Схему современного нефтеперерабатывающего завода глубокой переработки нефти

Наряду с мощностью и ассортиментом нефтепродуктов важным показателем НПЗ является Глубина переработки нефти.

Глубина переработки нефти (ГПН) – показатель, характеризующий эффективность использования сырья. По величине ГПН можно косвенно судить о насыщенности НПЗ вторичными процессами и структуре выпуска нефтепродуктов.

Таблица 1.1 – Набор технологических установок, входящих в состав отечественных комбинированных установок

Разумеется, что НПЗ с высокой долей вторичных процессов располагает большей возможностью для производства из каждой тонны сырья большего количества более ценных, чем нефтяной остаток, нефтепродуктов и, следовательно, для более углубленной переработки нефти.

В мировой нефтепереработке до сих пор нет общепринятого и однозначного определения этого показателя. В отечественной нефтепереработке под глубиной переработки нефти подразумевается суммарный выход в процентах на нефть всех нефтепродуктов, кроме не превращенного остатка, используемого в качестве котельного топлива (КТ):

Где Г и П– соответственно удельные затраты топлива на переработку и потери нефти на НПЗ в процентах на сырье.

За рубежом глубину переработки нефти определяют преимущественно как суммарный выход светлых нефтепродуктов от нефти, т. е. имеется в виду глубина топливной переработки нефти.

Понятие глубины переработки нефти, выраженное в виде вышеприведенного уравнения, несколько условно, так как выход непревращенного остатка, в том числе котельного топлива, зависит не только от технологии нефтепереработки, но и, с одной стороны, от качества нефти и, с другой – как будет использоваться нефтяной остаток: как котельное топливо или как сырье для производства битума, как нефтяной пек, судовое или газотурбинное топлива и т. д.

Так, даже при неглубокой переработке путем только атмосферной перегонки легкой марковской нефти, содержащей 95,7% суммы светлых нефтепродуктов, ГПН составит более 90%, в то время как при углубленной переработке до гудрона арланской нефти с содержанием суммы светлыхнефтепродуктов43% этот показатель составит менее 70%.

Исходя из этих соображений были предложения характеризовать ГПН по величине отбора светлых нефтепродуктов только вторичными процессами (гидрокрекингом, каталитическим крекингом и т. д.) из фракций нефти, выкипающих при температуре выше 350 °С (т. е. из мазута).

В соответствии с этой методикой переработка нефти атмосферной перегонкой будет соответствовать нулевой глубине переработки.

В современной нефтепереработке принято НПЗ подразделять (без указания разграничивающих пределов ГПН) на два типа: с неглубокой и глубокой переработкой нефти. Такая классификация недостаточно информативна, особенно относительно НПЗ типа глубокой переработки нефти: неясно, какие именно вторичные процессы могут входить в его состав.

По Способу углубления переработки нефти нефтеперерабатывающему заводу можно дать следующее определение: НПЗ – совокупность технологических процессов, в которых осуществляется последовательное (ступенчатое) извлечение, облагораживание и физико-химическая переработка дистиллятных фракций нефти и, соответственно, концентрирование остатков (до мазута, гудрона, тяжелого гудрона глубоковакуумной перегонки, асфальта, кокса и т. д.).

По этому признаку удобно классифицировать НПЗ на следующие четыре типа (рисунок 1.5):

Http://helpiks. org/7-67105.html

К жидким химическим топливам относятся нефть и продукты ее переработки (нефтепродукты), а также продукты гидрирования твердого топлива. В настоящее время практическое значение имеют только нефтепродукты, для производства которых сырьем является нефть.

Нефтью называется жидкое ископаемое топливо, распространенное в осадочной оболочке литосферы Земли. Свое название нефть получила от персидского слова «нафта» — вытекающая, просачивающаяся.

В настоящее время общепринята теория органического (биогенного) происхождения нефти, согласно которой она образовалась в результате воздействия бактериального и геологических факторов на останки низших животных и растительных организмов, обитавших в толще воды (планктон) и на дне водоемов (бентос). В верхних слоях осадочных пород этот захороненный органический материал подвергался воздействию кислорода и бактерий и разлагался с образованием газов (оксид углерода, азот, аммиак, метан и др.) и растворимых в воде жидких продуктов.

В дальнейшем, по мере погружения на глубину 1,5—3 км в толщу осадочных пород, органические вещества нерастворимого остатка разложения подвергались в течение миллионов лет уже в восстановительной атмосфере действию высоких (120— 2000С) температур и давлений (10—30 МПа) и каталитическому воздействию окружающих пород (алюмосиликаты глин). На этой стадии в результате термических и термохимических процессов липиды органического вещества остатка (жиры, масла, воска) превращались в смесь углеводородов, составляющих нефть.

Большинство нефтей представляют маслянистые жидкости от тимно-коричневого до темно-бурого цвета, который зависит от содержания в них окрашенных смолистых веществ. Плотность нефтей составляет 0,82—0,90 т/м3, температура затвердевания лежит в пределах от – 20°С до +20°С. Вязкость нефтей значительно выше вязкости воды. Элементный состав нефтей колеблется в очень незначительных пределах: углерод 14—17% , водород 12—14% , сера 0,1 — 5% , кислород и азот (в сумме) до 1,0%.

В нефти различают углеводородную часть, неуглеводородную часть и минеральные примеси. Углеводородная часть нефти представляет собой раствор газообразных и твердых углеводородов в смеси жидких углеводородов различной природы и сложности. В низкомолекулярной части нефти, перегоняющейся до 350°С, содержатся вещества с молекулярной массой не более 250—300, а именно: алканы, моно-, би – и трициклические нафтены, моно – и бициклические ароматические углеводороды, углеводороды смешанного строения. В состав высокомолекулярной части нефти, перегоняющейся выше 350°С, входят вещества с молекулярной массой от 300 до 1000 — высокомолекулярные алканы, моно – и полициклические нафтены с боковыми цепями, ароматические углеводороды с боковыми цепями, конденсированные многоядерные соединения и полициклические углеводороды смешанного строения.

В зависимости от того, углеводороды какого класса преобладают в составе нефти, они подразделяются на парафиновые, парафино-нафтеновые, нафтеновые, парафино-нафтено-ароматические, нафтено-ароматические, ароматические. Наиболее распространены нефти так называемого смешанного основания, в которых нельзя выделить определенный класс углеводородов. В соответствии с технологической классификацией нефти подразделяются на группы по выходу фракций, выкипающих до 350° С, по потенциальному содержанию масел, по содержанию парафина и др.

В неуглеводородную часть нефти входят разнообразные кислородные (фенолы, нафтеновые кислоты, гетероциклы), азотистые (производные пиридина и хинолина, амины) и сернистые (тиофен, тиоспирты и тиоэфиры) соединения. По содержанию серы нефти делятся на:

Минеральные примеси в нефти составляют различные соли, перешедшие в нее из пластовых вод, механические примеси песка и глины и эмульгированная вода. В нефтях в весьма малых количествах содержатся такие элементы, как ванадий, никель, железо, титан, германий и др.

В природе нефть находится в виде нефтяных залежей, так называемых ловушек, образовавшихся в результате движения нефти и газа по пористым пластам породы под воздействием гравитационного и тектонического факторов. При достаточно большом объеме этих залежей они называются нефтяными месторождениями. В большинстве случаев нефтяные залежи расположены на глубине от 900 до 2300 м.

Мировые разведанные запасы нефти оцениваются в 90 – 95 млрд т, прогнозируемые ресурсы составляют 250 – 270 млрд т. Распределение нефтяных месторождений по планете неравномерно. Наиболее крупные из них сосредоточены в Саудовской Аравии, Кувейте, Ираке, Венесуэле, Алжире, Иране, Ливии и США, Российской Федерации.

В зависимости от условий залегания и давления в нефтеносном пласте методы извлечения нефти из пробуренных скважин делятся на фонтанный, компрессорный и глубинно-насосный. При высоком давлении нефть поступает из недр земли под собственным давлением и через запорную аппаратуру направляется в сборные емкости (фонтанный метод). При малом давлении нефть извлекают методом газлифта путем накачивания в кольцевое пространство между трубами природного газа под давлением до 5 МПа. В скважине газ смешивается с нефтью, уменьшает ее вязкость и «транспортирует» ее на поверхность (компрессионный метод). При глубоком залегании нефти и низком давлении в пластах нефть извлекают с помощью поршневого насоса, опущенного в скважину, и приводимого в движение балансирным станком-качалкой, который обеспечивает возвратно-поступательное движение плунжера насоса.

При современном уровне техники и технологии добычи из нефтяных пластов извлекается лишь около 50% содержащейся в них нефти. Увеличение нефтеотдачи пластов до 10—90% может быть достигнуто тепловым воздействием на пласты (закачивание в скважину горячей воды, прогрев пласта сжиганием нефти), введением в скважину ПАВ, гидравлическим разрывом пласта и другими интенсифицирующими извлечение нефти из недр методами.

В настоящее время вся извлекаемая из недр нефть подвергается переработке с целью получения из нее разнообразных нефтепродуктов, которые используют как в качестве целевых продуктов, так и в качестве сырья для дальнейшей переработки. Все нефтепродукты можно разделить на следующие группы.

Карбюраторное для поршневых двигателей с зажиганием от электрической искры (автомобильные и тракторные бензины);

Дизельное для поршневых дизельных двигателей с воспламенением от сжатия (дизельное топливо).

Котельные топлива для топок паровых котлов, генераторных установок, металлургических печей (мазут, гудрон).

Реактивное топливо для авиационных реактивных и газотурбинных двигателей (авиокеросины).

Смазочные масла для смазки трущихся деталей машин с целью уменьшения трения и отвода тепла (моторное, индустриальное, турбинное, компрессионное, цилиндровое масла).

Консистентные смазки для уменьшения трения между деталями, защиты от коррозии, герметизации соединений,

Продукты, используемые для нефтехимического синтеза (мазут, широкая фракция и др.).

Нефтепродукты, используемые в качестве топлив и смазочных материалов, должны удовлетворять определенным требованиям. Так, основными эксплуатационными характеристиками нефтяных смазочных масел являются вязкость, вязкостно-температурные свойства, маслянистость, подвижность при низких температурах, химическая стабильность, защитные свойства. К аналогичным характеристикам топлив для двигателей внутреннего сгорания относятся детонационная стойкость, фракционный состав, химическая стабильность, антикоррозионные свойства, а для дизельных топлив также вязкость, температура застывания и коксуемость. Важнейшей характеристикой моторных топлив является их устойчивость к детонации — детонационная стойкость.

Детонацией называется особый ненормальный режим сгорания топлива в двигателе, при котором часть топливной смеси, находящаяся перед фронтом пламени, воспламеняется мгновенно, в результате чего скорость распространения пламени достигает 1500—2500 м/с. Это приводит к резкому скачкообразному возрастанию давления в цилиндре и возникновению ударной детонационной волны. На режиме детонации мощность двигателя падает, расход топлива увеличивается и ускоряется износ деталей.

Мерой детонационной стойкости для карбюраторных двигателей является октановое, а для дизельных двигателей – цетановое числа. В основе их определения лежит принцип сравнения испытуемого топлива со смесями эталонных топлив.

Октановым числом (ОЧ) называется условная единица измерения детонационной стойкости, численно равная содержанию в объемных процентах изооктана (2,2,4-триметилпентана) в смеси с н-гептаном, которая детонирует при той же степени сжатия в цилиндре карбюраторного двигателя, что и топливо.

При этом октановое число изооктана СН3-С(СН3)2–СН2-СН(СН3)-СН3 принимается равным 100, а н-гептана СН3-(СН2)5-СН3 равным 0.

Октановое число зависит от класса, молекулярной массы и строения углеводорода, как это видно из нижеприведенных данных.

И при переходе от алканов к алкенам, нафтенам и ароматическим углеводородам с одинаковым числом углеродных атомов:

Цетановым числом (ЦТ) называется условная единица измерения детонационной стойкости, численно равная содержанию в объемных процентах цетана (гексадекана) в смеси с

α-метилнафталином, которая детонирует при той же степени сжатия в цилиндре дизеля, что и топливо.

При этом цетановое число цетана С16Н34 принимается равным 100, а α-метилнафталина α-С10Н7-СН3 равным нулю.

В общем случае переработка нефти на нефтепродукты включает ее подготовку и процессы первичной и вторичной переработки.

Подготовка извлеченной из недр нефти ставит целью удаление из нее механических примесей, растворенных солей и воды и стабилизацию по составу. Эти операции проводят как непосредственно на нефтяных промыслах, так и на нефтеперерабатывающих заводах.

Первичная переработка нефти (первичные процессы) заключается в разделении ее на отдельные фракции (дистилляты), каждая из которых представляет смесь углеводородов. Первичная переработка является физическим процессом и не затрагивает химической природы и строения содержащихся в нефти соединений. Важнейшим из первичных процессов является прямая гонка нефти.

Вторичная нефтепереработка (вторичные процессы) представляет собой разнообразные процессы переработки нефтепродуктов, полученных методом прямой гонки. Эти процессы сопровождаются деструктивными превращениями содержащихся в нефтепродуктах углеводородов и изменением их природы, то есть являются химическими процессами.

