат.

    «ТОС» – «Технология органического синтеза» (наименование отдела ГосНИИОХТ, создавшего антифриз); «ОЛ» – окончание, характерное для спиртов (этанол, бутинол, метанол).

Этот антифриз был разработан в 1971 г. в Государственном научно-исследовательском институте органической химии и технологии (ГосНИИОХТ) для автомобилей ВАЗ взамен итальянского «ПАРАФЛЮ». Торговая марка «ТОСОЛ» не была зарегистрирована, поэтому ее применяют многие отечественные изготовители охлаждающих жидкостей. Но эксплуатационные свойства «тосолов» могут быть разными, поскольку определяются используемыми присадками, а они отличаются у различных производителей.

    по ASTM D 3306 и ASTM D 4656 – для легковых автомобилей и малых грузовиков; по ASTM D 4985 и ASTM D 5345 – для двигателей, работающих в тяжелых условиях: длительно эксплуатируемых в режимах, близких к максимальной мощности, на внедорожной технике, больших грузовиках, в стационарных силовых установках и т. п. Эти жидкости отличаются тем, что перед использованием в них необходимо добавлять специальную присадку.

Импортные антифризы по ASTM D 3306 можно использовать для отечественных легковых автомобилей.

Плановая замена необходима потому, что даже при нормальной эксплуатации в антифризе постепенно уменьшается содержание присадок и коррозия деталей двигателя усиливается. Жидкость больше пенится, следовательно, хуже передает тепло и мотор может перегреваться. Как правило, плановую замену рекомендуется осуществлять через два года, а при интенсивной эксплуатации – каждые 60 тыс. км. пробега автомобиля.

    на внутренней поверхности расширительного бачка образуется желеобразная масса; при легком морозе (до -15°С) антифриз становится кашицеобразным и в бачке обнаруживается осадок; электровентилятор радиатора системы охлаждения срабатывает все чаще.

В аварийной ситуации, например при замене в дальней дороге лопнувшего шланга, в систему охлаждения приходится заливать воду из случайного источника. Жесткая с примесями вода активизирует коррозию и вызывает образование посторонней взвеси, что тормозит циркуляцию жидкости и может затруднить работу водяного насоса. Кроме того, в местах сильного нагрева образуется накипь, ухудшающая работу системы охлаждения. Если антифриз стал бурым, значит, происходит активная коррозия деталей системы охлаждения. Разбавленную некачественной водой охлаждающую жидкость следует при первой возможности заменить с обязательной промывкой системы охлаждения.

    снимают крышку расширительного бачка и (или) радиатора; открывают кран радиатора отопителя, чтобы в нем или в подводящих шлангах не осталось жидкости; отворачивают пробки в радиаторе и блоке цилиндров двигателя, сливают старую охлаждающую жидкость в подставленную емкость, затем пробки сливных отверстий устанавливают обратно; медленно тонкой струйкой заливают новую охлаждающую жидкость через расширительный бачок и закрывают его крышку; пускают двигатель, прогревают его, затем останавливают и после остывания по необходимости доливают жидкость до нужного уровня.

При плановой замене антифриза достаточно один раз промыть систему дистиллированной или в крайнем случае хорошо прокипяченной, талой или дождевой водой.

    сливают охлаждающую жидкость и заливают вместо нее промывочную, так же, как это делается при замене жидкости; дают поработать двигателю от 20 до 60 мин – чем грязнее была слитая охлаждающая жидкость, тем больше требуется времени для промывки системы; останавливают двигатель, сливают моющую жидкость, промывают систему дистиллированной водой и заливают свежий антифриз.

Уровень антифриза в расширительном бачке может стать меньше нормы из-за испарения из него воды или из-за негерметичности системы. В первом случае нужно доливать дистиллированную, а если ее нет – прокипяченную в течение 30 мин воду. При утечках следует доливать охлаждающую жидкость, желательно той же марки.

Антифризы серии «Cool Stream» – результат новейших разработок в области защиты металлов от коррозии. Основой композиций присадок антифризов серии «Cool Stream» являются экологически безопасные карбоновые кислоты.

В производстве антифризов используются готовые карбоксилатные композиции присадок нового поколения разработки и производства компании «Артеко», Бельгия (совместное предприятие «Шеврон-Тексако» и «Тоталь»).

В традиционных охлаждающих жидкостях, к числу которых относится и Тосол, защиту металлов от коррозии обеспечивают силикаты, бораты, нитриты и др. Существуют рецептуры, где эту функцию выполняют фосфаты, амины и некоторые органические соединения. Выпускаемые сегодня в России охлаждающие жидкости отличаются по составу от первоначального варианта Тосола, который был создан специально для первых Жигулей. Однако, принципиальных отличий, к сожалению, нет, это, как и раньше, традиционная рецептура.

Метасиликат натрия, который многие используют для защиты алюминиевых сплавов, является достаточно эффективным ингибитором, но для современных двигателей с более высокими рабочими температурами и более плотными тепловыми потоками уже не очень подходит. Даже если использовать стабилизаторы силиката, полностью преодолеть проблему образования геля, который может приводить к закупорке радиатора, не возможно. Кстати, практически ни один отечественный производитель ОЖ не использует стабилизатор силиката.

В качестве ингибитора кавитационной коррозии в традиционных рецептурах обычно используют нитрит. Помимо того, что он может взаимодействовать с аминами и образовывать канцерогенные вещества, он имеет и другие недостатки. Главный недостаток – это быстрое расходование ингибитора. Выполняя свою защитную функцию, он переходит в неактивные формы. С другой стороны увеличение его концентрации приводит к коррозии алюминиевых сплавов и припоя. В Западной Европе и Северной Америке выпускаются специальные дополнительные пакеты ингибиторов коррозии для коммерческого транспорта, а также тестовые наборы для мониторинга содержания быстро расходуемых ингибиторов. Это значительно усложняет обслуживание грузовых автомобилей и автобусов, но альтернативой в случае использования традиционных охлаждающих жидкостей может быть только частая замена ОЖ. Из этого следует вывод для наших автохозяйств, если они применяют Тосол, то менять его нужно очень часто (при больших пробегах это может быть два раза в год). Дополнительных пакетов присадок и, тем более, тестовых наборов у нас никто не предлагает.