Вторичные процессы нефтепереработки весьма многообразны. Они подразделяются:

Процессы, проводимые с целью повышения выхода легкокипящих фракций за счет высококипящих (крекинг);

Процессы, проводимые с целью изменения углеводородного состава сырья (риформинг);

Термические процессы, протекающие под воздействием высоких температур и давлений;

Каталитические процессы, протекающие под воздействием высоких температур в присутствии катализаторов;

Важнейшими из вторичных процессов является термический и каталитический крекинг, риформинг, алкилирование, коксование и гидроочистка нефтепродуктов. На рис. 1.1 представлена общая схема переработки нефти и нефтепродуктов.

Извлеченная из скважин сырая нефть содержит попутные газы (50—100 м3/т), пластовую воду (200—300 кг/т) и растворенные в воде минеральные соли (10—15 кг/т), которые отрицательно сказываются на транспортировке, хранении и последующей переработке ее. Поэтому подготовка нефти к переработке обязательно включает следующие операции:

Удаление попутных (растворенных в нефти) газов или стабилизация нефти;

На крупных месторождениях нефти эти операции объединены в единую систему, включающую сбор, транспортировку и обработку нефти, газа и воды. На рис. 1.2 представлена подобная система.

Сырая нефть из скважин 1 под собственным давлением направляется к групповым замерным установкам (ГЗУ) 2, в которых нефтяной газ отделяется от жидкости и замеряются количества этих продуктов. Затем газ вновь смешивается с нефтью и водой и полученная смесь подается по коллектору (длиной до 1 км) 3 в дожимную насосную станцию 4, где газ отделяется от нефти. Газ поступает на газоперерабатывающий завод (ГПЗ) 5, а частично дегазированная нефть направляется на установку подготовки нефти (УПН) 6. На УПН проводятся операции окончательной дегазации, обессоливания и обезвоживания нефти. Газ далее направляется на ГПЗ, а вода — на установку очистки 7. Очищенная вода закачивается насосами 1 в нефтяной пласт через нагнетательные скважины 9. Обессоленная и обезвоженная нефть из УПН поступает в герметизированные резервуары

1—скважины, 2 — групповая замерная установка, 3 — коллектор, 4 — дожимная насосная станция, 5 — газоперерабатывающий завод, 6 — установка подготовки нефти, 7 — установка очистки воды, 1 — насосы, 9 — нагнетательные скважины, 10 — герметизированные резервуары, 11 — установка «Рубин», 12 — товарные резервуары, 13 – магистральный нефтепровод.

Для определения качества и количества нефти. При удовлетворительном результате нефть подается в товарные резервуары

И из них в магистральный нефтепровод 13, транспортирующий нефть на нефтеперерабатывающие заводы. При неудовлетворительном качестве подготовки нефти она возвращается из установки «Рубин» в УПН.

В настоящее время разрабатываются методы магистральной транспортировки газонасыщенных нефтей, то есть доставки потребителю нефти и газа по одному трубопроводу. Это позволяет уменьшить расход энергии на перекачку продукта за счет снижения его вязкости и более полно утилизировать попутные нефтяные газы.

Стабилизация нефти. Сырая нефть содержит значительное количество растворенных в ней легких углеводородов C1—С4. При транспортировке и хранении нефти они могут выделяться, вследствие чего состав нефти будет меняться. Чтобы избежать потери газа и вместе с ним легких бензиновых фракций и предотвратить загрязнение атмосферы, эти продукты должны быть извлечены из нефти до ее переработки. Подобный процесс выделения легких углеводородов из нефти в виде попутного газа называется стабилизацией нефти. В зависимости от условий стабилизацию нефти осуществляют методом сепарации непосредственно в районе ее добычи на замерных установках, дожим-ных станциях и УПН (рис.1.2), или на газоперерабатывающих заводах (рис. 1.3).

В первом случае попутный газ отделяют от нефти многоступенчатой сепарацией в сепараторах-газоотделителях (траппах), в которых последовательно снижаются давление и скорость потока нефти. В результате происходит десорбция газов, совместно с которыми удаляются и затем конденсируются летучие жидкие углеводороды, образуя «газовый конденсат». При сепара-ционном методе стабилизации в нефти остается до 2% углеводородов состава C1—C4.

Обессоливание и обезвоживание нефти. Удаление из нефти солей и воды происходит на промысловых установках подготовки нефти и непосредственно на нефтеперерабатывающих заводах (НПЗ).

В обоих случаях процессы обессоливания и обезвоживания нефти связаны с необходимостью разрушения эмульсий, которые образует с нефтью вода. При этом на промыслах разрушаются эмульсии естественного происхождения, образовавшиеся в процессе добычи нефти, а на заводе — искусственные эмульсии, полученные при многократной промывке нефти водой для удаления из нее солей. После обработки содержание воды и хлоридов металлов в нефти снижается на первой стадии до 0,5— 1,0% и 100—1100 мг/л соответственно, и на второй стадии до 0,05—0,1% и 3—5 мг/л.

Для разрушения нефтяных эмульсий используются механические (отстаивание), термические (нагревание), химические и электрические методы. При химическом методе обезвоживания нагретую нефтяную эмульсию обрабатывают деэмульгаторами. В качестве последних используются различные неиногенные ПАВ типа защитных коллоидов: оксиэтилированные жирные кислоты, метил – и карбоксиметилцеллюлоза, лигносульфоно-вые кислоты и др. Наиболее эффективное удаление солей и воды достигается при электротермохимическом методе обессолива-ния, в котором сочетаются термохимическое отстаивание и разрушение эмульсии в электрическом поле.

Установки электротермохимического удаления солей и воды, или электрообессоливающие установки (ЭЛОУ), используются как на промыслах, так и на нефтеперегонных заводах. В этом методе разрушение нефтяной эмульсии происходит в аппаратах — электродегидрататорах под воздействием переменного тока напряжением 30—45 кВ, что вызывает передвижение и слипание капель воды, содержащих соли, и ее отделение от нефти. На рис. 1.3 представлена принципиальная схема ЭЛОУ.

Нефть из сырьевого резервуара 1 с добавками деэмульгатора и слабого щелочного или содового раствора проходит через теплообменник 2, подогревается в подогревателе 3 и поступает в

1 — резервуар нефти, 2 — теплообменник, 3 — подогреватель, 4 — смеситель, 5 — электродегидрататор I ступени, 6 — электродегидрататор II ступени, 7 — холодильник, 1 — сборник обессоленной нефти, 9 — нефтеотделитель смеситель 4, в котором к нефти добавляется вода. Образовавшаяся эмульсия последовательно проходит электродегидрата-торы 5 и 6, в которых от нефти отделяется основная масса воды и растворенных в ней солей, вследствие чего содержание их снижается в 1—10 раз. Обессоленная нефть проходит теплообменник 2 и после охлаждения в холодильнике 7 поступает в сборник 1. Отделившаяся в электродегидрататорах вода отстаивается в нефтеотделителе 9 и направляется на очистку, а отделившаяся нефть присоединяется к нефти, подаваемой в ЭЛОУ.

Обессоливание и обезвоживание нефти увеличивает сроки межремонтной работы установок гонки нефти и снижает расход тепла, а также уменьшает расход реагентов и катализаторов в процессах вторичной переработки нефтепродуктов.

Первичная перегонка нефти (прямая гонка) — процесс переработки нефти, основанный на разделении смеси составляющих ее углеводородов методом фракционной разгонки (ректификации) на отдельные дистилляты (фракции) с определенными интервалами температур кипения. Прямой гонке подвергается вся добываемая нефть. В соответствии с назначением получаемых дистиллятов различают три варианта прямой гонки:

Нефтехимический процесс (получение сырья для химического производства).

Процесс прямой гонки проводится в установках трубчатого типа (название — по названию трубчатых печей), которые включают трубчатые печи различного типа, ректификационные и отпарные колонны, теплообменники и холодильники. В зависимости от глубины переработки нефти установки прямой гонки делятся на:

Двухступенчатые (атмосферно-вакуумные АВТ), в которых одна ступень работает при атмосферном давлении, а другая при остаточном давлении 5—1 кПа.

Продуктами прямой гонки на установках AT являются моторные топлива (бензин, авиационный керосин), дизельное топливо и значительное количество остатка — мазута. На установках АВТ на второй ступени подвергается разгонке мазут с образованием смазочных масел и остатка — гудрона, перерабатываемого в битум, пек, нефтяной кокс. Этим на установках АВТ достигается большая глубина переработки нефти, нежели на установках AT. На рис.1.4 представлена технологическая схема установки АВТ, работающей по топливно-масляному варианту.

Нефть из ЭЛОУ последовательно проходит через теплообменники 4, нагреваясь за счет теплоты дистиллятов атмосферной и вакуумной перегонки, и подается насосом под давлением 1,5— 2,0 -105Па в трубчатую печь 1, где нагревается до 350 0С. Из печи парожидкостная смесь поступает в ректификационную колонну I ступени 3, в которой давление снижается до 0,1 МПа и происходит испарение летучих фракций нефти и отделение их паров от мазута. По высоте колонны в точно определенных интервалах температур отбираются дистилляты, которые поступают в секции отпарной колонны 6 для дополнительного отделения летучих углеводородов, которые вместе с водяным паром возвращаются в колонну 3. Отобранные дистилляты проходят через теплообмен-

1 —трубчатая печь подогрева нефти, 2 — сепаратор газа, 3 — ректификационная колонна атмосферного давления, 4 — теплообменники-конденсаторы, 5 — холодильники, 6,7 — отпарные колонны, 1 — трубчатая печь подогрева мазута, 9-—вакуумная ректификационная колонна. I — бензин, II — лигроин, III — керосин, IV — дизельное топливо, V — газойль, VI — мазут, VII — пар, VIII — веретенное масло, IX — машинное масло, X — легкое цилиндровое масло, XI — тяжелое цилиндровое масло, XII — гудрон, XIII — газы

Ники 4 и после охлаждения в холодильниках 5 отводятся как товарные продукты из установки. Бензиновый дистиллят через теплообменник 4 поступает в сепаратор газа 2 и после отделения газа выводится как товарный продукт, а частично подается на орошение колонны. Образующийся в количестве до 55% мазут из нижней части колонны 3 подается в печь 1 и оттуда в колонну II ступени 9, работающую при остаточном давлении 0,005—0,001 МПа, где разделяется на дистилляты. В нижнюю часть колонн 3 и 9 подается острый пар, что снижает температуру кипения и способствует более полному отделению легких фракций.

Аппаратура, применяемая при прямой гонке нефти и других процессах нефтепереработки, должна обеспечивать нагревание сырья до высоких температур, при которых процесс протекает с достаточной скоростью и достаточно четким разделением получаемых продуктов. Основными аппаратами в этих процессах нефтепереработки являются трубчатые печи и ректификационные колонны.

В трубчатых печах нефть и мазут проходят по трубам, расположенным внутри печи, и нагреваются за счет теплоты сгорания жидкого или газообразного топлива. Печь состоит из двух камер: радиационной, где размещаются горелки и радиантные трубы, воспринимающие теплоту излучения, и конвекционной, в которой расположены трубы, обогреваемые дымовыми газами, выходящими из камеры радиации. Конструкции трубчатых печей весьма разнообразны. Они различаются способом передачи тепла (радиантные, конвекционные, радиантно-конвекционные), способом сжигания топлива (с пламенным и беспламенным горением), расположением труб змеевика. Экономически наиболее эффективным являются печи беспламенного типа с излучающими стенками. Производительность трубчатых печей установок АВТ составляет от 100 до 1000 т/ч при коэффициенте полезного действия (коэффициенте использования теплоты) до 10% . Из многочисленных конструкций ректификационных колонн в установках прямой гонки используются, главным образом, барботажные колпачковые колонны тарельчатого типа. Они содержат от 30 до 60 тарелок прямоточного действия с подвижными клапанами, что обеспечивает динамический режим работы колонны и постоянство скорости паров ректифицируемого продукта.

Состав и выход продуктов прямой гонки зависят от типа процесса и состава перегоняемой нефти. В табл. 1.1 приведен выход дистиллятов прямой гонки нефти по топливно-масляному варианту процесса.

Http://xreferat. com/108/1589-1-pererabotka-zhidkogo-topliva. html

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное государственное бюджетное образовательное учреждение

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ПРИРОДНЫХ ЭНЕРГОНОСИТЕЛЕЙ И УГЛЕРОДНЫХ МАТЕРИАЛОВ

Тема: Выбор и обоснование схемы завода по топливному варианту глубокой переработки нефти в количестве

2.17 Установка производства водорода методом паровой каталитической конверсии углеводородов

НПЗ представляет собой совокупность основных нефтетехнологических процессов (установок, цехов, блоков), а также вспомогательных и обслуживающих служб, обеспечивающих нормальное функционирование промышленного предприятия (товарно-сырьевые, ремонтно-механические цеха, цеха КИП и А, паро-, водо – и электроснабжения, цеховые и заводские лаборатории, транспортные, пожаро – и газоспасательные подразделения, медпункты, столовые, диспетчерская, дирекция, отделы кадров, финансов, снабжения, бухгалтерия и т. д.). Целевое назначение НПЗ – производство в требуемых объеме и ассортименте высококачественных нефтепродуктов и сырья для нефтехимии (в последние годы – и товаров народного потребления).