Значительно лучше проблему защиты от коррозии всех металлов системы охлаждения решают охлаждающие жидкости – антифризы нового поколения с пакетами ингибиторов коррозии на основе композиции солей моно и дикарбоновых кислот (карбоксилатная технология). Над этими рецептурами ряд ведущих производителей ОЖ работают уже с начала 90-х. В составе ОЖ нового поколения разных производителей есть различия, но принципиально это жидкости, которые значительно превосходят по своим эксплуатационным свойствам традиционные.

Такие антифризы ОЖ содержат в своем составе помимо синергетической композиции солей карбоновых кислот дополнительно ингибитор коррозии меди, антивспенивающую присадку и краситель. Они не содержат силикатов, нитритов, нитратов, фосфатов, боратов и аминов.

Отличие в работе ингибиторов нового поколения по сравнению с традиционными ингибиторами состоит в том, что они образуют значительно более тонкую защитную пленку на поверхностях материалов системы охлаждения. Расходование ингибиторов происходит только в случае возникновения очагов коррозии. С некоторой степенью приближения их можно считать нерасходуемыми ингибиторами. И именно поэтому ОЖ нового поколения выдерживают сроки эксплуатации до 5 лет. При этом, очень важно иметь ввиду, что в пределах рекомендованного срока эксплуатации эти жидкости обеспечивают более высокую эффективность защиты всех материалов системы охлаждения, чем традиционные, эффективность которых быстро падает по мере расходования ингибиторов. Кроме того, более тонкие защитные пленки ОЖ нового поколения делают более эффективным теплообмен между двигателем и системой охлаждения.

Некоторые российские компании уже выпускают в небольших объемах ОЖ с использованием импортных пакетов ингибиторов коррозии по карбоксилатной технологии. Однако, это делается на старом оборудовании и без какого-либо участия компаний, являющихся носителями этих «ноу-хау».

Иногда можно услышать, что в России создана охлаждающая жидкость, которая не уступает, а иногда пишут, что и превосходит зарубежные аналоги по своим эксплуатационным свойствам. К такой информации нужно относиться осторожно. Разработка рецептур ОЖ нового поколения – это процесс, который требует и времени и значительных материальных вложений. Ни один российский производитель ОЖ не в состоянии сегодня выполнить такую работу.

Этим объясняется то, что первое в России специализированное предприятие по производству ОЖ нового поколения, опирается на опыт своего стратегического партнера – компании ARTECO (Бельгия).

Компания ARTECO является совместным предприятием транснациональных корпораций Chevron-Texaco и Total. Благодаря своим именитым создателям ARTECO располагает рецептурами охлаждающих жидкостей самого последнего поколения, обладающих выдающимися характеристиками.

Предприятие построено с использованием самого современного оборудования из США, Франции и Италии. Впервые в России для смешения ОЖ используется полностью автоматизированная установка с выводом управления на компьютерную консоль. Только в этом случае возможно полноценное сотрудничество с зарубежными партнерами, которые во главу угла ставят высокое качество, которое повторяется неизменно от партии к партии продукции. При таком высоком уровне автоматизации значительно уменьшается роль субъективного фактора.

На данном этапе предприятие будет использовать готовые пакеты ингибиторов от своего партнера. Постепенно схема будет наращиваться до полного цикла производства от первичных компонентов до готовых продуктов. Помимо пакетов присадок перенимается высокая культура промышленного производства.

Расфасовка готовой продукции антифриза также соответствует международным стандартам. От выдува канистр до упаковки картонных коробов с канистрами в паллеты все работы механизированы, и оборудование расфасовки представляет собой интегрированную линию. В целях избежания подделок используются несколько степеней защиты, включая термофольгу на горлышке канистры.

Http://pandia. ru/text/77/500/11378.php

Основные процессы переработки нефти и сырья протекают при высоких температурах, достигающих 350 – 700 С, а некоторые процессы при еще более высоких температурах. Это обусловливает большой расход топлива. Например, в технологических печах нефтеперерабатывающих заводов расходуется от 50 до 70 кг условного топлива на каждую тонну перерабатываемой нефти.  [1]

Основные процессы переработки нефти и сырья протекают при высоких температурах ( достигающих 350 – 700 С и более), чти обусловливает большой расход топлива. Так, в трубчатых печах расходуется от 50 до 70 кг условного топлива на каждую тину перерабатываемой нефти. В качестве топлива для трубчатых печей используют природный и попутный газы, газы процессов переработки нефти, мазут, которые относятся к прямым видам топлива.  [2]

Основные процессы переработки нефти и сырья протекают при высоких температурах ( достигающих 350 – 700 С и более), что обусловливает большой расход топлива. Так, в трубчатых печях расходуется от 50 до 70 кг условного топлива на каждую тонну перерабатываемой нефти. В качестве топлива для трубчатых печей используют природный и попутный газы, газы процессов переработки нефти, мазут, которые относятся к прямым видам топлива.  [3]

Основной процесс переработки нефти и получения готовой продукции происходит в аппаратах и емкостях без непосредственного воздействия человека на предмет труда. Это служит предпосылкой полной автоматизации основных производственных процессов в нефтеперерабатывающей промышленности.  [4]

Основные процессы переработки нефти, заложенные проектными и научно-исследовательскими организациями в схемы перспективных нефтеперерабатывающих заводов, за некоторым исключением обеспечены данными достаточно широких лабораторных и полупромышленных исследований. Сюда относятся процессы: каталитический риформинг, каталитический крекинг, гидроочистка, термокон-тактный крекинг ТКК, гидрокрекинг на стационарном катализаторе, изомеризация, де-парафинизация и ряд других.  [5]

Основным процессом переработки нефти является разделение ее перегонкой ( стр. Наиболее дефицитны обычно легкокипящие ( бензиновые) фракции. Для увеличения их выхода нефть подвергают химической переработке, в результате которой менее дефицитные высококипящие компоненты нефти превращаются в легкокипящие продукты заданного состава.  [6]