Современные нефтеперерабатывающие предприятия характеризуются большой мощностью как НПЗ (исчисляемой миллионами тонн в год), так и составляющих их технологических процессов. В этой связи на НПЗ исключительно высоки требования к уровню автоматизации технологических процессов, надежности и безопасности оборудования и технологии, квалификации обслуживающего персонала.

Мощность НПЗ зависит от многих факторов, прежде всего от потребности в тех или иных нефтепродуктах экономического района их потребления, наличия ресурсов сырья и энергии, дальности транс-портных перевозок и близости соседних аналогичных предприятий.

Общеизвестно, что крупные предприятия экономически более эффективны, чем мелкие. На крупных НПЗ создаются благоприятные предпосылки для сооружения мощных высокоавтоматизированных технологических установок и комбинированных производств на базе крупнотоннажных аппаратов и оборудования для более эффективного использования сырьевых, водных и земельных ресурсов и значительного снижения удельных капитальных и экплуатационных расходов. Однако при чрезмерной концентрации нефтеперерабатывающих (и нефтехимических) предприятий пропорционально росту мощности возрастает радиус перевозок, удлиняется продолжительность строительства и, что особенно недопустимо, ухудшается экологическая ситуация внутри и вокруг НПЗ.

Отличительной особенностью НПЗ является получение разнообразной продукции из одного исходного нефтяного сырья.

Ассортимент нефтепродуктов НПЗ исчисляется обычно около или более сотнями наименований. Характерно, что в большинстве технологических процессов производятся преимущественно только компоненты или полупродукты. Конечные товарные нефтепродукты получают, как правило, путем компаундирования нескольких компонентов, производимых на данном НПЗ, а также добавок и присадок. Это обусловливает необходимость иметь в составе НПЗ разнообразный набор технологических процессов с исключительно сложной взаимосвязью по сырьевым, продуктовым и энергетическим потокам. По ассортименту выпускаемых нефтепродуктов нефтеперерабатывающие предприятия принято классифицировать на следующие группы (профили):

4) НПЗ (нефтехимкомбинаты) топливно-масляно-нефтехимического профиля. Среди перечисленных выше нефтеперерабатывающих предприятий наибольшее распространение имеют НПЗ топливного профиля, поскольку по объемам потребления и производства моторные топлива значительно превосходят как смазочные масла, так и продукцию нефтехимического синтеза. Естественно, комплексная переработка нефтяного сырья (то есть топливно-масляно-нефтехимическая) экономически более эффективна по сравнению с узкоспециализированной переработкой, например, чисто топливной. Наряду с мощностью и ассортиментом нефтепродуктов важным показателем НПЗ является глубина переработки нефти. [4]

Сырая нефть поступает на установку ЭЛОУ-АВТ и АТ, где отделяются соли и вода, присутствующие в нефти, а также происходит разделение на фракции НК-170°С, 170-350°С, 350-500°С и остаток >500°С.

Фракция нк-170°С поступает на вторичную перегонку бензина для разделения на узкие фракции нк-70°С, 70-95°С, 95- 170°С.

Фракцию нк-70°С подвергаются изомеризации для повышения октанового числа получаемого бензина, затем изомеризат используют в качестве компонента автомобильного бензина. Газы с установки изомеризации направляют на ГФУ предельных газов.

Фракция 70 – 95°С сразу подается на смешение товарного бензина, она не требует гидроочистки так как проходит по требованиям ГОСТ 2084-77 «Характеристика автомобильных бензинов» (см. Таблицу 7 и Приложение 1).

Фракция 95 – 170°С поступает на гидроочистку, затем на установку каталитического риформинга. Риформат используют как компонент автомобильного бензина, газы с установки поступают на разделение на ГФУ предельных газов. Водородсодержащий газ, получаемый на установке каталитического риформинга, направляют на установки гидроочистки и депарафинизации дизельной фракции и вакуумного газойля, на установку гидроочистки и бензиновой фракции перед риформингом, а также на установку изомеризации фракции нк-70°С.

Дизельная фракция 220-350°С направляется на установку гидроочистки, так как по показателям предельно допустимого содержания серы не удовлетворяет требованиям ГОСТ Р 52368-2005 , тяжелая часть гидроочищенной дизельной фракции направляется на установку каталитической депарафинизации для получения низкозастываюошх дизельных топлив, а затем идет на смешение дизельного топлива.

Вакуумный газойль 350-500°С поступает на установки гидрокрекинга и гидроочистку, затем направляется на каталитический крекинг для получения дополнительного количества светлых фракций, совмещенный с блоком газофракционирования непредельных углеводородных газов. Легкий газойль каталитического крекинга используют в качестве компонента летнего дизельного топлива, тяжелый газойль как котельное топливо.

Установка каталитического крекинга является одним из основных производителей бензина на заводе, который сразу поступает на смешение товарного бензина. Сухой газ выводится с установки в качестве топливного, а ППБ и ББФ поступают на установку сернокислотного алкилирования, куда также поступает изобутан. Сернокислотное алкилирование позволяет получить высокооктановый компонент бензина – легкий алкилат и компонент товарного дизельного топлива — тяжелый алкилат. Газы с установки алкилирования направляются на смешение СПБТ.

Остаток вакуумной перегонки нефти — гудрона >500°С направляется на установки висбрекинга и производства битума, где в качестве целевого продукта получают битум, который направляют в товарный парк. Газы установки висбрекинга направляют на АГФУ непредельных газов.

Во всех процессах на НПЗ образуются углеводородные газы, которые необходимо грамотно использовать. С этой целью они отправляются на установку ГФУ. Газ, поступающий на ГФУ, включает в себя как предельные с АВТ и АТ, фракционирования бензина, каталитического риформинга и изомеризации, гидроочистки, гидрокрекинга, так и непредельные с каталитического крекинга, поэтому поступают они на разные блоки, где газы разделяются на компоненты. Сухой газ (С1-С2) ГФУ поступает в топливную сеть завода. Пропановая, пропан-пропиленовая, бутановая и бутан-бутиленовая фракции являются готовыми продуктами и поступают на продажу. Фракция ?С5 и выше служит сырьем процесса изомеризации.

Сероводород, получаемый на установках, гидроочистки бензиновой и дизельной фракции, вакуумного газойля, используется в качестве сырья для установки получения серной кислоты.

Дополнительное количество водорода для гидрокаталитических процессов поступает с установки производства водорода методом паровой каталитической конверсии углеводородов.

На рисунке 1 представлен топливный вариант глубокой переработки самотлорской нефти (смеси).

Назначение – удаление солей и воды из нефти перед подачей на переработку. Обессоливание и обезвоживание позволяет значительно уменьшить коррозию технологического оборудования установок по переработке нефти, предотвратить дезактивацию катализаторов, улучшить качество продуктов нефтепереработки.

Сырье – сырая нефть, содержащая воду и соли в количествах, определяемых ГОСТ Р 51858-2002.

Продукция – обессоленная и обезвоженная нефть, содержащая 3-5 мг/л солей и 0,1-0,3 % масс. воды.

– Температура нефти в горизонтальных электродегидраторах, єС. 140-160

Назначение – разделение нефти на фракции для последующей переработки или использования в качестве товарной продукции. Первичная перегонка осуществляется на атмосферных трубчатых (АТ) и атмосферно-вакуумных трубчатых (АВТ) установках.

– предельный углеводородный газ, направляется для дальнейшей переработки на ГФУ, также может использоваться как топливо нефтезаводских печей;

– бензиновая фракция 28-170єС, направляется на вторичную перегонку бензина;

– остаток >500єС используется как сырье установок висбрекинга и производства битума.

– Производительность установки ЭЛОУ – АВТ: 9300 тыс. т/год, ЭЛОУ-АТ-6: 8000 тыс. т/год.

– Среднее время работы установки в году принимаем равным 344дней. [1][2]

Материальный баланс установок составлен на основании разгонки ИТК нефти (смеси), а так же производственных данных.

Http://revolution. allbest. ru/manufacture/00560982_0.html

Глубина переработки нефти (сокращенно – ГНП) является важнейшим показателям, характеризующим эффективность использования единицы нефтяного сырья.

Достижение значения этого показателя на уровне 85-90 процентов – главная задача отечественной нефтепереработки. В 2009-ом году среднее значение показателя ГПН по российской перерабатывающей отрасли составляло примерно 70 процентов, о больше 80-ти показывали только 5-ть из 28-ми крупнейших НПЗ. Согласно программе, разработанной Министерством энергетики РФ, 80-85 процентов ГПН планируется достичь к 2020-му году.

В стратегическом плане основными целями модернизации российской нефтепереработки являются:

    максимизация производства топлив, отвечающих стандарту Евро-5; минимизация при этом выхода мазута.

И как должна развиваться углубленная переработка нефти тоже понятно – необходимо строительство и введение в эксплуатацию новые конверсионные процессы, с целью увеличения их годовой мощности почти вдвое: с 72-х до 136-ти миллионов тонн.

К примеру, на предприятиях мирового лидера в нефтеперерабатывающей отрасли – США, доля углубляющих переработку процессов составляет более 55-ти процентов, а в нашей стране – только 17-ть.

Изменение этой ситуации возможно, но с помощью каких технологий? Применение классического набора процессов является долгим и весьма затратным путем. На современном этапе крайне необходимы самые эффективные технологии, которые можно было бы применить на каждом российском НПЗ. Поиск таких решений должен проводиться с учетом специфических свойств тяжелых нефтяных остатков, таких, как повышенное содержание асфальтеновых и смолистых веществ и высокий уровень коксуемости.

Именно эти свойства остатков косвенно подталкивают специалистов к тому, что классические технологии вторичной переработки нефтяных тяжелых остатков (например, коксование, деасфальтизация и термический крекинг) ограниченны в своих возможностях по отбору светлых дистиллятов, а значит, углубление переработки нефти с их помощью будет недостаточным.

Основные углубляющие технологии в основаны на процессе замедленного коксования гудронов, которые обеспечивают максимальный выход дистиллятов (от 60-ти до 80-ти процентов от общего объема перерабатываемого сырья). При этом получаемые фракции относятся к средним и газойлевым дистиллятам. Средние фракции отправляются на гидроочистку для получения дизельных топлив, а тяжелые газойлевые – подвергаются каталитической переработке.

Если взять такие страны, как Канада и Венесуэла, то в них уже больше двух десятилетий замедленное коксование применяется в качестве базового процесса промысловой переработки нефтей тяжелых сортов. Однако, для сырья с высоким содержанием серы коксование неприменимо по причинам экологического характера. Кроме того, вырабатываемый в колоссальных объемах высокосернистый кокс в качестве топлива эффективного применения не имеет, а подвергать его обессериванию – попросту нерентабельно.

России кокс плохого качества, тем более – в таких количествах, не нужен тоже. Кроме того, замедленное коксование является весьма энергоемким процессом, вредным с точки зрения экологии и нерентабельным при малых мощностях переработки. В связи с этими факторами, нужно найти другие углубляющие технологии.

Гидрокрекинг и газификация – самая дорогостоящая глубокая нефтепереработка, поэтому в ближайшее время они на российских НПЗ применяться не будут.

Поэтому и уделять им внимание мы в этой статье не станем. России необходимы наименее капиталоемкие, но достаточно эффективные конверсионные технологии.

Поиск таких технологических решений ведется давно, и основной задачей такого поиска является получение квалифицированных остаточных продуктов.

Кроме того, выход остатков должен быть минимален, чтобы его переработка с помощью коксования, газификации и гидрокрекинга было рентабельна.

Также одним из критериев выбора метода вторичной углубленной переработки остатков нефтяного сырья является получение востребованного качественного продукта без потери эффективности самой технологии. В нашей стране таким продуктом, вне всякого сомнения, является дорожный битум высокого качества, поскольку состояние российских дорог является извечной проблемой.

Поэтому, если удастся подобрать и реализовать эффективный процесс получения средних дистиллятов и остатков в виде качественных битумов – это даст возможность одновременно решить и проблему углубления нефтепереработки, и обеспечить дорожно-строительную отрасль высококачественным остаточным продуктом.

Среди таких технологических процессов, которые можно внедрить на российских перерабатывающих предприятиях, внимания достойны следующие методики:

    вакуумная перегонка мазута; деасфальтизация гудрона; мазутный висбрекинг.

Это – широко известный технологический процесс, используемый в производстве битумов и гудронов. Стоит сразу сказать, что примерно 80-90 процентов получаемых вакуумной мазутной перегонкой гудронов по своим качественным характеристикам не соответствуют требованиям, предъявляемым к товарным битумам, и необходима их дальнейшая переработка с помощью окислительных процессов.

Как правило, гудроны перед окислением подвергают дополнительному висбрекингу, с целью понизить значение вязкости получаемого котельного топлива, а также для уменьшения концентрации в битумном сырье трудноокисляемых парафинов.

Если говорить о получаемых с помощью этого процесса вакуумных газойлях, то для них характерны:

    высокая плотность (больше 900 килограмм на кубический метр); высокой степень вязкости; высокие значения температур застывания (нередко – больше млюс тридцати – сорока градусов Цельсия).