Все основные процессы переработки нефти относятся к аппаратурным, так как воздействие на предмет труда происходит в аппаратах с использованием тепловой, электрической или химической энергии. По характеру протекания во времени различают непрерывные и периодические процессы. При непрерывных процессах сырье постоянно поступает в аппарат ( без его остановки), а готовая продукция ( полуфабрикаты) непрерывно передается на последующие стадии переработки. Особенностью или признаком такого процесса является сохранение неизменных условий в любой точке каждого из последовательно соединенных аппаратов.  [7]

Все основные процессы переработки нефти и нефтяных – фракций включают в себя обязательно испарение или конденсацию, или оба эти процесса совместно. Расчет аппаратуры для ведения этих процессов требует обязательного знания условий равновесия для углеводородных смесей.  [8]

Приведены технологические схемы основных процессов переработки нефти и газа; описаны режимы работы отдельных аппаратов и их конструктивные особенности; приведены характеристики различных видов сырья и данные о качестве получаемых продуктов.  [9]

Приведены технологические схемы основных процессов переработки нефти и газа; описаны режимы работы отдельных аппаратов и их конструктивные особенности; приведены характеристики различных видов сырья и данные о качестве получаемых продуктов.  [10]

В книге приводятся краткие сведения об основных процессах переработки нефти, о получаемых нефтепродуктах и требованиях к их качеству. Подробно описаны товарные операции, связанные с приемом нефти на завод, подачей ее на установки и получением нефтепродуктов. Изложены правила эксплуатации оборудования товарного хозяйства.  [11]

Еще более существенные результаты будут получены при комбинировании ряда основных процессов переработки нефти.  [12]

Следовательно, эти температуры значительно выше тех, при которых протекают основные процессы переработки нефти.  [13]

Неотложного решения требует восстановление и дальнейшее развитие производства промышленных катализаторов для основных процессов переработки нефти. Уже в настоящее время потребители – нефтяные компании – большую часть этих катализаторов закупают у зарубежных фирм.  [14]

Русским ученым и инженерам принадлежит первенство в научных работах по исследованиям нефти и в создании и разработке основных процессов переработки нефти.  [15]

Http://www. ngpedia. ru/id346106p1.html

«Нефтяные и нефтехимические отходы 2018» — очередная (уже четвертая по счету) отраслевая международная конференция, организованная силами компании CREON Energy и собравшая 20 марта сего года на базе московского отеля «Балчуг Кемпински» ведущих игроков данного рынка, представителей отраслевых организаций и ведомств, а также представителей экспертного сообщества.

Сегодня мы представляем вашему вниманию подробный отчет, подготовленный по итогам конференции, включая основные статистические данные и наиболее важные высказывания некоторых из выступавших участников конференции. Информация предоставлена пресс-службой компании организатора.

Добыча и переработка нефти были и остаются ключевым сегментом отечественной экономики. Он обеспечивает наполняемость бюджета, определяет позицию России на мировом рынке углеводородов, да и просто дает некую уверенность в завтрашнем дне. Ложкой дегтя является неизбежное воздействие на окружающую среду – экологически безопасным процесс нефтедобычи не сделаешь при всем желании. Но минимизировать наносимый природе ущерб можно, за рубежом такие технологии уже есть. К нам же они доходят пока в минимальных количествах.

Картина с нефтяными отходами полностью повторяет сценарий с ПНГ.

Сначала добывающие компании шли по пути наименьшего сопротивления, т. е. попросту сжигали попутный газ. Но потом вмешалось государство, и ситуация перевернулась на 180 градусов – ПНГ превратился в ценное нефтехимическое сырье. То же самое мы наблюдаем и сейчас: официально НК признают опасность нефтехимических и буровых отходов и необходимость их переработки. Однако по факту проблема не решается. Что должно сдвинуть ситуацию с мертвой точки – «всплеск сознательности» у самих добывающих компаний или «волшебный пинок» от государства?

Ежегодно в России образуется около 5 млрд т промышленных отходов, из них бОльшая часть — около 90% — приходится на отходы при добыче полезных ископаемых. Как сообщил Алексей Книжников, руководитель программы по экологической политике WWF России, объем отходов каждый год немного увеличивается. Но при этом растет и уровень использования и обезвреживания — за 2016 г. этот показатель прибавил 21%.

В территориальном разрезе по количеству образуемых отходов при добыче полезных ископаемых лидирует Сибирский ФО — около 70%, там же складируется 80% накопленных отходов.

Г-н Книжников рассказал, что в нашей стране существует ФЦП «Ликвидация накопленного экологического ущерба» на 2014-2025 гг. При всей ее теоретической полезности по факту эффекта практически нет — происходит постоянный срыв сроков ликвидации и консервации наиболее токсичных объектов. Также рынку не хватает открытости и достоверности всей информации по программе.

WWF России считает, что способствовать решению проблемы утилизации нефтяных отходов должен общественный контроль за достоверностью отчетности бизнеса по вопросам отходов.

Другая экологическая организация – Гринпис России – представила статистику по количеству аварий на нефтепроводах. Ежегодно в РФ происходит около 25 тыс. инцидентов на нефтяных месторождениях и нефтепроводах, в результате чего в окружающую среду поступает примерно 1.5 млн т нефти. Это в два раза превышает объем нашумевшего разлива нефти в Мексиканском заливе в 2010 г. Такую информацию сообщил Владимир Чупров, руководитель энергетического отдела. По его словам, основная причина аварий — порывы нефтепроводов из-за коррозии.

Сейчас износ промысловых трубопроводов, по некоторым оценкам, достигает 60-70%, а процент ежегодной замены часто чисто символический — не более 2%. Это связано с тем, что законодательство Российской Федерации не содержит прямых требований к ограничению сроков эксплуатации промысловых нефтепроводов. И компании действуют по принципу «что не запрещено, то разрешено», зачастую меняя трубы только при появлении серьезных протечек. По статистике же максимальный срок службы трубопроводов с низким риском разгерметизации, как правило, не превышает 20 лет, а в сложных климатических условиях может сокращаться до 5.

Владимир Чупров считает, что решение проблемы возможно двумя путями: запретить эксплуатацию нефтепроводов, достигших своего нормативного срока службы, либо же сразу ограничить срок эксплуатации 20 годами.

Эксперт высказал свое мнение по поводу озвученного ранее вопроса – кто должен запустить процесс утилизации нефтяных отходов.