Такие высоковязкие и, в основном, высокопарафинистые газойли по сути представляют собой полупродукты, которые необходимо подвергнуть дальнейшей каталитической переработке. Основная масса получаемых гудронов – это котельное топливо марки М-100.

Исходя из вышесказанного, вакуумная переработка мазута уже не удовлетворяет современные требования к процессам, которые призваны углубить нефтепереработку, вследствие чего в качестве базового процесса, способного кардинально увеличить ГПН, её рассматривать не стоит.

Пропановая деасфальтизация, как правило, используется для получения высокоиндексных масел.

Деасфальтизация гудронов при помощи бензина применяется в основном для выработки сырья, которое затем идет на производство битумов, хотя выделяемая при этом асфальтовая фаза далеко не всегда имеет свойства, необходимые для получения товарного битума нужного качества. В связи с этим получаемый асфальтит нужно дополнительно подвергать или окислению, или разбавлению масляной фазой.

Легкой фазой этого технологического процесса является деасфальтизат. Его показатели еще тяжелее, чем у вакуумного газойля:

    значение плотности – более 920-ти килограммов на кубометр; температура застывания – больше сорока градусов Цельсия; большее значение вязкости.

Все это требует дополнительной каталитической переработки. Кроме того, деасфальтизат, в силу своей высокой вязкости, очень трудно перекачивать.

Но самой большой проблемой деасфальтизации является высокая степень её энергоемкости, из-за чего размер капитальных вложений, по сравнению с вакуумной перегонкой, возрастает больше, чем в 2 раза.

Основная масса получаемого асфальтита требует дополнительной переработки с помощью конверсионных процессов: замедленного коксования или газификации.

В связи со всем сказанным выше, деасфальтизация также не отвечает основным требованиям к технологии, призванной одновременно углубить нефтепереработку и получить качественные дорожные битумы, поэтому в качестве эффективной технологии увеличения ГПН также не подходит.

Этот техпроцесс переживает свое второе рождение и становится все более востребованным.

Если ранее висбрекинг применялся для понижения значения вязкости гудронов, то на современном этапе развития технологии он становится основным углубляющим нефтепереработку процессом. Практически все крупнейшие фирмы мира (Chioda, Shell, KBR, Foster Wuiller, UOP и так далее) за последнее время разработали сразу несколько оригинальных технологических решений.

Основными достоинствами этих современных термических процессов являются:

    простота; высокая степень надежности; малая стоимость необходимого оборудования; рост значения выхода средних дистиллятов, получаемых из тяжелых нефтяных остатков, на 40 – 60 процентов.

Кроме того, современный висбрекинг дает возможность получать качественные дорожные битумы и такое энергетическое топливо, как «жидкий кокс».

Например, такие крупные корпорации, как Chioda и Shell, отправляют тяжелые газойли (как вакуумные, так и атмосферные) в печи жесткого крекинга, что позволяет исключить выход фракций, температура кипения которых больше 370-ти градусов Цельсия. В получаемых продуктах остаются только бензиновые и дизельные дистилляты и очень тяжелый остаток, а вот тяжелых видов газойлей – нет совсем!

Эта современная технология позволяет получить из перерабатываемого мазута от 88-ми до 93-х процентов дизельно-бензиновых дистиллятов.

При разработке технологии «Висбрекинг-ТЕРМАКАТ» удалось выйти на управление сразу двумя параллельно происходящими процессами: термодеструкцией и термополиконденсацией. При этом деструкция происходит в пролонгированном режиме, а термополиконденсация – в отложенном режиме.

Именно это дает максимальный выход бензиново-дизельных фракций, а в качестве остатков получаются дорожные битумы высокого качества и с заданными свойствами.

В зависимости от того, насколько велико содержание асфальтеновых веществ и исходной нефти, выход битумов варьируется от 3-5 до 20-30 процентов. Если потребности в битумах нет, из остатков можно произвести либо вторичное котельное топливо, либо использовать их в качестве сырья для процессов гидрокрекинга и газификации.

По энергозатратам эта технология сравнима с процессом вакуумной перегонки мазута, которая при использовании «Висбрекинг – Термокат» абсолютно не нужна. Такой мазутный висбрекинг протекает гораздо глубже и мягче, чем висбрекинг гудрона, да и к тому же гораздо надежнее в процессе эксплуатации, поскольку не происходит закоксовывания используемого оборудования, что при висбрекинге гудрона практически неизбежно.

В связи с этим, «Висбрекинг – Термокат» является одним из самых малозатратных способов модернизации существующих НПЗ (в комплексе с процессами атмосферной или вакуумной перегонки нефти). При минимальных капитальных вложениях выход светлых дистиллятов возрастает на 15-30 процентов.

Http://neftok. ru/pererabotka/uglublenie-pererabotki-nefti. html

Нефтеперерабатывающая промышленность – отрасль тяжелой промышленности, охватывающая переработку нефти и газовых конденсатов и производство высококачественных товарных нефтепродуктов:моторных и энергетических топлив, смазочных маcел, битумов, нефтяного кокса, парафинов, растворителей, элементной серы, термогазойля, нефтехимического сырья и товаров народного потребления. Промышленная переработка нефти и газовых конденсатов на современных нефтеперерабатывающих заводах (НПЗ) осуществляется путем сложной многоступенчатой физической и химической переработки на отдельных или комбинированных крупнотоннажных технологических процессах (установках, цехах), предназначенных для получения различных компонентов или ассортиментов товарных нефтепродуктов. Существует три основных направления переработки нефти:

    топливное; топливно-масляное; нефтехимическое или комплексное (топливно-нефтехимическое или топливно-масляно-нефтехимическое).

При топливном направлении нефть и газовый конденсат в основном перерабатываются на моторные и котельные топлива. Переработка нефти на НПЗ топливного профиля может быть глубокой и неглубокой.

Технологическая схема НПЗ с неглубокой переработкой отличается небольшим числом технологических процессов и небольшим ассортиментом нефтепродуктов. Выход моторных топлив по этой схеме не превышает 55…60 % мас. и зависит в основном от фракционного состава перерабатываемого нефтяного сырья. Выход котельного топлива составляет 30…35 % мас. При глубокой переработке стремятся получить максимально высокий выход высококачественных моторных топлив путем вовлечения в их производство остатков атмосферной и вакуумной перегонок, а также нефтезаводских газов. Выход котельного топлива в этом варианте сводится к минимуму. Глубина переработки нефти при этом достигает до 70…90 % мас.

По Топливно-масляному варианту переработки нефти наряду с моторными топливами получают различные сорта смазочных масел. Для производства последних подбирают обычно нефти с высоким потенциальным содержанием масляных фракций с учетом их качества.

Нефтехимическая и комплексная переработка нефти предусматривает наряду с топливами и маслами производство сырья для нефтехимии (ароматические углеводороды, парафины, сырье для пиролиза и др.), а в ряде случаев – выпуск товарной продукции нефтехимического синтеза. Выбор конкретного направления, соответственно, схем переработки нефтяного сырья и ассортимента выпускаемых нефтепродуктов обусловливается прежде всего качеством нефти, ее отдельных топливных и масляных фракций, требованиями к качеству товарных нефтепродуктов, а также потребностями в них данного экономического района.

Предварительную оценку потенциальных возможностей нефтяного сырья можно осуществить по комплексу показателей, входящих в технологическую классификацию нефтей. Однако этих показателей недостаточно для определения набора технологических процессов, ассортимента и качества нефтепродуктов, для составления материального баланса установок, цехов и НПЗ в целом и т. д. Для этих целей в лабораториях научно-исследовательских институтов проводят тщательные исследования по установлению всех требуемых для проектных разработок показателей качества исходного нефтяного сырья, его узких фракций, топливных и масляных компонентов, промежуточного сырья для технологических процессов и т. д.

Результаты этих исследований представляют обычно в виде кривых зависимости ИТК, плотности, молекулярной массы, содержания серы, низкотемпературных и вязкостных свойств от фракционного состава нефти, а также в форме таблиц с показателями, характеризующими качество данной нефти, ее фракций и компонентов нефтепродуктов.

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ПРОЦЕССОВ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА, С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов, 2006

Http://www. neft-product. ru/info_detail-102.html

Выбор поточной схемы переработки нефти заключается в том, чтобы подобрать оптимальное количество технологических установок, обеспечивающих заданные показатели работы топливно-химического блока: глубину переработки нефти не менее 85% и выход сырья для нефтехимии не менее 5%.

Основой любого нефтеперерабатывающего завода является установка АВТ. При помощи этой установки получают газы С3-С4, нефтяные фракции нк-70 С, 70-180 С, 180-360 С, 360-500 С, 500-600 С и гудрон (>600 С).

Для повышения октанового числа фракцию нк-70 С отправляем на установку изомеризации. На данной установке получаем изомеризат – высокооктановый компонент бензина, также получаем газы С1-С4, которые можно отправить в топливную сеть завода [2]. В качестве катализатора изомеризации выбираем высокоэффективный I-9, который позволяет вести процесс при температуре 200С (при применении обычного катализатора температура составляет 250С).

Фракцию 70-180 С целесообразно отправить на установку каталитического риформинга, так как прямогонная фракция имеет низкое октановое число, поэтому не может быть направлена как компонент товарного бензина. На этой установке получаем высокооктановый компонент товарного бензина, также водородсодержащий газ, который направляем на установки изомеризации и гидроочистки. Получаемый ВСГ не может быть направлен сразу на установку гидрокрекинга, так как имеет недостаточное содержание водорода [3]. В связи с этим нужно предусмотреть установку концентрирования водорода. Для этого предусмотрена установка производства водорода методом паровой конверсии метана или углеводородного газа. Паровая конверсия является более предпочтительной, чем кислородная т. к. не требует специальной подготовки воздуха.

Фракцию 180-360 С разделим на две части и отправим на установки гидроочистки, одну с целью выработки ДТ с содержанием серы не более 0,2%масс., а вторую – не более 50ppm. Это позволит закрыть как внутренний рынок, для которого пока не требуется ДТ с низким содержанием серы, так и поставлять ДТ на европейский рынок, куда уже требуется экологически чистое ДТ [4,5].

Для обеспечения глубины переработки нефти фракцию 360-500 С отправляем на установку каталитического крекинга [6], а фракцию 500-600 С на установку гидрокрекинга. В связи с тем, что содержание серы во фракции 360-500 С равно 0,14%, а во фракции 500-600 С – 0,16% (таблица 6), то нет необходимости ставить установку гидроочистки вакуумного газойля, так как требования к катализаторам этих процессов допускают такое содержание серы [7]. Фракция ДТ (180-360С) с установки кат. крекинга направляется в товарное ДТ, для внутреннего рынка. Газы каталитического крекинга содержат значительное количество непредельных углеводородов и для их переработки необходимо предусмотреть АГФУ. На установке гидрокрекинга получается сероводород, который утилизируется на установке получения серной кислоты. Дизельное топливо и бензин, получаемые на установке, не содержат непредельных углеводородов и имеют низкое содержание серы, поэтому эти продукты отправляем на компаундирование. Остаток гидрокрекинга (>360С) используем как сырьё пиролиза.

В связи с тем, что выход гудрона равен 14,5% на нефть, то одну его часть отправим на установку висбрекинга, для выработки котельного топлива, а вторую – на битумную установку. Такая схема позволит заводу работать более гибко в течение календарного года, так как битум и котельное топливо являются сезонными продуктами. Летом, когда производится ремонт дорог, больше нужен битум, и основную массу гудрона будем отправлять на битумную установку, а зимой больше нужно котельное топливо, следовательно, больше гудрона на висбрекинг.

Для обеспечения выхода сырья для нефтехимии необходимо предусмотреть установку пиролиза. Сырьем установки пиролиза в соответствии с поточной схемой, являются газы С3-С4 с установок АВТ, гидрокрекинга, риформинга, тяжелый газойль с установки гидрокрекинга, бензины-отгоны с установок гидроочистки, н-С4 с алкилирования, н-C3H8 с установки получения ДИПЭ.

Для разделения газов С1-С4, которые образуются на установке каталитического крекинга необходимо предусмотреть установку АГФУ. На ней происходит разделение газов на отдельные составляющие, которые будут использоваться в дальнейших процессах. После установки АГФУ образуются газы С1-С2, которые направляются в топливную сеть завода, также газы ?С3 и ?С4. Газы ?С3 направляем на установку получения ДИПЭ, высокооктановой присадки к бензинам. Газы ?С4 с установки АГФУ, объединяя с газами ?С4 с установки пиролиза, отправляем на установку алкилирования, где получаем высокооктановый компонент бензина. Сероводород, образовавшийся на установках гидроочистки и сероводород, выходящий с установки АГФУ, объединяем и совместно отправляем на установку получения серной кислоты.

Поточная схема топливно-химического блока представлена в приложении А.

В результате принятия данной схемы получаем глубину переработки:

GC – объем собственного потребления котельного топлива (без учета сухого газа), т/год;

Объем производства товарного котельного топлива (с установок висбрекинга и гидрокрекинга) составляет 5% масс. на нефть.

Более точно глубину переработки нефти и выход сырья для нефтехимии определим после расчёта материального баланса НПЗ.