На мой взгляд, все очевидно: у наших НК сейчас очень низкие социально-экологические стандарты.

Это позволяет им получать сверхприбыли. А государство на экологический аспект закрывает глаза, ведь нефтяники обеспечивают до 40% федерального бюджета. Получается, что ни одной из сторон экология в общем-то не нужна. Я вам больше скажу: если бы не санкции, на нашем рынке были бы еще больше представлены иностранные нефтяные компании, которые тоже хотят дополнительно заработать на этой ситуации.

Докладчик говорит, что прежде всего нужно ужесточить экологические стандарты для НК и повысить их важность для самих компаний:

У нас сейчас есть и технологии, и деньги, и контролирующие органы, и компании, готовые утилизировать нефтяные отходы. А воз и ныне там.

Кроме того, Владимир Чупров считает, что информация по всем нефтеразливам – координаты, контуры и примерные объемы — должна стать прозрачной и доступной.

Далее участники конференции перешли к обсуждению практического опыта работы с нефтяными отходами. Главный специалист управления по ОТ, ПБ и ООС «Зарубежнефти» Михаил Игонин рассказал, что в дочернем предприятии «Зарубежнефть-добыча Харьяга» и «Русьвьетпетро» применяется безамбарное бурение. Отходы бурения поступают с буровой установки в приемный мобильный шламосборник, установленный на площадке. Полученный в результате утилизации инертный наполнитель используется при технической рекультивации буровых амбаров. После окончания строительства скважины производится рекультивация временных шлаконакопителей.

Что касается нефтесодержащих отходов, то они утилизируются на комплексной установке по переработке нефтяных шламов. В результате образуются осветленная вода и очищенные нефтепродукты, закачиваемые в систему подготовки нефти, а также отмытый грунт, используемый при рекультивации нарушенных земель (буровых амбаров прошлых лет).

На безамбарную модель бурения планирует перейти и «Салым Петролеум Девелопмент» и, таким образом, снизить объем образования отходов. Об этом сообщила Елена Герасимович, руководитель службы охраны окружающей среды. Летом 2017 г. компания провела эксперимент по определению удельных объемов отходов, получаемых с каждой скважины, а также соотношения в них твердой и жидкой фазы. Было переработано 1.6 тыс. м 3 отходов бурения. На основании итогов эксперимента были приняты ключевые решения в рамках дальнейшего развития проекта по управлению отходами бурения.

Как рассказала докладчик, это позволило найти возможность в будущем существенно сократить объем отходов с одной скважины.

Таким образом, безамбарная модель бурения позволит до 30% снизить общий объем отходов бурения, до 20% уменьшить объем жидких отходов, до 30% сократить размеры кустовых площадок и на 10% оптимизировать затраты на их строительство.

Решение о применении оборудования или новой технологии по переработке отходов бурения тоже рассматривается и будет принято после получения одобрения от акционеров.

По сравнению с Европой утилизация нефтяных отходов в России находится в зачаточном состоянии, но определенные подвижки все же есть. Так, СПАСФ «Природа» предлагает предприятиям нефтегазового комплекса услуги, связанные с ликвидацией последствий аварийных разливов нефти и нефтепродуктов, переработкой нефтяных и буровых шламов. Как рассказал заместитель генерального директора по производству Владимир Балдин, существует несколько технологий переработки буровых отходов в зависимости от типа раствора. Для жидкой фазы отходов бурения это физико-химическая сепарация и выпаривание на установках термического обезвреживания. Для переработки твердой фазы отходов бурения – солидификация, термическое обезвреживание (включая инсинерацию и термодесорбцию), промывка и биоремедиация

Методом солидификации за 2001-2017 гг. переработано более 236 тыс. м3 твердой фазы отходов бурения.

Сейчас СПАСФ «Природа» совместно с GEO Environmental Remediation проводит опытно-промышленные испытания технологии низкотемпературной термодесорбции на установке контейнерного типа в целях очистки почв, грунтов, загрязненных нефтяными углеводородами, кека центрифугальных установок и бурового шлама на углеводородной основе. В сентябре 2017 г. были проведены первичные испытания. В настоящее время проводится доработка установки, в апреле 2018 г. запланирован ее запуск в эксплуатацию.

Данная технология позволит перерабатывать буровые шламы на углеводородной основе и кек центрифугальных установок до значений остаточного содержания нефтепродуктов не более 1000 мг/кг, что в десятки раз ниже требований, установленных в Республике Коми и Ненецком автономном округе.

Новую разработку компании «Экрос-Инжиниринг» представил начальник инженерно-технологического отдела компании Алексей Петухов. В частности, создан мобильный комплекс переработки нефтешламов непосредственно на месте их образования. Производительность мобильной установки — 10 м 3 /ч для жидких и 6 т/ч для твердых нефтешламов. Она может в течение 48 часов быть развернута на полигонах и местах аварийных разливов нефтепродуктов и предназначена для работы с нефтешламами практически любого состава. В результате переработки получается пригодный для дальнейшего использования нефтепродукт (печное топливо) и грунт, не представляющий опасности для окружающей среды и пригодный для рекультивации земель.

Докладчик сообщил, что комплекс уже прошел экологическую экспертизу.

Итак, какие же полезные продукты можно получить из такого «неполезного» на первый взгляд сырья, как отходы бурения? Один из вариантов – искусственный камень. Ежегодно в России образуется около 4 млн м 3 отходов бурения, и раньше компании не задумывались об их рациональном использовании. На рынке есть всего два решения: перемешивание отходов с цементом и добавками или их сжигание. В результате по факту никакой полезный продукт не производится. Компания «Новая Металлургия» предлагает клиентам переработку отходов бурения в искусственный камень. Об этом рассказал генеральный директор Антон Машкин. Клиентам предлагается модульный комплекс, который в течение двух недель может быть адаптирован под любое месторождение.

Полученный искусственный камень может использоваться как замена щебню при отсыпке оснований кустовых площадок и внутрипромысловых дорог, а также бетонировании различных объектов. При этом сырьевая смесь брикетируется на прессе для получения камня заданного размера и качества.

Как показывает практика, нефтяные и буровые отходы могут считаться и «продуктом на выброс», и сырьем – все зависит от отношения, а главное – желания их полезно использовать. Директор «Химической технологической компании» Леонид Родин рассказал о возможностях переработки флекси-газа (это отходящий газ нефтепереработки, полученный при паро-воздушной газификации нефтяного кокса). Из него можно получать сразу два ценных продукта – водород и метанол. По словам докладчика, потенциальная мощность по водороду составляет 528 млн м 3 /год, по метанолу – 330 тыс. т/год метанола-ректификата при потребление 2.6 млрд м 3 флекси-газа.

Руководитель экспертной группы НТС при Минпромторге России Сергей Остах поделился информацией об опыте внедрения наилучших доступных технологий (НДТ) обезвреживания и утилизации нефтесодержащих отходов. Три года назад бюро по НДТ начало формировать технические рабочие группы по систематизации анкетирования предприятий, написанию системных документов, в т. ч. информационно-технического справочника.

Докладчик подчеркнул, что технологий по утилизации отходов, которые работали бы в широких масштабах, сейчас очень мало, практически единицы.

Г-н Остах выделил два главных тренда в утилизации нефтяных отходов. Первый – это переориентация предприятий на интеграцию технологических линий. В Европе уже используется такой опыт, у нас же пока есть только один пример – завод «Сургутнефтегаза» в Киришах. Второй тренд – это все более широкое использование мобильных комплексов для переработки нефтяных и буровых отходов.

Технологий утилизации много, однако зачастую держатся они, что называется, «на голом энтузиазме» — и разработка, и внедрение требует значительных средств. Банковский кредит не всегда выгоден игрокам рынка. В этой ситуации выходом может стать взаимодействие с инвестиционным фондом. Как рассказал директор по развитию бизнеса, маркетинга и коммуникаций CREON Capital Флориан Виллерсхаузен, сегмент нефтяных отходов в РФ является весьма привлекательным для инвесторов, т. к. освоен еще мало, но имеет серьезный потенциал. Например, в Германии широко распространена переработка нефтяных отходов в лубриканты. В стране работают 28 заводов общей мощностью 1.3 млн т/год, потребление же в странах ЕС составляет более 6 млн т ежегодно.

Подобные проекты вполне можно реализовать и в России, считает г-н Виллерсхаузен, CREON Capital готов выступать соинвестором. В целом фонд вкладывает деньги в проекты на начальной стадии, а также растущие и сформировавшиеся компании на территории России и стран СНГ. Он был открыт в 2016 г., совокупный объем вложений – около 100 млн евро. Г-н Виллерсхаузен подчеркнул, что инвестиции идут в основной капитал проектов. Также эксперты фонда готовы оказать содействие в привлечении и структурировании проектного финансирования. Партнерами финансовой организации являются Caceis Bank Luxembourg S. A., Ernst & Young S. A., Arendt & Medernach S. A. и Группа CREON (организатор данной конференции).

Такими оказались основные итоги конференции «Нефтяные и нефтехимические отходы 2018». Подробный перечень всех остальных (уже состоявшихся и еще предстоящих в текущем году) отраслевых мероприятий можно найти в нашей рубрике Календарь.

Http://mplast. by/novosti/2018-04-20-neftyanyie-i-neftehimicheskie-othodyi-2018/

1. Назначение и характеристика процесса ______________________ 2

2. Состав и характеристика сырья и продукция __________________ 5

В настоящее время вопрос о целесообразном использовании нефти стоит особенно остро. Увеличение выходов ценных товарных нефтепродуктов и продуктов нефтехимии стало одним из актуальных направлений совершенствования современной технологии переработки нефти.

Потребность промышленности, транспорта и сельского хозяйства в различных нефтепродуктах непрерывно растёт. Для удовлетворения растущей потребности в нефтепродуктах требуется сооружение – более мощных установок с улучшенными технико-экономическими показателями.

Головным процессом на каждом нефтеперерабатывающем заводе является первичная перегонка нефти.

Простейшей схемой первичной перегонки нефти является атмосферная трубчатая установка (AT). Из сырых нестабильных нефтей извлекают компоненты светлых нефтепродуктов — бензина, керосина, дизельных топлив. Остатком атмосферной перегонки является мазут. Он подвергается вакуумной перегонке. При этом получают вакуумные газойле или масляные фракции и тяжелый остаток — гудрон. Для получения из мазута вакуумных газойлей или масляных фракций сооружают атмосферно-вакуумные установки (АВТ). Получаемые на них газойлевые, масляные фракции и гудрон используют в качестве сырья процессов последующей (вторичной) переработки их с получением топлив, смазочных масел, кокса, битумов и других нефтепродуктов.

Процессы первичной обработки нефти включает в себя удаление воды и солей из нефти, разделение нефти на фракции для последующей переработки или использования в виде товарной продукции.

На современных нефтеперерабатывающих заводах основным первичным процессом является перегонка

. Перегонка (дистилляция) – это процесс физического разделения нефти и газов на фракции, отличающиеся друг от друга и от исходной смеси по температурным пределам (или температуре) кипения. По способу проведения процесса различают простую и сложную перегонку.

Простая перегонка осуществляется постепенным, однократным или многократным испарением.

Перегонка с постепенным испарением состоит в постепенном нагревании нефти от начальной до конечной температуры с непрерывным отводом и конденсацией образующихся паров. Этот способ перегонки нефти и нефтепродуктов в основном применяют в лабораторной практике при определении их фракционного состава.

При однократной перегонке нефть нагревается до заданной температуры, образовавшиеся и достигшие равновесия пары однократно отделяются от жидкой фазы-остатка. Этот способ, по сравнению с перегонкой с постепенным испарением, обеспечивает при одинаковой температуре и давлении большую долю отгона. Это важное достоинство используют в практике перегонки нефти для достижения максимального отбора паров, при достижении максимального отбора паров при ограниченной температуре нагрева во избежание крекинга нефти.

Перегонка с многократным испарением заключается в последовательном повторении процесса однократной перегонки при более высоких температурах или низких давлениях по отношению к остатку предыдущего процесса.

Из процессов сложной перегонки различают перегонку с дефлегмацией и перегонку с ректификацией.