Http://prod. bobrodobro. ru/75816

1 Химическая технология нефти и газа Лекция 7 Нефтеперерабатывающий завод. Первичная перегонка нефти. Лектор – к. т.н., доцент кафедры ХТТ Юрьев Е. М.

2 Основные понятия В нефтеперерабатывающей промышленности выделяют три типа профиля нефтеперерабатывающего завода, в зависимости от схемы переработки нефти: 1.Топливный 2.Топливно-масляный 3.Топливно-нефтехимический Топливный профиль На НПЗ топливного профиля основной продукцией являются различные виды топлива и углеродных материалов: моторное топливо, мазуты, горючие газы, битумы, нефтяной кокс и т. д. Набор установок включает в себя: обязательно – перегонку нефти, риформинг, гидроочистку; дополнительно вакуумную дистилляцию, каталитический крекинг, изомеризацию, гидрокрекинг, коксование и т. д. Примеры НПЗ: МНПЗ, Ачинский НПЗ и т. д. Глубокая переработка – если есть процессы каткрекинга или гидрокрекинга; Неглубокая переработка – если отсутствуют процессы превращения темных дистиллятов в светлые.

3 Основные понятия Топливно-масляный профиль На НПЗ топливно-масляного профиля помимо различных видов топлив и углеродных материалов производятся смазочные материалы: нефтяные масла, смазки, твердые парафины и т. д. Набор установок включает в себя: установки для производства топлив и установки для производства масел и смазок (деасфальтизации гудрона, селективной очистки, депарафинизации ). Примеры: Омский нефтеперерабатывающий завод, Ярославнефтеоргсинтез, Лукойл-Нижегороднефтеоргсинтез и т. д.

4 Основные понятия Топливно-нефтехимический профиль На НПЗ топливно-нефтехимического профиля помимо различных видов топлива и углеродных материалов производится нефтехимическая продукция: полимеры, реагенты и т. д. Набор установок включает в себя: установки для производства топлив и установки для производства нефтехимической продукции (пиролиз, производство полиэтилена, полипропилена, полистирола, риформинг направленный на производство индивидуальных ароматических углеводородов и т. д.). Примеры: Салаватнефтеоргсинтез; Уфанефтехим.

5 Назначение первичной переработки нефти Из нефти, поступающей с установок промысловой подготовки на нефтеперерабатывающий завод, получают широкий спектр различной продукции (высокооктановые бензины, дизельные топлива, авиационные керосины, битумы, масла, котельные топлива и многое другое). Но предварительно нефть должна быть разделена на фракции – составляющие, различающиеся по температурам кипения (дистилляты). Для этого на НПЗ существуют установки первичной переработки нефти. Нефть Первичная переработка нефти Фракции нефти Облагораживающий или углубляющий процесс переработки Товарные продукты

6 Общие сведения о первичной переработке нефти Установки первичной переработки нефти составляют основу всех нефтеперерабатывающих заводов, от работы этих установок зависят качество и выходы получаемых компонентов топлив, а также сырья для вторичных и других процессов переработки нефти. На Омском НПЗ действуют установки первичной переработки нефти АВТ-6, АВТ-7, АВТ-8, АТ-9, АВТ-10 Общий вид установки первичной переработки нефти

8 Перегонка нефти Перегонка нефти начальный процесс переработки нефти на нефтеперерабатывающих заводах, основанный на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости. Компоненты жидких смесей, имеют при одинаковом внешнем давлении различные температуры кипения. Благодаря этому в процессе испарения жидкой смеси ее компоненты проявляют различное стремление к переходу в парообразное состояние, т. е. обладают различной летучестью. Наиболее летучим является компонент с наиболее низкой индивидуальной температурой кипения (низкокипящий компонент, НКК). Наименее летучим является высококипящий компонент (ВКК). Следовательно, при испарении жидкой смеси концентрация низкокипящего компонента в образующихся парах больше, чем в жидкой фазе (закон Kоновалова). В паре больше НКК, чем ВКК В жидкости больше ВКК, чем НКК

9 Перегонка нефти Перегонка нефти осуществляется методами однократного испарения (равновесная дистилляция – испарение нефти в испарителе + ввод нефтегазовой смеси в сепаратор) или постепенного испарения (простая перегонка, или фракционная дистилляция); с ректификацией и без неё; в присутствии перегретого водяного пара испаряющего агента; при атмосферном давлении и под вакуумом. В лабораторной практике в основном применяется простая перегонка нефти, иногда с ректификацией паровой фазы на установках периодического действия.

10 Фракционный состав нефти Фракционный состав является важным показателем качества нефти. В процессе перегонки при постепенно повышающейся температуре из нефти отгоняют части фракции, отличающиеся друг от друга пределами выкипания. «Разгонка» нефти на фракции осуществляется в ректификационной колонне. Общий вид ректификационной колонны

11 Фракционный состав нефти Температуры кипения, ºС Фракция Менее 32Углеводородные газы Бензиновая Керосиновая Дизельная Мазут Выше 500Гудрон

12 Нефть «разгоняют» до температур 300–350 о С при атмосферном давлении (атмосферная перегонка) и до 500 – 550 о С под вакуумом(вакуумная перегонка). Все фракции, выкипающие до 300–350 о С, называют светлыми. Остаток после отбора светлых дистиллятов (выше 350 о С) называют мазутом. Мазут разгоняют под вакуумом. Фракционный состав нефти Внешний вид различных фракций нефти: чем выше температура кипения фракции, тем темнее цвет.

13 Фракционный состав нефти Наименование фракции Где отбираетсяГде используется БензиноваяАтмосферная перегонка Используется после очистки как компонент товарного автобензина и как сырьё каталитического риформинга (получение высокооктановых бензинов), пиролиза (получение олефинов, ароматики) и др. КеросиноваяАтмосферная перегонка После очистки используется как топливо реактивных авиационных двигателей, для освещения и технических целей ДизельнаяАтмосферная перегонка После очистки используется как топливо для дизельных двигателей МазутАтмосферная перегонка (остаток) Используется в качестве котельного топлива или как сырьё для термического крекинга; для получения масел. Вакуумный газойль Вакуумная перегонкаСырье процессов каталитического крекинга, гидрокрекинга, компонент товарных мазутов ГудронВакуумная перегонка (остаток) Сырье процессов коксования, гидрокрекинга

14 В промышленности используется перегонка нефти с однократным испарением в сочетании с ректификацией паровой и жидкой фаз. Такое сочетание позволяет проводить перегонку нефти на установках непрерывного действия и добиваться высокой чёткости разделения нефти на фракции, экономного расходования топлива на её нагрев. Перегонка нефти в промышленных условиях Основные термины: Шлем (голова) колонны – верх колонны, где расход газа выше, чем расход жидкости; Куб колонны – низ колонны, где расход жидкости выше чем расход газа. Дистиллят – верхний продукт колонны, обогащенный НКК; Кубовый остаток – нижний продукт колонны, обогащенный ВКК. Флегма – часть дистиллята, возвращаемая в шлем колонны в виде жидкости. Боковой отбор (боковой дистиллят) – дистиллят определённых пределов выкипания, отбираемый из средней части колонны. Питательная секция – участок в колонне, куда подводится свежее сырье. Концентрационная (укрепляющая) секция – часть колонны выше тарелки питания. Отгонная (исчерпывающая) секция – часть колонны ниже тарелки питания.

15 Перегонка нефти в промышленных условиях Основные термины на производстве: АВТ – атмосферно-вакуумная «трубчатка» – комбинированная установка, сочетающая нагрев в трубчатой печи, ректификацию при атмосферном давлении и ректификацию при пониженном давлении (вакууме). АТ – атмосферная «трубчатка», ВТ – вакуумная «трубчатка»; ЭЛОУ – электрообессоливающая установка; ЭЛОУ-АВТ – комбинированная установка, сочетающая обезвоживание/обессоливание нефти и ее ректификацию. ЭЛОУ может присутствовать как на НПЗ, получающем нефть из нефтепровода, так и на НПЗ, получающего нефть с куста НМ; ЭЛОУ обеспечивает: – Содержание воды в нефти до 0,1 % масс. (диаметр остаточных капель воды менее 4,3 мкм); – Содержание солей – 3-5 мг/л; – Снижение содержания солей Ni и V в 2-3 раза.

16 Физико-химические основы процесса ректификации Разделение процесса на фракции происходит посредством процесса ректификации. Ректификацией называется массообменнный процесс разделения жидких смесей на чистые компоненты, различающиеся по температурам кипения, за счет противоточного многократного контактирования паров и жидкости.

17 Физико-химические основы процесса ректификации Ректификацию можно проводить периодически или непрерывно. Ректификацию проводят в башенных колонных аппаратах (до 60 м высотой), снабженных контактными устройствами (тарелками или насадкой) ректификационных колоннах. Расположение тарелок внутри ректификационных колоннах Внешний вид насадки: насадка, заполняющая колонну, может представлять собой металлические, керамические, стеклянные и другие элементы различной формы

18 Принцип работы ректификационной колонны Место ввода в ректификационную колонну нагретого перегоняемого сырья называют питательной секцией (зоной), где осуществляется однократное испарение. Часть колонны, расположенная выше питательной секции, служит для ректификации парового потока и называется концентрационной (укрепляющей), а другая – нижняя часть, в которой осуществляется ректификация жидкого потока, – отгонной (или исчерпывающей) секцией. Укрепляющая часть колонны Отгонная (исчерпывающая, кубовая) часть колонны Питательная секция

19 Исходная смесь (нефть), нагретая до температуры питания в паровой, парожидкостной или жидкой фазе поступает в колонну в качестве питания. Зона, в которую подаётся питание называют эвапарационной, так как там происходит процесс эвапарации – однократного отделения пара от жидкости. Эвапарационная зона Принцип работы ректификационной колонны

20 Пары поднимаются в верхнюю часть колонны, охлаждаются и конденсируются в холодильнике – конденсаторе и подаются обратно на верхнюю тарелку колонны в качестве орошения. Таким образом в верхней части колонны (укрепляющей) противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз). Холодильник – конденсатор Принцип работы ректификационной колонны

21 Стекая вниз по тарелкам жидкость обогащается высококипящим (высококипящими) компонентами, а пары, чем выше поднимаются в верх колонны, тем более обогащаются легкокипящими компонентами. Таким образом, отводимый с верха колонны продукт обогащен легкокипящим компонентом. Продукт, отводимый с верха колонны, называют дистиллятом. Часть дистиллята, сконденсированного в холодильнике и возвращенного обратно в колонну, называют орошением или флегмой. Дистиллят Флегма (орошение) Принцип работы ректификационной колонны

22 Для создания восходящего потока паров в кубовой (нижней, отгонной) части ректификационной колонны часть кубовой жидкости направляют в теплообменник, образовавшиеся пары подают обратно под нижнюю тарелку колонны. Кубовая часть колонны Теплообменник (подогреватель ) Принцип работы ректификационной колонны

23 В работающей ректификационной колонне через каждую тарелку проходят 4 потока: 1) жидкость – флегма, стекающая с вышележащей тарелки; 2) пары, поступающие с нижележащей тарелки; 3) жидкость – флегма, уходящая на нижележащую тарелку; 4) пары, поднимающиеся на вышележащую тарелку. Пары Жидкость Светлые фракции Остаток (мазут) Принцип работы ректификационной колонны

24 При установившемся режиме работы колонны уравнение материального баланса представляется в следующем виде: F=D+W, тогда для низкокипящего компонента F·x F = D·x D + W·x W.

25 Флегмовое число (R) соотношение жидкого и парового потоков в концентрационной части колонны (R = L/D; L и D – количество флегмы и ректификата).

26 Паровое число (П) отношение контактируемых потоков пара и жидкости в отгонной секции колонны (П = G / W; G и W – количество соответственно паров и кубового остатка).

27 Теоретическая тарелка При количественном рассмотрении работы ректификационных колонн обычно используется концепция теоретической тарелки. Под такой тарелкой понимается гипотетическое контактное устройство, в котором устанавливается термодинамическое равновесие между покидающими его потоками пара и жидкости.

28 Число тарелок определяется числом теоретических тарелок, обеспечивающим заданную четкость разделения при принятом флегмовом (и паровом) числе, а также эффективностью контактных устройств (обычно КПД реальных тарелок или удельной высотой насадки, соответствующей одной теоретической тарелке).

29 Четкость погоноразделения В нефтепереработке в качестве достаточно высокой разделительной способности колонны перегонки нефти на топливные фракции считается налегание температур кипения соседних фракций в пределах 10–30 °С (косвенный показатель четкости разделения). Бензиновая фракция: температура кипения °C Масляная фракция: температура кипения °C

30 20-40°С Трубчатая печь Ректификационная колонна (давление 0,14-0,16 МПа) Конденсатор ВКК НКК Процессы на тарелках ректификационной колонны Кипятильник 365°С 146°С 342°С 30-70°С 350°С 116°С Бензин °С 206°С Керосин °С 292°С Дизельное топливо °С Мазут >350°С Легкий бензин 350°С Легкий бензин “>

31 Исторически при промышленной перегонке нефти получали: – Конец 19-начало 20 вв. – керосин (осветительный, готовое топливо); – Первая половина 20 вв. – бензин, керосин, дизельное топливо – как готовые топлива; – Вторая половина 20 вв. – дистилляты различного состава, не менее 5 фракций; Сейчас АВТ играет роль диспетчера на НПЗ. АВТ – головной процесс, первичный процесс (первичная перегонка). ВСЕ получаемые дистилляты далее идут на вторичную переработку: – ДТ – очистка от серы, депарафинизация; – Бенз. Фр. – повышение октанового числа (облагораживание); – Керосин – очистка от серы; – Мазут – снижение вязкости (висбрекинг). Мощность современных АВТ – 3-8 млн. т в год. Энергоемкость – кг топлива (получаемого из нефти) на 1 т нефти. На заводе может быть несколько установок АВТ или ЭЛОУ-АВТ (например, на Киришском НПЗ 4 шт.: 1 – АВТ-3, 3 – АВТ-6, общая мощность НПЗ по нефти 21 млн. т. В год) При переходе к укруп­ненной установке взамен двух или нескольких уста­ новок меньшей пропускной способности эксплуата­ционные расходы и первоначальные затраты на 1 т перерабатываемой нефти уменьшаются, а производи­тельность труда увеличивается

32 Перегонка нефти в промышленных условиях Прямую перегонку осуществляют при атмосферном или несколько повышенном давлении, а остатков под вакуумом. AT и ВТ строят отдельно друг от друга или комбинируют в составе одной установки (АВТ). AT подраз­деляют в зависимости от технологической схемы на следующие группы: 1) установки с однократным испарением нефти; 2) установки с двукратным испарением нефти; 3) установки с предварительным испарением в эвапораторе легких фракций и последующей ректификацией. ВТ подразде­ляют на две группы: 1) установки с однократным испарением мазута;. 2) установки с двукратным, испарением мазута (двухступенчатые). Широко распростра­нены установки с предварительной отбензинивающей колонной и основной ректификационной атмосфер­ной колонной, работоспособные при значительном изменении содержания в нефтях бензиновых фракций и растворенных газов. Процесс первичной переработки нефти наиболее часто комбинируют с процессами обезвоживания и обессоливания, вторичной перегонки и стабилизации бензиновой фракции: ЭЛОУАТ, ЭЛОУАВТ, ЭЛОУАВТ вторичная перегонка, АВТ вто­ричная перегонка.

33 Ректификационные колонны Простые колонны используются для разделения исходной смеси (сырья) на два продукта. Сложные колонны разделяют исходную смесь больше, чем на два продукта: 1-я – ректификационная колонна с отбором дополнительной фракции непосредственно из колонны в виде боковых погонов (1,2,3); 2-я – ректификационная колонна, у которой дополнительные продукты отбираются из специальных отпарных колонн (стриппингов). Сложные колонны ректификации стриппинги 2 1 3

35 Установки первичной переработки нефти Ректификационные установки по принципу действия делятся на периодические и непрерывные. В установках непрерывного действия разделяемая сырая смесь поступает в колонну и продукты разделения выводятся из нее непрерывно. В установках периодического действия разделяемую смесь загружают в куб одновременно и ректификацию проводят до получения продуктов заданного конечного состава.

36 Способы регулирования температурного режима ректификационных колонн Регулирование теплового режима – отвод тепла в концентрационной (укрепляющей) зоне, подвод тепла в отгонной (исчерпывающей) секции колонн и нагрев сырья до оптимальной температуры.

37 Отвод тепла использование парциального конденсатора (кожухотрубчатый теплообменный аппарат; применяется в малотоннажных установках; трудность монтажа) Цилиндрические теплообменники

38 Отвод тепла организация испаряющегося (холодного) орошения (наиболее распространенного в нефтепереработке)

39 Отвод тепла организация неиспаряющегося (циркуляционного) орошения, используемого широко и не только для регулирования температуры наверху, но и в средних сечениях сложных колонн.

40 Подвод тепла в отгонной секции нагрев остатка ректификации в кипятильнике с паровым пространством

41 Подвод тепла в отгонной секции циркуляция части остатка, нагретого в трубчатой печи

42 Установки первичной переработки нефти Ректификацию осуществляют на трубчатых установках: атмосферная трубчатая установка (АТ); вакуумная трубчатая установка (ВТ); атмосферно-вакуумная трубчатая установка (АВТ). Внешний вид установки первичной переработки нефти на Московском НПЗ

43 Установки первичной переработки нефти. Атмосферная трубчатая установка (АТ) Является наипростейшей схемой первичной перегонки нефти. На установках АТ осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракций и мазута. Внешний вид атмосферной трубчатой установки

44 Установки первичной переработки нефти. Принципиальная схема АТ трубчатая печь для нагрева куба колонны Для перегонки легких нефтей и фракций до 350 ºС (I) применяют АТ: установки с предварительной отбензинивающей колонной (1) и сложной ректификационной колонной (2) с боковыми отпарными секциями (3) для разделения частично отбензиненной нефти на топливные фракции (III, IV, V, VI) и мазут (VII). конденсатор – холодильник

45 Материальный баланс АТ Поступило, % Нефть100 Получено, % на нефть Газ и нестабильный бензин (н. к.-180 ºС) 19,1 Фракции ºС7, ºС11, ºС10,5 Мазут52,0 Технологический режим Колонна частичного отбензинивания нефти Атмосферная колонна Температура питания 205ºСТемпература питания 365ºС Температура верха 155 ºСТемпература верха 146ºС Температура низа 240ºСТемпература низа 342ºС Давление 0,5 МПаДавление 0,25 МПа

46 Установки первичной переработки нефти. Вакуумные трубчатые установки (ВТ) Установки ВТ предназначены для перегонки мазута. При вакуумной перегонке из мазута получают вакуумные дистилляты, масляные фракции и тяжелый остаток – гудрон. Полученный материал используется в качестве сырья для получения масел, парафина, битумов. Остаток (концентрат, гудрон) после окисления может быть использован в качестве дорожного и строительного битума или в качестве компонента котельного топлива. Внешний вид вакуумной трубчатой установки

47 Установки первичной переработки нефти. Принципиальная схема ВТ Мазут, отбираемый с низа атмосферной колонны блока АТ прокачивается параллельными потоками через печь 2 в вакуумную колонну 1. Смесь нефтяных и водяных паров поступают в вакуумсоздающую систему. После конденсации и охлаждения в конденсаторе-холодильнике она разделяется в газосепараторе на газ и жидкость. Газы отсасываются вакуумным насосом 3, а конденсат поступает в отстойник для отделения нефтепродуктов от водяного конденсата. Верхним боковым погоном отбирают фракцию легкого вакуумного газойля (соляра) (II), вторым боковым погоном – широкую газойлевую фракцию (масляную) (III), с низа колонны отбирается гудрон (V).

48 Материальный баланс ВТ Поступило, % Поступило, % на нефть Мазут52 Получено, % на нефть Легкий вакуумный газойль1,2 Вакуумный газойль22,0 Гудрон28,8 Технологический режим в вакуумной колонне Температура питания, ºС395 Температура верха, ºС125 Температура низа, ºС352 Давление наверху абс., кПа8,0 Характеристика вакуумной колонны Диаметр, мЧисло тарелок Верхняя часть6,44 Средняя часть9,010 Нижняя часть4,54

49 Установки первичной переработки нефти. Атмосферно-вакуумная трубчатая установка (АВТ) Атмосферные и вакуум­ные трубчатые установки (AT и ВТ) строят отдельно друг от друга или комбинируют в составе одной установки (АВТ). АВТ состоит из следующих блоков: блок обессоливания и обезвоживания нефти; блок атмосферной и вакуумной перегонки нефти; блок стабилизации бензина; блок вторичной перегонки бензина на узкие фракции.

50 Принципиальная схема блока стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6 Прямогонные бензины после стабилизации сначала разделяются на 2 промежуточные фракции н. к.-150 ºС и ºС, каждая из которых в дальнейшем направляется на последующее разделение на узкие целевые фракции. Нестабильный бензин из блока АТ поступает в колонну стабилизации. С верха колонны 1 отбираются сжиженные газы. Из стабильного бензина в колонне 2 отбирают фракцию н. к.-105 ºС. В колонне 3 происходит разделение на фракции н. к.-62 ºС и ºС. В колонне 4 происходит дальнейшее разделение на фракции ºС (бензольная) и ºС (толуольная). Остаток колонны 2 направляют на разделение в колонну 5 на фракции ºС и ºС.

51 Технологический режим и характеристика ректификационных колонн блока стабилизации и вторичной перегонки ПоказательНомер колонны Температура, ºС Питания Верха Низа Давление, МПа1,10,450,350,200,13 Число тарелок4060

52 Материальный баланс блока стабилизации и вторичной перегонки бензина Поступило, % на нефть: Нестабильный бензин19,1 Получено, % на нефть Сухой газ (С 1 – С 2 )0,2 Сжиженный газ (С 2 – С 4 )1,13 Фракция С ºС2,67 Фракция ºС6,28 Фракция ºС4,61 Фракция ºС4,21

53 Расходные показатели установки ЭЛОУ-АВТ-6 На 1 тонну перерабатываемой нефти: Топливо жидкое, кг33,4 Электроэнергия, кВт·час10,4 Вода оборотная, м 3 4,3 Водяной пар (1 МПа), кг1,1

54 Материальный баланс перегонки нефти и использование дистиллятов Общий материальный баланс: выход (% мас.) всех конечных продуктов перегонки от исходной нефти, количество которой принимают за 100 %. Поступенчатый баланс: за 100 % принимают выход (% мас.) продуктов перегонки на данной ступени (продукты могут быть промежуточные).

55 Принципиальная технологическая схема ЭЛОУ-АВТ блок обессоливания и обезвоживания нефти вакуумная колонная атмосферная перегонка блок вторичной перегонки бензина

56 Материальный баланс перегонки нефти и использование дистиллятов Нефть (I) (100 %) поступает на установку с содержанием минеральных солей от 50–300 мг/л и воды 0,5–1,0 % (мас.) Углеводородный газ (II). В легкой нефти (ρ = 0,80–0,85) – 1,5–1,8 % (мас.). Для тяжелой – 0,3–0,8 % (мас.) Сжиженная головка стабилизации бензина (IV) содержит пропан и бутан с примесью пентанов (0,2–0,3 % мас.), используется для бытовых нужд (сжиженный газ) или в качестве газового моторного топлива для автомобилей (СПБТЛ или СПБТЗ).

57 Легкая головка бензина (V) – фракция бензина Н. К. (начало кипения) – 85 °С (4–6 % мас.); О. Ч.М (октановое число по моторному методу) не более 70. Бензиновая фракция (VI) 85–180 °С. Выход ее от нефти в зависимости от фракционного состава обычно составляет 10–14 % мас. Октановое число (О. Ч.М = 45–55). Керосин (Х): 1) отбор авиационного керосина – фракция 140–230 °С (выход 10–12 % мас.); 2) компонент зимнего или арктического дизельного топлива (фракции 140–280 или 140–300 °С), выход 14–18 % (мас.) Материальный баланс перегонки нефти и использование дистиллятов

58 Дизельное топливо (XI) – атмосферный газойль 180–350 °С (выход 22–26 % мас., если потоком (Х) отбирается авиакеросин или 10–12 % (мас.), если потоком (Х) отбирается компонент зимнего или арктического дизельного топлива. Легкая газойлевая фракция (XIV) (выход 0,5– 1,0 % мас. Легкий вакуумный газойль (XV) – фракция 240–380 °С, выход этой фракции составляет 3–5 % мас. Материальный баланс перегонки нефти и использование дистиллятов

59 Первичная прямая перегонка нефти даёт сравнительно мало бензина (выход от 4 до 25 %). Увеличение выхода бензина достигается применением вторичной переработки более тяжёлых нефтяных фракций, а также мазута с помощью деструктивных методов.

60 Перегонка нефти в промышленных условиях Атмосферно-вакуумная перегонка нефти с отбензинивающей колонной ЭЛОУ ОТБЕНЗ. АТ ВТ Стаб. Бенз. ЭЖЕКТ

61 Перегонка нефти в промышленных условиях Тепловой режим в колонне, промежуточное орошение Виды острого орошения в атмосферной колонне: – Верх – верхний дистиллят; – различные точки по высоте колонны несколько промежуточных циркуляционных орошений: 1) Промежуточное орошение чаще всего отводят в выносную отпарную колонну с одной из тарелок, расположенных ниже или выше точки вывода бокового дистиллята. 2) В качестве промежуточного орошения используют сам боковой погон, который после охлаждения возвращают в колонну выше или ниже точки ввода в нее паров из отпарной выносной колонны. Применяя орошение, рационально используют избыточное тепло колонны для подогрева нефти, при этом выравниваются нагрузки по высоте колонны, и это обеспечивает оптимальные условия ее работы.

62 Перегонка нефти в промышленных условиях Колонна Число тарелок Тип тарелок Установка АВТ Атмосферная предварительная 28 Клапанные (верх – двух – поточные, низ – четырёхпоточные) Атмосферная основная49Клапанные Вакуумная18 Верх – клапанные, S – образные, низ – решетчатые, струйные Отпарная4Клапанные

63 Перегонка нефти в промышленных условиях Температура, °С подогрева нефти в теплообменниках подогрева отбензиненной нефти в змеевиках трубчатой печи паров, уходящих из отбензинивающей колонны внизу отбензинивающей колонны паров, уходящих из основной колонны внизу основной колонны ввода сырья в вакуумную колонну верха вакуумной колонны низа вакуумной колонны Давление, МПа в отбензинивающей колонне в основной колонне Давление, кПа вверху вакуумной колонны,40,5 0,150,2. 7,85 – 8,85

64 Перегонка нефти в промышленных условиях Ромашкинская нефть Самотлорская нефть Взято, % (масс.) Нестабильная нефть Вода эмульсионная 100,0 0,1 100,0 0,1 Итого100,1 Получено, % (масс.) Углеводородный газ Бензиновая фракция (н. к ) Керосиновая фракция ( ) Дизельная фракция ( ) Мазут (>350) Потери 1,0 12,2 16,3 17,0 52,7 0,9 1,1 18,5 17,9 20,3 41,4 0,9 Итого100,1 Материальный баланс (для установки типа АТ) Отбензинивающую колонну применяют при высоком содержании легких УВ: газы – не менее 1,5-2,2 %, бензиновые фракции – не менее %, в целом светлые фракции – не менее %. 350) Потери 1,0 12,2 16,3 17,0 52,7 0,9 1,1 18,5 17,9 20,3 41,4 0,9 Итого100,1 Материальный баланс (для установки типа АТ) Отбензинивающую колонну применяют при высоком содержании легких УВ: газы – не менее 1,5-2,2 %, бензиновые фракции – не менее 20-30 %, в целом светлые фракции – не менее 50-60 %.”>

66 Перегонка нефти в промышленных условиях Особенности процесса: 1)Максимальная температура нагрева – °С. Если температура выше усиливаются реакции термического крекинга (для мазута): снижается выход продуктов, образуются твердые нерастворимые пробки в трубопроводах. Чем выше нагрев, тем короче расстояние от печи до колонны по трансферному трубопроводу (меньше время нахождения нефти при данной температуре). 2)Куб колонны работает в двух режимах: – в куб колонны подают перегретый водяной пар вместо горячего кубового продукта (создается необходимый тепловой поток, не происходит разложения УВ); – возвращения кубового потока в виде пара не происходит – отпарная колонна. 3) Питающая тарелка должна быть сконструирована таким образом, чтобы: – Равномерно распределить сырье по сечению колонны; – уловить капли жидкости, уносимые паровой фазой.

67 Особенности нефти как сырья процессов перегонки Невысокая термическая стабильность нефти, ее высококипящих фракций (350–360 °С). Поэтому необходимо ограничение температуры нагрева (для повышения относительной летучести – перегонка под вакуумом, перегонка с водяным паром – для отпаривания более легких фракций). С этой целью используют, как минимум, две стадии: атмосферную перегонку до мазута (до 350 °С) и перегонку под вакуумом.

68 Особенности нефти как сырья процессов перегонки Нефть – многокомпонентное сырье с непрерывным характером распределения фракционного состава и соответственно летучести компонентов. Поэтому в нефтепереработке отбирают широкие фракции (°С): бензиновые; керосиновые; дизельные; вакуумный газойль; гудрон. Иногда ограничиваются неглубокой перегонкой нефти с получением остатка (мазута, выкипающего выше 350 °С).

69 Особенности нефти как сырья процессов перегонки Высококипящие и остаточные фракции нефти содержат значительное количество гетероорганических смолисто – асфальтеновых соединений и металлов (ухудшают товарные характеристики продуктов и усложняют дальнейшую переработку дистиллятов).

70 Контактные устройства Тарелка с туннельными колпачками Колпачковая тарелка Тарелка с S-образными элементами: а общий вид; 6 схема Клапанно-прямоточная тарелка

71 Контактные устройства Двух – (б) и четырехпоточная (в) тарелки с переливным устройством Тарелка с просечно-вытяжными отверстиями

72 Контактные устройства Требования, предъявляемые к тарелкам: – обеспечение на их поверхности (плато) соответствующего запаса жидкой фазы (т. наз. задержка жидкости); – достижение необходимой разделит. способности при изменении нагрузок по газу или жидкости; – малое гидравлическое сопротивление газовому потоку; – минимальный брызгоунос (с нижних тарелок на верхние); – возможность подвода теплоты непосредственно в зону контакта фаз и отвода из нее теплоты (достигается установкой над плато тарелок спец. змеевиков); – возможность проводить процесс в вакууме (до 8 Па); Различают барботажный и струйный гидродинамические режимы работы тарелок. В барботажном режиме на тарелках поддерживается слой жидкости (сплошная фаза), через который барботирует восходящий поток газа (дисперсная фаза), распределяясь в жидкости пузырьками. С повышением нагрузок по газу происходит инверсия фаз, при которой в сплошной (газовой) фазе распределена в виде капель и струй дисперсная (жидкая) фаза; такой режим наз. струйным.

74 Вакуумная перегонка нефти в промышленных условиях Конденсационно-вакуумсоздающая система Остаточное давление – кПа ( мм. рт. ст.) Эжектор Эжектор – устройство, в котором в процессе смешения сред происходит передача кинетической энергии от одной среды, движущейся с большей скоростью, к другой. Согласно закону Бернулли, в сужающемся сечении создаётся пониженное давление одной среды, что вызывает подсос в поток другой среды, которая затем переносится и удаляется от места всасывания энергией первой среды

75 Технологические процессы на НПЗ Считается, что на НПЗ средней мощности (5…7 млн т/год) каждый процесс должен быть представлен 1 технологической установкой. При этом связи между процессами становятся весьма жесткими, резко повышаются требования к надежности оборудования, системе контроля и автоматизации, сроку службы катализаторов. В совр. практике проектирования и строительства НПЗ большой мощности (10…15 млн т/год) предпочтение отдают двухпоточной схеме переработки нефти: каждый процесс представлен двумя одноименными технологическими установками. При этом процесс, для которого ресурсы сырья ограничены при данной мощности НПЗ, может быть представлен одной технологической установкой (алкилирование, коксование, висбрекинг, производство серы и др.).

76 Технологические процессы на НПЗ Исходя из принятой оптимальной мощности НПЗ топливного профиля, равной 12 млн т/год, на основании технико-экономических расчетов и опыта эксплуатации современного отечественных и зарубежных заводов принята оптимальной мощность головной установки АВТ, равная 6 млн т/год. Наиболее часто комбинируют следующие процессы: – ЭЛОУ-АВТ (AT), – гидроочистка (ГО) бензина каталитический риформинг (КР), – гидроочистка вакуумного газойля каталитический крекинг (КК) газоразделение, – сероочистка газов производство серы; – ГО КК газофракционирование и др. Наибольшую трудность представляет переработка гудронов с высоким содержанием смолисто-асфальтеновых веществ, металлов и гетеросоединений – с получением таких нетопливных нефтепродуктов, как битум, нефтяные пеки.

Http://www. myshared. ru/slide/821608/

Нефтехимическое или комплексное (топливно-нефтехимическое либо топливно – масляно – нефтехимическое).

При топливном направлении нефть и газовый конденсат в основном перерабатываются на моторные и котельные горючего. Переработка нефти на НПЗ топливного профиля быть может глубочайшей и неглубокой. Технологическая схема НПЗ с неглубокой переработкой различается маленьким числом технологических действий и маленьким ассортиментом нефтепродуктов. Выход моторных топлив по данной схеме не превосходит 55.60 % масс. и зависит в основном от фракционного состава перерабатываемого нефтяного сырья. Выход котельного горючего составляет 30. 35 % масс.

Обладать высокой пропускной способностью и минимальным числом единичных технологических установок с использованием комбинированных систем;

Осуществлять комплексную переработку нефти с минималь­ной долей отходов;

Обеспечивать высокое качество получаемых продуктов при максимальной рентабельности;

Использовать безотходную технологию с учетом экологиче­ских требований.

Значительное повышение эффективности переработки нефти дает использование комбинированных установок, работающих по «жестким связям». В этом случае дистиллятное или остаточное сырье вторичного процесса (каталитический крекинг, коксование) поступает в виде горячего потока непосредственно с установки, подготавливающей это сырье (AT, АВТ).

Потребность в тех или иных нефтепродуктах в крупных районах их потребления; в настоящее время районы сооружения отечественных НПЗ соответствуют районам максимального по­требления нефтепродуктов, что сокращает расходы на их транс­портирование;

Оптимальное соотношение производимых нефтепродуктов — бензина, реактивного, дизельного и котельного топлива;

Потребность нефтехимической промышленности в отдельных видах сырья или полупродуктов;

Наличие или отсутствие других доступных энергетических ресурсов, позволяющих обеспечить минимальное использование нефти в качестве котельного топлива;

Качество перерабатываемой нефти, обусловливающее долю гидрогенизационных процессов, возможность производства биту­мов и т. д.;

Гибкость отдельных процессов, позволяющая при необходи­мости изменять ассортимент получаемых продуктов.

Поточные схемы заводов топливного профиля обычно характе­ризуют по глубине переработки нефти (т. е. по отбору светлых нефтепродуктов): с неглубокой и глубокой переработкой. В связи с развитием процессов получения сырья для нефтехимии поточные схемы глубокой переработки нефти все с большим основанием заслуживают названия комплексных.

Бензиновая фракция, выделенная из нефти, имеет октановое число –37 и содержание серы 0,213%масс. Плотность фракции 0,7271 г/см 3 .

Http://nashaucheba. ru/v54851/%D0%BA%D1%83%D1%80%D1%81%D0%BE%D0%B2%D0%BE%D0%B9_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82_%D1%80%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BF%D0%BE%D1%82%D0%BE%D1%87%D0%BD%D0%BE%D0%B9_%D1%81%D1%85%D0%B5%D0%BC%D1%8B_%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B8_%D1%81%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%BE%D0%B9_%D0%BD%D0%B5%D1%84%D1%82%D0%B8_%D0%BF%D0%BE_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE%D0%BC%D1%83_%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D0%BD%D1%82%D1%83._%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%B7%D0%B0%D0%B2%D0%BE%D0%B4%D0%B0_%D0%BF%D0%BE? page=2

Последнее двадцатилетие ознаменовалось качественными сдвигами в использовании нефти и газа, которые стали широко применяться для производства синтетических материалов. На базе использования газа, нефти и нефтепродуктов быстрыми темпами развиваются нефтехимическая и биологическая промышленность. На первом этапе развития нефтехимии использовался только один компонент нефтехимического сырья — этилен, составляющий около 30% (по весу) перерабатываемого сырья. Остальные компоненты либо не использовались, либ, о сжигались для отопительных целей. В настоящее время при комплексной схеме переработки из 1 т жидких углеводородов получают 600—700 кг нефтехимического сырья. Ценность этих продуктов, конечно, во много раз превосходит эффект, который мог бы быть получен при их сжигании для получения тепла. При использовании в нефтехимии единица веса этилена, пропилена, бутилена, бензола в 6—10 раз, а дивинила в 18—20 раз по своей ценности дороже единицы веса этих же углеводородов при их сжигании.  [c.79]

Ранее была изложена методика калькуляции себестоимости нефтепродуктов по отдельной установке, взятой изолированно. Но в нефтепереработке готовая продукция получается смешением различных компонентов, каждый из которых проходит длинную цепь взаимосвязанных, но обособленных процессов изготовления. Например, прямогонный компонент авиабензина может проходить три следующих процесса 1) прямую перегонку нефти, дающую-наряду с другими продуктами широкую бензиновую фракцию. 2) кислотно-щелочную очистку 3) вторичную перегонку, где и получается прямогонный компонент авиабензина. Этот пример показывает, что на себестоимость прямогонного компонента должны быть отнесены не только расходы по вторичной перегонке,, дающей этот продукт, но и соответствующая доля расходов по-очистной установке и установке прямой перегонки. Отсюда следует, что составление калькуляции надо начинать с первой по ходу технологического процесса установки. Последовательность составления калькуляции себестоимости нефтепродуктов всецело определяется поточной технологической схемой переработки сырья на заводе. При этом в качестве цены переработанных полуфабрикатов собственного производства выступает себестоимость выработки этих полуфабрикатов на предшествующих переделах (процессах, установках).  [c.202]

Схему разрабатывают по следующим направлениям развития нефтяной (газовой) промышленности сырьевая база, добыча нефти (газа), переработка газа (нефтяного, природного), транспорт нефти (газа и подземное хранение газа), охрана окружающей среды и рациональное использование природных ресурсов.  [c.154]

Http://economy-ru. info/info/1538/

Студент 4-го курса, кафедра химической переработки нефти и газа, ГГНТУ, г. Грозный

В настоящее время нефть представляет собой один из самых крупнотоннажных видов товаров, борьба за который является неотъемлемой, а иногда и важнейшей частью мировой торговли, экономики и политики [1].

От состояния нефтеперерабатывающей отрасли зависят показатели экономики и обороноспособности станы.

Основными факторами развития современной нефтеперерабатывающей промышленности являются требования экологического характера, объемы поставок и качественные характеристики исходного сырья – сырой нефти.

Для современной нефтеперерабатывающей промышленности характерным является рост суммарных объемов переработки, относительно невысокий уровень рентабельности, рост удельных капиталовложений, вызванный требованиями к охране окружающей среды и необходимостью перерабатывать сырье с худшими качественными характеристиками [2].

Основными процессами переработки нефти являются прямая и вакуумная перегонка нефти, каталитический крекинг, каталитический риформинг, каталитический гидрокрекинг, коксование, гидроочистка, алкилирование, изомеризация, производство оксигенатов и др. [7].

Эти процессы подразделяются на углубляющие и улучшающие качество получаемых нефтепродуктов.

В современной нефтепереработке основными углубляющими процессами являются: каталитический крекинг, гидрокрекинг, коксование и висбрекинг [3].

Для современной нефтеперерабатывающей промышленности России характерно следующее [4]:

    высокий износ основных фондов большинства технологических установок, который является самым высоким в топливно-энергетическом комплексе России и составляет около 80 %; относительно низкая загрузка большинства НПЗ (в среднем около 83 %). Опыт эксплуатации зарубежных НПЗ показывает, что эффективная работа предприятия обеспечивается при загрузке мощностей на уровне 90 % (в США 95 % и выше); недостаточная глубина переработки нефти 73,5 % против 86—94 % в развитых странах; отставание в эксплуатационных и экологических требованиях к моторным топливам, по сравнению со странами Запада.

Исходя из особенностей топливно-энергетического баланса страны, технологическая структура мощностей переработки нефти формировалась без достаточного развития процессов углубляющих переработку нефти и улучшающих качество продукции. Доля углубляющих процессов в России составляет примерно 20 % от объема переработки нефти, а в США более 73 %.

В развитие процессов, углубляющих переработку нефти, Россия отстает от среднемирового и европейского уровня в два раза, от уровня США – более чем в три раза, в развитие важнейшего из этих процессов, каталитического крекинга и гидрокрекинга в 4—7 раз.

Из 27 российских НПЗ общей мощностью 248,8 млн т/год 9 заводов не имеют углубляющих процессов. На 18 НПЗ с глубокой переработкой нефти соотношение углубляющих процессов следующее:

4 НПЗ имеют 4 углубляющих процесса, 2 НПЗ — 3 углубляющих процесса, 10 НПЗ — 2 углубляющих процесса и 2 НПЗ — 1 углубляющий процесс.

Главным углубляющим процессом является каталитический крекинг. Каталитический крекинг, как один из наиболее углубляющих переработку нефти процесс, внедрен на 13 российских НПЗ. Всего установок каталитического крекинга в отрасли — 20.

Распределение отечественных установок каталитического крекинга по технологиям следующее (ед.): — установки с шариковым катализатором системы 43-102 — 11; установки с микросферическим катализатором — 9.

Установки с шариковым катализатором — это системы каталитического крекинга, работающие по устаревшей технологии. Девять установок каталитического крекинга с микросферическим катализатором внедрены на 7 НПЗ и представлены следующими системами: АББ – 1 (ТНК-bp); 1А-1М – 3 (Славнефть, Башнефтехим, Газпромнефть); ГК-3 – 1 (Роснефть); Г-43-107 – 3 (МНГК, Башнефтехим, Таиф-НК); 43-103 – 1 (Газпромнефть).

В перспективенамечается строительство установок каталитического крекинга в Салавате, Кстово, Волгограде, Кириши, Перми, Ачинске.

Во время второй мировой войны процесс каталитического крекинга «флюид» был основным источником производства высокооктанового бензина путем крекинга тяжелых углеводородов. Технологию ККФ и сейчас широко применяют для переработки тяжелого сырья в связи со снижением спроса на остаточные топлива. Процесс ККФ позволяет также удовлетворять спрос на реактивное и дизельное топливо, сжиженные нефтяные газы и легкие олефины (бутилены и пропилены), используемые как нефтехимические продукты.

Известны следующие зарубежные технологии каталитического крекинга [1]:

    процесс компании ABBLummusGlobal, Inc; технологияFlexicracking компанииExxon Mobil Research and Engineering Co, Kellog Brown &Root; процессмиллисекондMillisecong Catalytic Cracking компанииUOP; процессOrthoflow компанииKellog Brown &Root; процесс превращения тяжелых нефтяных дистиллятов в высокоценные продукты компании ShellGlobalSolutions; процесскомпанийStone &Webster Inc, Shaw Group Co/Axens, IFP Group Technologies; процессFCC/RFCC/Petro FCC компанииUOP; процесс глубокого каталитического крекинга компаний Stone&WebsterInc, ShawGroupCoпри участии института нефтепереработки компании Sinopec

В настоящее время продолжаются работы по совершенствованию технологии ККФ для производства топлив с низким содержанием серы и ароматических углеводородов [9].

Разрабатываются новые системы ввода сырья, практикуется обрыв реакции на выходе из прямоточного реактора для снижения газообразования и уменьшения выхода кокса, предлагается улучшенная конструкция отпарной секции и воздухораспределителя для лучшей регенерации катализатора и снижения выбросов окислов азота. Главная цель модернизации ККФ – решение проблемы конверсии тяжелых нефтяных углеводородов в моторные топлива с низким содержанием серы и ароматики и легких олефинов.

Одной из первых разработок является система сверхмягкого крекинга каталитического крекинга. Компанией Petrobrasпредложена двухступенчатая схема ККФ, при которой на первой степени применяется сверхмягкий каталитический крекинг, при которой получаются высококачественные дистилляты с низким содержанием серы, ароматики и азота, которые легко могут быть превращены в компоненты смешения экологически чистых бензина и дизельного топлива. Остаточные топлива могут быть переработаны на второй стадии обычного ККФ.

Новое видение технологии ККФ заключается в придание ей «второго дыхания» и в разработке новых катализаторов. Это мощный многогранный процесс превращается в средство гибкого решения насущных проблем НПЗ, которое с помощью относительно небольших затрат позволяет превращать остаточное сырье в моторные топлива высоких экологических кондиций и в легкие углеводороды, нужные для нефтехимической промышленности.

Следующий по значимости углубления переработки нефти быстроразвивающийся процесс — каталитический гидрокрекинг, применяемый для облагораживания вакуумного газойля и его смесей с газойлевыми фракциями других процессов с целью получения высококачественных дизельных и реактивных топлив, малосернистых котельных топлив, сырья для процесса ККФ [3].

На шести российских НПЗ функционируют шесть установок гидрокрекинга, работающие по технологии гидрокрекинга в мягких условиях и гидрокрекинга под давлением. Установка гидрокрекинга на Рязанском НПЗ (ТНК – bp) работает по технологии мягкого гидрокрекинга. Остальные пять установок работают по технологии гидрокрекинга под давлением и распределяются по следующим компаниям: Газпром — 1, Роснефть — 1, Башнефтехим — 1, Лукойл — 1, Славнефть — 1. На Киришском НПЗ строительство установки гидрокрекинга заканчивается. В перспективе в России намечено строительство еще 8 установок гидрокрекинга на следующих НПЗ: Московском, Нижнекамском, Ачинском, Хабаровском, Комсомольском, Новокуйбышевском.

Лицензиарами процесса каталитического гидрокрекинга за рубежом являются компании: Axens NA (процесс H-Oil); Chevron и Lummus Global LLC (процесс LC-Fining и ISOCRACKING); Shell Global Solutions International B. V. (переработка тяжелого вакуум-газойля и нефтяных остатков); Veba Oil Technologie und Automatizirung GmbH (процесс Unicracking); Axens NA (процесс совместного гидрокрекинга и гидроочистки T-Star); Haldor Topsofe (процесс «мягкого» гидрокрекинга) [1].

Разновидностью гидрокрекинга является легкий гидрокрекинг, позволяющий увеличить производство дизельных топлив путем гидроконверсии вакуум-газойля [6]. Установка такого гидрокрекинга была введена в 2004 г. на НПЗ компании Repsol YPF в Пуэртольяно, Испания. На установке при 35 %-ой конверсии вакуум-газойля получают дизельное топливо с содержанием серы 10 ррm. В составе интегрированной схемы гидрокрекинга предусмотрена стадия доочистки дизельного топлива.

В процессе коксования – превращения вакуумных остатков, тяжелых смол и пеков в бензиновые и газойлевые фракции, котельное топливо и кокс – используются процессы замедленного коксования компаний ABB Lummus Global, Inc.;

Селективного замедленного коксования SIDEX компаний Foster Wheeler и UOP; облагораживания нефтяных остатков методом термического замедленного коксования компаний Bechtel Corp. и Conoco Inc. [8].

Доля процесса замедленного коксования в отечественной нефтепереработке от первичной переработки составляет — 3,0 % [3]. Семь установок расположены на 5 НПЗ: Лукойл — 3, Роснефть — 2, Газпромнефть – 1, Башнефтехим — 1. В 2011 г. намечается закончить строительство установки коксования на Комсомольском НПЗ (Роснефть) 1 миллион тонн. В перспективе намечается строительство установок коксования в Ачинске, Перми.

Процесс висбрекинга — это процесс косвенно углубляющий переработку нефти. Доля висбрекинга от первичной переработки на отечественных НПЗ составляет 9,7 %, т. е. больше, чем доля других углубляющих процессов. В отечественной нефтепереработке применяются две технологии процесса висбрекинга: печной и низкотемпературный. Всего на отечественных НПЗ эксплуатируется 13 установок висбрекинга. Из них: Лукойл — 2, ТНК — bp– 2, Роснефть — 1, Башнефтехим — 3, Газпромнефть – 1, МНТК — 1, Славнефть — 1, ТАИФ-НК — 1, ОАО Салаватнефтеоргсинтез – 1. В перспективенамечается строительство установок висбрекинга в Кириши, Перми.

В большинстве своем процессы, углубляющие переработку, введены на российских НПЗ более 20 лет назад. В период с 2000 г. в России были введены в действие три установки каталитического крекинга, три установки гидрокрекинга и шесть установок висбрекинга. Ввод этих установок позволил дополнительно переработать до 10 млн т в год тяжелых нефтяных остатков.

За последние годы на большинстве НПЗ достигнуты определенные успехи в увеличении глубины переработки нефти, изменения ассортимента и улучшении качества нефтепродуктов. В целом можно сказать, что наметилась тенденция к улучшению технического уровня производства.

В развитие процессов, углубляющих переработку нефти, Россия отстает от среднемирового и европейского уровня в два раза, от уровня США – более чем в три раза, в развитие важнейшего из этих процессов, каталитического крекинга и гидрокрекинга в 4—7 раз. Вследствие этого в России ограничена возможность выработки моторных топлив, в то время как выработка топочного мазута составляет около 30 % от объема перерабатываемой нефти (США — 5 %).

Решение проблемы углубление переработки нефти в России (до уровня 75 % к 2010 г. и 85 % к 2020 г.) будет предопределяться наличием сырья для загрузки мощностей углубляющих процессов и освоения новых технологий для вовлечения в глубокую переработку нефтяных остатков, т. е процессов каталитического крекинга, висбрекинга, коксования, гидрогенизационных процессов.

Наращивание мощностей по каталитическому крекингу, термическому крекингу и коксованию приводит к увеличению ресурсов низших парафинов, которые будут вовлекаться в химическую промышленность с целью получения парафиновых углеводородов изостроения путем их алкилирования и получения кислородсодержащих соединений, главным образом путем этерификации. Важно отметить, что без увеличения производства изопарафиновых углеводородов и кислородсодержащих соединений, невозможно обеспечить потребности в высокосортных и экологически чистых бензинах.

1. Брагинский О. Б. Нефтегазовый комплекс мира. — М.: Изд-во «Нефть и газ» РГУ Нефти и газа им. И. М. Губкина, 2006. — 640 с.

2. Брагинский О. Б., Шлихтер Э. Б. мировая нефтепереработка: экологические измерения. М.: Academia, 2002, 261 с.

3. Капустин В. М. Роль отечественных компаний в модернизации российских нефтеперерабатывающих заводов// Мир нефтепродуктов. — 2007. — № 7. — С. 18—20.

4. Козин В. Г., Солодова Н. Л., Башкирцева Н. Ю., Абдуллин А. И. Современные технологии производства компонентов моторных топлив. Учебное пособие. Казань. — 2009. — С. 328.

5. Покровский С. Новые зарубежные технологии нефтепереработки // Нефтегазовые технологии. — 2002, № 7, с. 68.

6. Сарразин П., Боннардо В., Вамбергью С. И др. Новый способ применения легкого гидрокрекинга позволяет получить дизтопливо // Нефтегазовые технологии. — 2005, № 6, с. 71.

7. Справочник процессов нефтепереработки // Нефтегазовые технологии. — 2005, № 3, с. 77.

8. Хендерсон Р., Виеджо А., Родвелл М. и др. Модификация НПЗ для переработки нетрадиционных тяжелых нефтей // Нефтегазовые технологии. — 2006, № 1, с. 67.

9. Хенц Г., Азеведо Ф., Чеберлейн О. «Второе дыхание» каталитического крекинга в псевдоожиженном слое // Нефтегазовые технологии. — 2005, № 2, с. 66.

Http://sibac. info/studconf/science/iii/28194

Добавить комментарий