Образующиеся пары конденсируют, и часть конденсата в виде флегмы подают навстречу потоку пара. В результате однократного контактирования парового и жидкого потоков уходящие из системы пары дополнительно обогащаются низкокипящими компонентами, тем самым несколько повышается чёткость разделения смесей.

Предназначен для разделения жидких неоднородных смесей на практически чистые компоненты или фракции, которые различаются по температуре кипения. Физическая сущность ректификации, протекающей в процессе перегонки нефти, заключается в двухстороннем массо – и теплообмене между потоками пара и жидкости при высокой турбулизации контактирующих фаз. В результате массообмена отделяющиеся от горячей жидкости пары обогащаются низкокипящими, а жидкость высококипящими компонентами.

При определенном числе контактов между парами и жидкостью можно получить пары, состоящие в основном из низкокилящих, и жидкость из высекокипящих. компонентов. Ректификация, как и всякий диффузионный процесс, осуществляется в противотоке пара и жидкости. При ректификации паров жидкое орошение создается путем конденсации части парового потока вверху колонны, а паровое орошение при ректификации жидкости – путем испарения части ее внизу колонны.

Контактирование потоков пара и жидкости может производиться непрерывно (в насадочных колоннах

Конструкция, аппаратов, предназначенных для ректификации, зависит от способа организации процесса в целом и способа контакта фаз. Наиболее простая конструкция ректификационных аппаратов при движении жидкости от одной ступени контакта к другой под действием силы тяжести, на установках первичной перегонки нефти основным аппаратом процесса ректификации является ректификационная колонна

— вертикальный аппарат цилиндрической формы. Внутри колонны расположены тарелки – одна над другой. На тарелке происходит контакт жидкой и паровой фаз. При этом наиболее легкие компоненты жидкого орошения испаряются и вместе с парами устремляются вверх, а наиболее тяжелые компоненты паровой фазы, конденсируясь, остаются в жидкости. В результате в ректификационной колонне непрерывно идут процессы конденсации и испарения.

Подбирая число контактных ступеней и параметры процесса (температурный режим, давление, соотношение потоков, флегмовое число и др.), можно обеспечить любую практически требуемую четкость фракционирования нефтяных смесей.

При проектировании атмосферно-вакуумных установок качество нефти является важнейшей характеристикой, поскольку именно оно определяет ассортимент продуктов и технологическую схему процесса, режим работы аппаратов и выбор конструкционных материалов, а также расход реагентов. Согласно технологической классификации нефтей класс нефти характеризует содержание серы, тип — выход моторных топлив, группа и подгруппа – выход и качество масел, вид – содержание парафина в нефти.

В нефтях присутствуют растворенные газы, вода и соли. Содержание газов колеблется от 1-2 до 4 % (мас). Эти колебания зависят в основном от типа нефти, условий ее стабилизации на промысле, вида транспортирования, типа емкостей хранения на заводе, атмосферных условий и ряда других факторов. Удаляют газы обычно при стабилизации нефти на промыслах. Перед поступлением на установки первичной перегонки нефть следует тщательно обезвоживать и обессоливать.

Углеводородный газ – выводится в виде газа и головки стабилизации, используется как бытовое топливо и сырьё для газофракционирования;

Бензиновая фракция – выкипает в пределах 30-180°С, используется как компонент товарного автобензина, как сырьё установок каталитического риформинга, вторичной перегонки, пиролизных установок;

Керосиновая фракция – выкипает в пределах 120-315°С, используется как топливо для реактивных и тракторных двигателей, для освещения, как сырьё установок гидроочистки;

Дизельная фракция (атмосферный газойль) – выкипает в пределах 180 -350 С, используется как топливо для дизельных двигателей и сырьё установок гидроочистки;

Мазут (остаток атмосферной перегонки) выкипает выше 350°С, используется как котельное топливо или сырьё термического крекинга;

Вакуумный дистиллят (вакуумный газойль) – выкипает в пределах выше 350-500 С, используется как сырьё каталитического крекинга и гидрокрекинга; на НПЗ с масляной схемой переработки получают несколько (2-3) вакуумных дистиллятов;

Гудрон (остаток атмосферно – вакуумной перегонки) – выкипает при температуре выше 500°С, используется как сырье установок термического крекинга, коксования, производства битума и масел.

При выборе ассортимента вырабатываемой продукции необходимо учитывать качество нефти и требования, предъявляемые к качеству нефтепродуктов, например, выработку узких бензиновых фракций головной (н. к.-62 °С), бензольной (62-85 °С), толуольной (85-120 °С) и ксилольной (120-140 °С) можно принимать только при высоком содержании в них нафтеновых углеводородов. При низком и среднем содержании нафтеновых углеводородов предпочтительнее принимать схему выработки головной (н. к.-85 °С) и широкой (85-180 °С) бензиновых фракций с дальнейшим направлением последней на установки каталитического риформинга для получения высокооктановых компонентов бензинов.

Поскольку к нефтяным фракциям, полученным на установках первичной переработки нефти, нельзя предъявлять требования ГОСТ на товарные продукты, то выбранные фракции керосина и дизельного топлива после процесса гидроочистки должны соответствовать стандарту, а выход их при этом должен быть по возможности максимальным. Так, при гидроочистке дизельной фракции температуры выкипания 50 и 90 % снижаются на 5-15 градусов. Это необходимо учитывать при определении пределов выкипания указанных фракций. Если это условие не может быть соблюдено, то полученные фракции после вторичных процессов будут компонентами товарных топлив.

При определении качества керосина и дизельной фракции нужно иметь в виду также их температуру застывания и вспышки, плотность, вязкость.

При получении масляных фракций в вакуумной части установки основными показателями, определяющими отбор их по кривой ИТК, являются высокое потенциальное их содержание, большой индекс вязкости, вязкость, температура застывания, содержание нафтеновых углеводородов, серы.

Основные физико-химические и эксплуатационные свойства выбранных фракций сравниваются с показателями качества по ГОСТ на товарный вид продукции.

Сырая нефть, смешиваясь с деэмульгатором и раствором щелочи, поступает в теплообменный блок, где нагревается до оптимальной температуры. Затем нагретая нефть смешивается в эжекционных смесителях с промывной водой, поступающей из электродегидраторов второй ступени (Э-1/2 и Э-2/2), и подается в параллельно работающие электродегадраторы первой ступени (Э-1/1 и Э-2/1), сверху которых выводится частично обессоленная нефть, а снизу соленая вода на очистные сооружения. Частично обессоленная’ нефть из Э-1/1 и Э-2/1 поступает в. эжекционные смесители, где смешивается со свежей промывной водой, поступающей из емкости (Е), затем в электродегадраторы второй ступени, сверху которых выводится обессоленная и обезвоженная нефть на установку АВТ.

Напряжение между электродами поддерживается 32-33 кВ. Ввод сырья в электродегидратор и вывод из него осуществляется через расположенные в нижней и верхней части аппарата трубчатые перфорированные распределители (маточники). Маточники обеспечивают равномерное распределение восходящего потока нефти. В нижней части электродегидратора между маточником и электродами поддерживается определенный уровень воды, содержащий деэмульгатор, где происходит термохимическая обработка эмульсии и отделение – наиболее, крупных капель воды. В зоне между зеркалом воды и плоскостью нижнего электрода нефтяная эмульсия подвергается воздействию слабого электрического поля, а в зоне между электродами – воздействию электрического поля высокого напряжения.

С – смеситель; ТОБ – теплообменный блок; Е – емкость; Н-1, Н-2 – насосы; Э – электродегидраторы

– рисунок 2 [1] (атмосферно-вакуумная установка) должна обеспечивать получение выбранного ассортимента продуктов из заданного сырья наиболее экономичным способом. Выбранная схема должна обеспечивать большую глубину отбора, четкость фракционирования, гибкость процесса, большой межремонтный пробег и высокие технологические показатели.

В зависимости от мощности установки по сырью и свойств перерабатываемой нефти выбирают один из вариантов схем перегонки: однократного испарения с ректификацией в одной колонне (вариант 1), двукратного испарения в двух колоннах (вариант 2). Вариант 1 применяют для стабилизированных нефтей, в которых содержание бензиновых фракций не превышает 2-10 % мае. Схема по варианту 2 самая распространенная в отечественной практике, она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов, а также для сернистых и высокосернистых нефтей.

К атмосферному блоку перегонки нефти добавляется блок вакуумной перегонки мазута также по различным схемам: однократного испарения в одной ректификационной колонне, двукратного испарения с ректификацией в двух колоннах. Вакуумный газойль или масляные дистилляты можно выводить в виде паров, жидких дистиллятов через отпарные колонны, промежуточные емкости и т. п.

В случае выработки на установке узких бензиновых фракций делается выбор схемы блока вторичной разгонки бензиновой фракции.

Независимо от выбора блока вторичной разгонки в схеме установки должен быть предусмотрен блок стабилизации бензиновой фракции. Привыборе схемы-установки следует ознакомиться с типовыми схемами установок первичной перегонки нефти и мазута.

К-1 – отбензинивающая колонна; К-2 – атмосферная колонна; К-3 – отпарная колонна; К-4 – стабилизатор; К-5 – вакуумная колонна; Э-1 – Э-4 – электродегидраторы; П-1, П-2 – печи; КХ-1 – КХ-4 – конденсаторы-холодильники; Е-1, Е-2 – рефлюксные емкости; А-1 – пароэжекторный вакуум-насос;

I – нефти; II – головка стабилизации; III – стабильный бензин; IV – керосин; V – дизельная фракция; VI – вакуумный дистиллят; VII – гудрон; VIII – выхлопные газы эжектора; IX – деэмульгатор; X – вода в канализацию; XI – водяной пар.

Установка состоит из 2-3 блоков: 1) обессоливания; 2) атмосферной перегонки; 3) вакуумной перегонки мазута. Установка, состоящая только из первых двух блоков носит название атмосферной трубчатки (AT), из всех трёх блоков – атмосферно-вакуумной трубчатки. Иногда первый и третий выделяются в самостоятельные установки. Нефть насосом забирается из сырьевого резервуара и проходит теплообменники, где подогревается за счет теплоты отходящих продуктов, после чего поступает в электродегидраторы. В электродегидр

Вода сбрасывается в канализацию (или подаётся на упарку с выделением солей), а нефть проходит вторую группу теплообменников и поступает в отбензинивающую колонну К-1.

В колонне К-1 из нефти выделяется легкая бензиновая фракция, которая конденсируется в холодильнике-конденсаторе ХК-1 и поступает в рефлюксную ёмкость Е-1. Полуотбензиненная нефть с низа колонны К-1 подаётся через трубчатую печь П-1 в атмосферную колонну К-2. Часть потока полуотбензиненной нефти возвращается в К-1, сообщая дополнительное количество теплоты, необходимое для ректификации.

В колонне К-2 нефть разделяется на несколько фракций. Верхний продукт колонны К-2 – тяжелый бензин – конденсируется в холодильнике-конденсаторе ХК-2 и поступает в рефлюксную ёмкость Е-2. Керосиновая и дизельные фракции выводятся из колонны К-2 боковыми погонами и поступают в отпарные колонны К-3.

В К-3 из боковых погонов удаляются (отпариваются) легкие фракции. Затем керосиновая и дизельные фракции через теплообменники подогрева нефти и концевые холодильники выводятся с установки. С низа К-2 выходит мазут, который через печь П-2 подаётся в колонну вакуумной перегонки К-5.

В вакуумной колонне К-5 мазут разделяется на вакуумный дистиллят, который отбирается в виде бокового погона, и на гудрон. С верха К-5 с помощью пароэжекторного насоса А-1 отсасываются водяные пары, газы разложения, воздух и некоторое количество легких нефтепродуктов (дизельная фракция). Вакуумный дистиллят и гудрон через теплообменники подогрева нефти и концевые холодильники уходят с установки.

Для снижения температуры низа колонн К-2 и К-5 и более полного извлечения дистиллятных фракций в них полется водяной пар. Избыточная теплота в К-2 и К-5 снимается с помощью циркулирующих орошений.

Бензин из рефлюксных емкостей Е-1 и Е-2 после подогрева подается в стабилизационную колонну К-4. С верха К-4 уходит головка стабилизации – сжиженный газ, а с низа – стабильный бензин. Необходимая для ректификации теплота подводится в К-4 циркуляцией части стабильного бензина через печь.

– типов нагревательных печей, теплообменников, конденсаторов-холодильников;

Исходя из практических данных, необходимо установить общее число тарелок в колоннах, а также число тарелок, приходящихся на каждый отбираемый продукт.

Показатели технологического режима установок первичной переработки приводятся в таблице 1:

Таблица 1 – Показатели технологического режима установок первичной переработки

При выборе технологической схемы и режима атмосферной перегонки нефти руководствуются главным образом ее фракционным составом и, прежде всего, содержанием в ней газов и бензиновых фракций.

Перегонку стабилизированных нефтей постоянного состава с небольшим количество растворенных газов (до 1,2 % масс.), относительно невысоким содержанием бензина (12-15 % мас.) и выходом фракций до 350 °С не более 45 % мас. энергетически наиболее выгодно осуществлять на установках AT по схеме с однократным испарением, то есть с одной сложной ректификационной колонной с боковыми отпарными секциями. Установки такого типа широко применяются на зарубежных НПЗ. Они просты и компактны, благодаря осуществлению совместного испарения легких и тяжелых фракций, требуют минимальной температуры нагрева нефти для обеспечения заданной доли отгона, характеризуются низкими энергетическими затратами и металлоемкостью. Основной их недостаток — меньшая технологическая гибкость и пониженный (на 2,5-3,0 % мае.) отбор светлых фракций, по сравнению с двухколонной схемой, необходимость более качественной подготовки нефти.

Для перегонки легких нефтей с высоким содержанием растворимых газов (1,5-2,2 % мае), бензиновых фракций (до 20-30 % мае.) и фракций до 350 °С (50-60 % мае.) целесообразно применять атмосферную перегонку двукратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фракционного состава, так как первая колонна, в которой отбирается 50-60% мае бензина от потенциала, выполняет функции стабилизатора, сглаживает колебания во фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны.

Применение отбензинивающей колонны позволяет также, снизить давление на сырьевом насосе, предохранить частично сложную колонну от коррозии, разгрузить, печь от легких фракции, тем самым несколько уменьшить ее требуемую тепловую мощность.

Недостатками двухколонной AT более высокая температура нагрева отбензиненной нефти, необходимость поддержания температуры низа первой колонны горячей струей, на что требуются затраты дополнительной энергии. Кроме того, установка оборудована дополнительной аппаратурой: колонной, насосами, конденсаторами-холодильниками и т. д.

При выборе ассортимента вырабатываемой продукции необходимо учитывать качество нефти и требования, предъявляемые к качеству нефтепродуктов, например, выработку узких бензиновых фракций (головной (н. к.-62 °С), бензольной (62-85 °С), толуольной (85-120 °С) и ксилольной (120-140 °С)) можно принимать только при высоком содержании нафтеновых углеводородов. При низком и среднем содержании нафтеновых углеводородов предпочтительнее принимать схему выработки головной (н. к. 85 °С) и широкой (85-180 °С) бензиновых фракций с дальнейшим направлением последней на установки каталитического риформинга для получения высокооктановых компонентов бензинов.

Нефть и особенно ее высококипящие фракции, и остатки характеризуются невысокой термической стабильностью. Для большинства нефтей температура термической стабильности соответствует температурной границе деления примерно между дизельным топливом и мазутом по кривой ИТК, то есть приблизительно 350-360 °С. Нагрев нефти до более высоких температур будет сопровождаться ее деструкцией и, следовательно, ухудшением качества отбираемых продуктов перегонки.

В этой связи перегонку нефти и ее тяжелых фракций проводят с ограничением по температуре нагрева.

В условиях такого ограничения для выделения дополнительных фракций нефти, выкипающих выше предельно допустимой, температуры нагрева сырья, возможно, использовать практически единственный способ повышения относительной летучести компонентов – перегонку под вакуумом

. Например, перегонка мазута при остаточных давлениях в зоне питания вакуумной колонны 100 и 20 мм рт. ст. (133 и 30 кПа) позволяет отобрать газойлевые (масляные) фракции с температурой конца кипения соответственно до 500 и 600 °С. Обычно для повышения четкости разделения при вакуумной, а также и атмосферной перегонки применяют подачу водяного пара для отпаривания более легких фракций. Следовательно, с позиций термической нестабильности нефти технология ее глубокой перегонки, то есть с отбором фракций до гудрона, должна включать как минимум две стадии: атмосферную перегонку до мазута с отбором топливных фракций и перегонку под вакуумом мазута с отбором газойлевых (масляных) фракций я в остатке гудрона.

При переработке нефтей, содержащих серу, требуются дополнительные процессы гидроочистки для обессеривания нефтепродуктов, а для парафинистых нефтей – установки по депарафинизации фракций, особенно керосино-газойлевых.

Пользуясь, кривой истинных температур кипения (ИТК) сырья, устанавливают выходы продуктов перегонки в процентах на сырье исходя из выбранных пределов выкипания фракций. На рисунке 3 представлен пример установления выходов фракций и их показатели качества. После этого составляется материальный баланс установки в виде таблицы 2 [1].

В показатели выхода, определенные по ИТК, вносится поправка на реальный отбор от потенциала. Для газов C1

Он составляет 0,98; фракции н. к. -62 °С — 1,05; фракции 62-180 °С — 0,98-0,99; керосиновой фракции — 0,97; дизельной фракции — 0,95; вакуумных дистиллятов — 0,8. Величины, выраженные в т/год, т/сут, кг/ч, подсчитываются из заданной годовой мощности установки, исходя из числа рабочих суток в году. Время, отводимое на ремонт оборудования, можно принимать в пределах 20-25 суток в год, тогда число рабочих дней в году составит 340-345.

Мощность установок ATи АВТ может составлять от 2 до 12 млн. т./год. Выход продукции на установках первичной переработки зависит от свойств исходной нефти, достигнутого отбора от потенциала светлых нефтепродуктов, вакуумного дистиллята и т. д. Материальный баланс первичной переработки типа ромашкинской (I) и самотлорской (II) приводится ниже.

Таблица 2 – Материальный баланс первичной переработки типа ромашкинской (I) и самотлорской (II) нефтей.

Http://www. litsoch. ru/referats/read/40601/

Поделиться ссылкой: