Углеводороды | переработка нефтешлама в мазут

переработка нефтешлама в мазут

Установки от экстрасенса 700х170

В результате производственной деятельности при добыче, транспортировке и переработке нефти-сырца образуются нефтешламы, которые постоянно накапливаются.

При всем многообразии характеристик различных нефтяных отходов в самом общем виде все нефтешламы могут быть разделены на три основные группы в соответствии с условиями их образования – грунтовые, придонные и резервуарного типа. Первые образуются в результате проливов нефтепродуктов на почву в процессе производственных операций, либо при аварийных ситуациях. Придонные шламы образуются при оседании нефтеразливов на дне водоемов, а нефтешламы резервуарного типа – при хранении и перевозке нефтепродуктов в емкостях разной конструкции.

В наиболее упрощенном виде нефтешламы представляют собой многокомпонентные устойчивые агрегативные физико-химические системы, состоящие главным образом, из нефтепродуктов, воды и минеральных добавок (песок, глина, окислы металлов и т.д.). Главной причиной образования резервуарных нефтешламов является физико-химическое взаимодействие нефтепродуктов в объеме конкретного нефтеприемного устройства с влагой, кислородом воздуха и механическими примесями, а также с материалом стенок резервуара. В результате таких процессов происходит частичное окисление исходных нефтепродуктов с образованием смолоподобных соединений и ржавление стенок резервуара. Попутно попадание в объем нефтепродукта влаги и механических загрязнений приводит к образованию водно-масляных эмульсий и минеральных дисперсий. Поскольку любой шлам образуется в результате взаимодействия с конкретной по своим условиям окружающей средой и в течение определенного промежутка времени, одинаковых по составу и физико-химическим характеристикам шламов в природе не бывает. По результатам многих исследований в нефтешламах резервуарного типа соотношение нефтепродуктов, воды и механических примесей (частицы песка, глины, ржавчины и т.д.) колеблется в очень широких пределах: углеводороды составляют 5-90%, вода 1-52%, твердые примеси 0,8-65%. Как следствие, столь значительного изменения состава нефтешламов диапазон изменения их физико-химических характеристик тоже очень широк. Плотность нефтешламов колеблется в пределах 830-1700 кг/м3, температура застывания от -3оС до +80оС. Температура вспышки лежит в диапазоне от 35 до 120оС.

В качестве конкретного примера можно привести результаты анализа массовой проверки чистоты и технического состояния резервуаров автозаправочных станций г. Москвы, проведенной в конце 1997 г. Анализ показал, что основу механических примесей составляют окислы железа (ржавчина) – 50-80% с включением кварцевого песка и смолистых отложений. Механические примеси содержатся в природных отложениях в 85% обследованных резервуаров, а вода – в 60%.

При попадании воды в объем нефтепродуктов происходит образование устойчивых эмульсий типа вода-масло, стабилизация которых обусловливается содержащимися в нефтепродуктах природными стабилизаторами из разряда асфальтенов, смол и парафинов.

Устойчивость эмульсий типа вода-масло объясняется главным образом наличием на поверхности капелек эмульсии структурно-механического барьера, представляющего собой двойной электрический слой на межфазной поверхности. В состав таких защитных пленок могут входить соли поливалентных металлов органических кислот и других полярных компонентов нефтепродукта, которые дополнительно адсорбируются на асфальто-смолистых агрегатах и переводят их в коллоидное состояние. В коллоидном же состоянии асфальтены обладают наибольшей эмульгирующей способностью. Многочисленные исследования указывают на существование прямой связи между устойчивостью эмульсии и концентрацией природных стабилизаторов на границе раздела фаз. Естественно, что концентрация таких веществ возрастает в объеме нефтепродуктов по мере увеличения их молекулярного веса (переход к тяжелым фракциям нефти). Помимо образования эмульсий в среде нефтепродуктов в процессе перевозки и хранения происходит образование полидисперсных систем при взаимодействии жидких углеводородов и твердых частиц механических примесей.

При длительном хранении резервуарные нефтешламы со временем разделяются на несколько слоев с характерными для каждого из них свойствами.

Верхний слой представляет собой обводненный нефтепродукт с содержанием до 5% тонкодисперсных механических примесей и относится к классу эмульсий “вода в масле”. В состав этого слоя входят 70-80% масел, 6-25% асфальтенов, 7-20% смол, 1-4% парафинов. Содержание воды не превышает 5-8%. Довольно часто органическая часть свежеобразованного верхнего слоя нефтешлама по составу и свойствам близка к хранящемуся в резервуарах исходному нефтепродукту. Такая ситуация обычно имеет место в расходных резервуарах автозаправочных станций.

Средний, сравнительно небольшой по объему слой представляет собой эмульсию типа “масло в воде”. Этот слой содержит 70-80% воды и 1,5-15% механических примесей.

Следующий слой целиком состоит из отстоявшейся минерализованной воды с плотностью 1,01-1,19 г/см3.

Наконец, придонный слой (донный ил) обычно представляет собой твердую фазу, включающую до 45% органики, 52-88% твердых механических примесей, включая окислы железа. Поскольку донный ил представляет собой гидратированную массу, то содержание воды в нем может доходить до 25%.

Из приведенных данных по составу и свойствам разных типов нефтешламов резервуарного происхождения следует, что в процессе зачистки и переработки шламов могут быть применены различные технологические приемы в зависимости от их физико-механических характеристик. В большинстве случаев основная часть резервуарных нефтешламов состоит из жидковязких продуктов с высоким содержанием органики и воды и небольшими добавками механических примесей. Такие шламы легко эвакуируются из резервуаров и отстойников в сборные емкости с помощью разнообразных насосов. Гелеобразные системы, как правило, образуются по стенкам емкостей. Естественно, что наиболее легко образуются нефтешламы, когда внутренние покрытия резервуаров не обладают топливо- и коррозионностойкой защитой.

Тщательный анализ современных технологий по зачистке резервуаров от нефтешламов позволяет сделать однозначный вывод в пользу применения методов, основанных на принципах использования замкнутых, рециркуляционных процессов, включающих в себя и одновременную антикоррозионную защиту отмываемых поверхностей.

В основе таких способов зачистки резервуаров от нефтешламов лежат физико-химические особенности используемых моющих средств, которые обладают высокой деэмульгирующей способностью, обеспечивающей полное разделение моющего раствора и нефтепродукта.

Конкретное практическое воплощение указанные физико-химические принципы очистки находят, например, в моющих средствах, в которые в качестве базовых компонентов входит натриевая соль полиакриловой кислоты, электролит и вода. Такие составы показали высокую эффективность при зачистке железнодорожных цистерн и емкостей из-под нефти, мазута, масел и других нефтепродуктов объемом до 120 м3.

Традиционно собранные в процессе зачистки резервуаров нефтешламы жидко-вязкой консистенции подвергаются разделению на нефтепродукт, воду и твердые механические примеси. Эта фаза переработки имеет своей целью извлечение из шламов нефтепродуктов с исходными свойствами и их использование по прямому назначению. Существуют два основных способа фазового разделения жидковязких нефтешламов – механический и химический. Для более глубокой очистки нефтепродуктов иногда прибегают к комплексной технологии.

Изобретение относится к переработке нефтесодержащих отходов (нефтешламов или мазута) и может быть использовано для их утилизации с целью получения водоэмульсионного (гидратированного) топлива. Способ переработки нефтесодержащих отходов на основе нефтешлама, мазута или их смеси с получением водоэмульсионного топлива включает подогрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси в виброкавитационном гомогенизаторе с одновременной подачей угольной фракции от 15 до 30% от расхода подаваемой жидкости с получением гидратированного топлива при относительном центробежном ускорении ротора не менее 1200g и с зазором между ротором и статором не более 0,25 мм. Способ отличается тем, что в процессе трехкратной гомогенизации смеси углеводородов в виброкавитационный гомогенизатор равномерно подают мелкодисперсный порошок в качестве угольной фракции, порошок представляет собой твердые отходы, полученные при термической переработке отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С. Одновременно при первом проходе виброкавитационного гомогенизатора к твердым отходам добавляют 0,1-2% оксида магния и 0,1-1,0% низших спиртов от общего количества твердых отходов. Технический результат – получение стабильной топливной эмульсии, которую используют как котельное топливо, топливо при сгорании обеспечивает пониженное содержание оксида углерода и окислов азота, способ обеспечивает утилизацию пиролизного отхода. 1 табл., 4 пр.

Изобретение относится к области нефтедобывающей и нефтеперерабатывающей промышленности, в частности к технологическим процессам переработки нефтесодержащих отходов (нефтешламов или мазута), и может быть использовано для их утилизации с целью получения водоэмульсионного (гидратированного) топлива.

Известен способ переработки жидких нефтешламов в гидратированное топливо по патенту №2535710 от 27.09.2014, который заключается в том, что очищенную нагретую смесь углеводородов с водой подают в рабочую емкость с разделением по крайней мере на два потока. Разделенные потоки для их гомогенизации непрерывно подают в виброкавитационный гомогенизатор с разницей величины расхода одного из потоков по отношению к другому не менее 1,5. Гомогенизацию проводят в виброкавитационном гомогенизаторе с вращающимся ротором с перфорированной поверхностью и неподвижным статором при удельном расходе смеси не более 2,5 г/см 2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с. Обработку проводят троекратно: первичную обработку ведут до полученния топливной эмульсии гидратированного топлива с размером капель воды не более 15 мкм, повторные обработки проводят до получения капель воды с размером не более 5 мкм. Изобретение позволяет повысить стабильность эмульсии гидратированного топлива.

Известен способ переработки жидких нефтесодержащих отходов по патенту №2566306 от 20.10 2015 года.

Сущность способа заключается в том, что осуществляют подогрев обводненного нефтешлама до температуры 60-95°С, очистку путем фильтрации с помощью вибросита с размером ячеек 1-4 мм, отделением песка в гидроциклоне или путем отстаивания и подачи полученной смеси углеводородов с водой в рабочую емкость. Из рабочей емкости смесь непрерывно подается в виброкавитационный гомогенизатор с вращающимся рабочим ротором и перфорированной поверхностью, и неподвижным рабочим элементом статором, при этом циркуляция смеси углеводородов с водой через виброкавитационный гомогенизатор составляет не менее трех раз. Одновременно с жидкой смесью во входной патрубок гомогенизатора равномерно подают мелкую фракцию угля с размером частиц не более 3 мм. При этом при первом проходе через виброкавитационный гомогенизатор подают угольную фракцию в количестве 5-10% от расхода подаваемой жидкой смеси, при втором проходе добавляют такое же количество угольной фракции и также аналогичное количество угольной фракции подают при третьем проходе через виброкавитационный гомогенизатор.

Таким образом, циркуляция полученной смеси через виброкавитационный гомогенизатор составляет не менее трех раз, а содержание угольной фракции до 15-30% гидратированного топлива. Высокая скорость вращения ротора создает центробежную силу, которая отбрасывает смесь жидкой и твердой фаз на стенки статора с большим ускорением, не менее 1200g. При этом происходит первичное дробление твердой фазы на мелкие фракции, менее 0,25 мм в зазоре между ротором и статором, который составляет не более 0,25 мм, обеспечивая формирование пленки жидкости, содержащей угольную пыль, толщина этой пленки не превышает 0,25 мм. В этой пленке и происходит интенсивное дробление смеси жидкой и твердой фазы, которая циркулирует по контуру между виброкавитационным гомогенизатором и емкостью исходной смеси до образования тонкодисперсной эмульсии, с размером частиц воды и угля в пределах 3-5 мкм. Наличие частиц твердой фазы в эмульсии способствует ее устойчивости, так как они препятствуют коагуляции мелких капель воды.

Предложенный способ обработки смеси жидкости с помощью виброкавитационного гомогенизатора, с перечисленными выше параметрами работы, позволяет получить стабильные и структурированные тонкодисперсные эмульсии на основе тяжелых топлив и нефтешламов с малым размером капель воды и частиц угольной фракции, равномерно распределенных по объему водоэмульсионного топлива.

К недостаткам разработанного способа относятся наличие двух сложных операций по подготовке угольной крошки, а именно очистка от неорганических составляющих, измельчение до требуемых размеров и отделение требуемой фракции.

Задачей изобретения является разработка способа получения высокоэффективного водоэмульсионного топлива из нефтесодержащих отходов на основе нефтешламов, мазута или их смеси с использованием угольной фракции на основе твердых отходов резины и шин.

Техническим результатом от использования изобретения является упрощение технологии для получения водоэмульсионного топлива с улучшенными эксплуатационными, экологическими параметрами и возможность утилизации отходов.

Задача решается и технический результат достигается тем, что способ переработки нефтесодержащих отходов на основе нефтешламов, мазута или их смеси с получением водоэмульсионного топлива включает подогрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси в виброкавитационном гомогенизаторе с одновременной подачей угольной фракции в количестве от 15 до 30% от расхода подаваемой жидкости с получением гидратированного топлива при относительном центробежном ускорении ротора не менее 1200g и с зазором между ротором и статором не более 0,25 мм.

Одновременно в процессе трехкратной гомогенизации смеси углеводородов в виброкавитационный гомогенизатор подают равномерно угольную фракцию, представляющую собой твердые отходы (кокс), полученные при термической переработке отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С, при одновременном добавлении при первом проходе гомогенизатора к твердым отходам 0,1-2% оксида магния и 0,1-1,0% низших спиртов от общего количества твердых отходов.

Широкое распространение получили термические методы утилизации отходов резины и шин, к которым относятся пиролиз и сжигание. http://www.tkomplex.ru/ru/products/pirotex на пиролизной установке утилизации “Пиротекс”: переработка шин, покрышек, РТИ, пластмасс, ПЭТ, полиэтилена, нефтешламов, отработанных масел.

В результате пиролиза получаются вещества, напоминающие продукты крекинга нефти и, следовательно, являющиеся ценным исходным сырьем нефтехимических производств.

В зависимости от конструкции технологического оборудования пиролизу могут подвергаться как измельченные резиновые отходы (отделенные от металла), так и целые автопокрышки. Пиролиз происходит в отсутствие кислорода при температуре 500-1000°С. Полученный продукт представляет собой мелкодисперсный порошок, который при использовании в качестве угольной фракции не требует дополнительного измельчения.

Ниже в таблице 1 приведена характеристика твердых отходов, полученных при термическом методе утилизации резиновых отходов.

В настоящее время продукты утилизации отходов резины и шин практически не находят квалифицированного применения в связи с тем, что имеют довольно много примесей и непостоянный состав. Наши исследования показали, что такие вещества с успехом могут использоваться в качестве компонентов котельного топлива при условии их равномерного распределения в композиции и размера частиц не более 50 мкм. Оба эти условия успешно решаются при использовании виброкавитационной технологии приготовления топливных композиций, учитывая, что в большинстве случаев размер частиц продукта не превышает несколько мкм.

При использовании в качестве компонентов топлива углерод и нефтесодержащих отходов в композицию попадает значительное количество серы и ее соединений. Учитывая возрастающие требования экологических стандартов, желательно провести их нейтрализацию, чтобы уменьшить содержание оксидов серы в дымовых газах. Наше внимание привлек метод использования присадок оксида магния при сжигании мазута. Согласно расчетам, его содержание в топливе зависит от содержания серы в исходном топливе и режимов работы котельной установки и составляет 0,1-2% от массы топлива. Необходимое количество оксида магния в композиции зависит от вида топлива и конструктивных особенностей котельной установки и уточняется в процессе эксплуатации по результатам анализа топочных газов.

Процесс приготовления суспензий включает разделение агломератов и агрегатов частиц порошков на первичные частицы, вытеснение поглощенного воздуха, смачивание и обволакивание частиц дисперсной средой, равномерное распределение компонентов по объему композиции. В идеальном случае каждая первичная частица, выделяемая при диспергировании, также стабилизируется против повторной агрегации. Преимущества, заложенные в порошок при его производстве (истинная дисперсность), могут быть утеряны, если частицы порошка должным образом не диспергированы и не стабилизированы в основе.

Из всего многообразия технологий получения суспензий, по нашему мнению, оптимальной является виброкавитационная технология. В этом случае достигается не только разрушение связей в агрегатах, но и удаление частиц друг от друга на значительные расстояния. При этом несколько снижаются требования к надежности стабилизации частиц порошка ввиду образования стерических препятствий из сольватных слоев молекул дисперсионной среды, препятствующих слипанию. Следует отметить, что такие системы не пригодны для длительного хранения. Однако и в этом случае дополнительный эффект по качеству диспергирования, сокращение времени рабочего цикла могут быть достигнуты при введении в систему поверхностно-активных веществ, улучшающих лиофилизирующее и стабилизирующее действие дисперсионной среды.

В настоящее время для повышения устойчивости суспензий применяют разнообразные способы модифицирования поверхности дисперсной фазы: облучения, стрессовые воздействия, прививка органических радикалов на активных центрах, измельчение в присутствии ПАВ, тепловлажностная обработка и др. При этом исследователи стремятся к созданию оптимальных с точки зрения того или иного технологического процесса условий изменения природы поверхности твердой фазы, прежде всего ее лиофильности, учитывая смачивающую способность дисперсионной среды, ее полярности, особенно образование коагуляцинных контактов между частичками полидисперсных и полиминеральных компонентов.

1. При ручном перемешивании исследованных компонентов суспензии остается значительное количество агрегатов частиц.

2. Использование виброкавитационной технологии приготовления суспензий позволяет дезагрегировать конгломераты частиц и улучшить распределение дисперсной фазы по объему композиции.

Проведенные эксперименты показали, что качество исследованных композиций можно улучшить при использовании дополнительных компонентов, например низших спиртов. Указанный эффект проявляется при содержании спирта в количестве не менее 0,1% от количества углеродной составляющей. Увеличение процентного содержания спирта более 1% практически не приводит к улучшению дисперсности твердой фазы.

Ниже приведены примеры приготовления водоэмульсионного топлива с применением разработанной технологии.

В качестве нефтесодержащего отхода – НСО использовали обводненный нефтешлам, взятый из карты №2, куст 56 Южно-Сургутского месторождения, поверхностный слой. Нефтешлам (вязкость кинематическая по ГОСТ 33-2000 составляет 64 сСт, содержание нефтепродуктов 82,7% (масс.), воды 9,2% (масс.), механические примеси 8,1% (масс.)) нагревают до 65°С, подвергают очистке через сетку с ячейками размером 1 мм и гидроциклон.

Затем эту смесь углеводородов с водой, в количестве 6000 кг, направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами при первом проходе подают 0,1% оксида магния и 1,0% низших спиртов от общего количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 10 мкм, что позволяет получить стабильную топливную эмульсию и использовать полученное топливо как котельное.

В качестве нефтесодержащего отхода – НСО использовали обводненный нефтешлам, взятый из карты №2, куст 56 Южно-Сургутского месторождения, поверхностный слой. Нефтешлам (вязкость кинематическая по ГОСТ 33-2000 составляет 64 сСт, содержание нефтепродуктов 82,7% (масс.), воды 9,2% (масс.), механические примеси 8,1% (масс.)) нагревают до 65°С, подвергают очистке через сетку с ячейками размером 1 мм и гидроциклон.

Затем эту смесь углеводородов с водой, в количестве 6000 кг, направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами подают 1,0% оксида магния и 0,5% низших спиртов от количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 10 мкм, что позволяет получить стабильную топливную эмульсию и использовать полученное топливо как котельное.

В качестве нефтесодержащего отхода – НСО использовали обводненный нефтешлам, взятый из карты №1-2, г. Нефтегорск (вязкость кинематическая 86 сСт, содержание нефтепродуктов 68% (масс.) содержание воды 32% (масс.)). Влажность композиции довели до влажности 20% путем добавления мазута марки М-100 (ГОСТ 10585-99 г.) (вязкость кинематическая по ГОСТ 33-2000 составляет 98 сСт).

Затем эту эмульсию в количестве 6000 кг направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами подают 0,1% оксида магния и 1,0% низших спиртов от количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 12 мкм, что подтверждает получение стабильной топливной эмульсии, содержащей угольную фракцию.

В качестве нефтесодержащего компонента использовали водоотливную эмульсию на основе мазута марки М-100 (ГОСТ 10585-99 г. (вязкость кинематическая по ГОСТ 33-2000 составляет 98 сСт, содержание нефтепродуктов 80% (масс.), воды 20% (масс.)).

Затем эту эмульсию в количестве 6000 кг направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами подают 2,0% оксида магния и 1,0% низших спиртов от количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. – 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 10 мкм, что позволяет получить стабильную топливную эмульсию и использовать полученное топливо как котельное.

В ходе предварительных испытаний топливных композиций, получены следующие результаты:

Оборудование устойчиво функционировало на всех режимах работы.

Переключение топливной системы котельной из штатного режима в режимы работы на гомогенизированном водоэмульсионном топливе не приводило к срыву факела в котле.

Анализ концентрации компонентов вредных выбросов в отходящих газах показал следующее снижение концентраций:

Концентрации остальных компонентов оказались ниже порога чувствительности газоанализатора.

Таким образом, из приведенных выше примеров можно сделать вывод о получении стабильного водоэмульсионного топлива по более простой технологии по сравнению с прототипом, не требующей дополнительного измельчения и выделения определенной угольной фракции для подачи в виброкавитационный гомогенизатор. Полученное водоэмульсионное топливо обладает улучшенными эксплуатационными и экологическими параметрами.

Технология и оборудование утилизации жидких и твердых нефтешламов ОЧИСТКА НЕФТЯНЫХ ПРУДОВ И ОТСТОЙНИКОВ, ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ НЕФТЕШЛАМОВ. – презентация

Презентация была опубликована 4 года назад пользователемВиталий Пяткин

Презентация на тему: ” Технология и оборудование утилизации жидких и твердых нефтешламов ОЧИСТКА НЕФТЯНЫХ ПРУДОВ И ОТСТОЙНИКОВ, ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ НЕФТЕШЛАМОВ.” — Транскрипт:

1 Технология и оборудование утилизации жидких и твердых нефтешламов ОЧИСТКА НЕФТЯНЫХ ПРУДОВ И ОТСТОЙНИКОВ, ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ НЕФТЕШЛАМОВ

2 Проблемы нефтяной индустрии Добыча нефти, производство нефте – продуктов, транспортировка и хранение сырой нефти связано с накоплением шламов. Тысячи тонн нефтяных шламов добав- ляются к миллионам тонн шламов уже находящимся в прудах и емкостях. Нефтесодержащие отходы и нефтепродукты являются одними из основных загрязнителей окружающей среды. Нефтеродукты из прудов могут быть не только извлечены, но и использованы для коммерческих целей. Термическое обезвреживание нефтесодержащих отходов в сочетании с утилизацией жидких/вязких НСО позволяет комплексно решить проблемы нефтеотходов любого предприятия.

3 Типичная блок-схема процесса утилизации нефтешламов из прудов БЛОК ВЫЕМКИ ШЛАМА ИЗ ПРУДА БЛОК ПРИЕМКИ И ПОДОГРЕВА ШЛАМА БЛОК ХИМИЧЕСКОЙ ОБРАБОТКИ ШЛАМА БЛОК ТРЕХФАЗНОГО ЦЕНТРИФУГИРОВАНИЯ ШЛАМА водная фаза СИСТЕМА ВОДООЧИСТКИ (до 1000 г/литр углеводородов) нефтяная фракция – товарный продукт очищеная вода твердая фракция СИСТЕМА ТЕРМОДЕСОРБЦИИ твердый продукт 5 класса опасности газы содержащие углеводороды БЛОК УТИЛИЗАЦИИ ОТХОДЯЩИХ ГАЗОВ чистый газ

4 Нефтешламовый пруд Предлагаемая система центрифугирования перерабатывает все нефтешламы, которые находятся выше слоя свободной воды. Комплексный подход позволяет очистить нефтешламовый пруд и полностью переработать нефтешлам пруда, включая донный осадок. Как результат – в процессе очистки прудов система центрифугирования перерабатывает все плавающие нефтесодержащие слои с получением коммерческого продукта. Дальнешее обезвреживание твердого нефтешлама термодесорбционной системой – позволяет решить задачу полной утилизиции нефтешламов. Слой свободной нефти Rag Layer – смесь диспергированой нефти, воды и твердых частиц Тяжелый нефтешлам Слой свободной воды Донный шлам

5 Система центрифугирования Предлагаемая система состоит из нескольких блоков: Блок извлечения шламов из прудов-отстойников, аварийных амбаров и других шламонакопителей. Блок приема, предварительной обработки и нагрева шлама. Блок химической обработки и трехфазного разделения нефтешлама

6 Блок извлечения шламов из прудов Принципиально имееся 2 способа извлечения шламов из прудов шламонакопителей, а именно с помощью экскаватора или плавучего понтонного устройства с гидравриводным насосом и системой дистанционного управления перемещения. Понтонное устройство управляется с помощью лебедки. Откачка донных шламов производится с помощью специального насоса. Имеются сопловые насадки для размыва тяжелого нефтешлама.

7 Блок приемки и подогрева шлама Для сбора извлеченного шлама, в непосредственной близости от шламонакопителя, устанавливается специальная обогреваемая емкость. Помимо подогрева шлама емкость снабжена насосом для подачи шлама на блок химобраборки и фазового разделения – трехфазную центрифугу. Емкость снабжена мешалками для усреднения шлама. Конструкция емкости модульная. Система обогрева и насосы смонтированы на модуле, что делает ее мобильной, позволяя ее транспортировку с установкой вблизи шламонакопителя.

98,5% чистой неф” title=”Блок химобработки и трехфазного разделения нефтешламов ИСХОДНЫЙ ШЛАМ от 1 до 99% нефти, от 1 до 50% твердого от 1 до 99% воды ВОДА ХИМИКАТЫ ДЛЯ ОБРАБОТКИ СМЕШИВАНИЕ И ДОЗИРОВКА ХИМИКАТОВ ТРЕХФАЗНОЕ ЦЕНРИФУГИРОВАНИЕ НЕФТЯНАЯ ФРАКЦИЯ > 98,5% чистой неф” class=”link_thumb”> 8 Блок химобработки и трехфазного разделения нефтешламов ИСХОДНЫЙ ШЛАМ от 1 до 99% нефти, от 1 до 50% твердого от 1 до 99% воды ВОДА ХИМИКАТЫ ДЛЯ ОБРАБОТКИ СМЕШИВАНИЕ И ДОЗИРОВКА ХИМИКАТОВ ТРЕХФАЗНОЕ ЦЕНРИФУГИРОВАНИЕ НЕФТЯНАЯ ФРАКЦИЯ > 98,5% чистой нефти ВОДНАЯ ФАЗА 98,5% чистой неф”> 98,5% чистой нефти ВОДНАЯ ФАЗА “> 98,5% чистой неф” title=”Блок химобработки и трехфазного разделения нефтешламов ИСХОДНЫЙ ШЛАМ от 1 до 99% нефти, от 1 до 50% твердого от 1 до 99% воды ВОДА ХИМИКАТЫ ДЛЯ ОБРАБОТКИ СМЕШИВАНИЕ И ДОЗИРОВКА ХИМИКАТОВ ТРЕХФАЗНОЕ ЦЕНРИФУГИРОВАНИЕ НЕФТЯНАЯ ФРАКЦИЯ > 98,5% чистой неф”>

9 Блок химобработки и трехфазного разделения (продолжение) Блок включает трехфазную центрифугу, химическую обработку и при правильном подборе может быть применена к любому виду нефтешламов. С помощью предлагаемого обору- дования могут быть утилизированны донные шламы нефтяных резервуаров, нефтесепараторов, нефтяных отстой- ных прудов и других источников нефтешлама. Система центрифугирования мобильна, размещается в двух 40 футовых контейнерах.

10 Блок химобработки и трехфазного разделения (продолжение) Перерабатываются шламы с различным соотношением нефти, воды и твердой фазы. Жидкие нефтепродукты утили- зируются из шламов практически на 100%. Нефтешламы разделяются на нефть с чистотой 98 % или выше по сравне- нию с исходной добываемой нефтью, сухую твердую фазу и воду, содержащую менее 1 г/л твердых веществ и нефтяных фракций. Стоимость извлеченной нефти обычно покрывает производственные затраты на данный процесс.

11 Возможности трехфазной центрифуги Скорость вращения центрифуги до 3600 об/мин, что позволяет отделять мельчайшие твердые частицы. – Удлиненный шнек позволяет увеличивать время пребывания жидкости в рабочей зоне, что гарантирует получение более чистой нефти. – В зоне питания центрифуги имеется ускоритель, позволяющий увеличить скорость движения шлама. Быстрое ускорение придаваемое шламу позволяет максимально увеличить степень разде- ления для достижения максимальной сепарации. – Центрифуга имеет гидравлический привод с изменяемым числом оборотов. Оператор может изменять эту скорость без остановки центрифуги. Это позволяет получать наиболее сухой и чистый твердый материал без риска забивания рабочей зоны центрифуги твердым материалом.

12 Защита об абразивности и коррозии – Переработка тяжелых нефтяных шламов связана с отделением высоообразивных твердых частиц, таких как песок, глина и сульфиды железа. – Предлагаемая трехфазная центрифуга оснащена специальными элементами абра- зивной защиты. Элементы защиты изготов- лены из сплава с крайне низким коэффи- циентом истирания и из специальной кера- мики. Часть защиты выполнена из карбида Вольфрама. – Абразивные частицы не контактируют с какими либо элементами корпуса цент- рифуги, что защищает центрифугу от эрро- зии. Это значительно увеличивает срок действия оборудования и уменьшает затраты связанные с обслуживанием и ремонтом. – Замена защитных элементов не требует заводских условий и может быть легко произве- дена силами обслуживающего персонала непосредственно на месте эксплуатации.

13 Химические реагенты Центрифуги в некотором смысле подобны стиральным машинам, которые не могут работать эффективно без применения активных реагентов. Применение реагентов дает возможность быстрого разделения нефтешламов на его составляющие. Композиция реагентов состоит из высококачественных промышленных полимерных флокулянтов, моющих компонентов, деэмульсификаторов и других активных веществ специально подобранных для сложных нефтешламов.

14 Специально разработанная центрифуга и химическая обработка нефтешламов позволяют перерабатывать широкий диапазон шламов. Система позволяет регенерировать (возвращать в оборот) близко 100% жидких углеводородов из обрабатываемых нефтешламов. Система в отличии от других систем извлекать и перерабатывать весь шлам из шламонакопителей (прудов), а не перерабатывать только верхний плавающий нефтяной слой. Конструкция системы разработана и усовершенсвована с учетом огромного опыта переработки тяжелых нефтешламов различного происхождения. Система проста в обслуживании. Имеется возможность оперативной регулировки работы центрифуги для достижения наилучшей сепарации без остановки центрифуги. Стоимость извлеченной нефти покрывает производственные затраты на обслуживание системы. Преимущества предлагаемой системы

15 Термодесорбционная система (косвенного нагрева) обезвреживания нефтесодержащих отходов Предлагаемая термодесорбционная система позволяет обезвреживать самые различные нефтеотходы: Твердая фаза переработки жидких нефтеотходов, а именно, кек после центрифугирования; Грунты загрязненные в результате аварийных проливов нефти и нефтепродуктов; Твердые донные отложения из резервуаров хранения нефти и тяжелых нефтепродуктов (мазутов); Буровые шламы; Отработанные катализаторы применяемые при переработке нефти и др.

16 Термодесорбция замазученных земель и твердой фазы центрифугирования Температура обработки материала °C обеспечивает полное обезвреживание обрабатываемого материала. Применение двухстадийных систем термодесорбции (при повышенной влажности исходного материала) делают процесс более простым и экономически выгодным, благодаря удалению воды на первой стадии (Holo-Scru®) и удалению углеводородов на второй стадии обработки (Electric-Scru®). Подбные термодесорбционные системы более 20 лет успешно применяются для термического обезвреживания донных нефтешламов, замазученых земель, отработанных катализаторов.

17 Термодесорбция буровых шламов Holo-Scru® термодесорберы производительностью от 1,5 до 500 тонн в день с восстановлением углеводородов из бурового раствора до 99,5%. Holo-Scru® термодесорберы способны обрабатывать материал с содержанием углеводоров более 70% в буровых шламах, эффективно коллектируя сконденсированную воду, дизель и другие углеводородные пары. Holo-Scru® термодесорберы ширoко применяются в США для термической обработки буровых шламов сланцевого бурения. Исходный материал как правило содержит от 10% до 30% дизельного топлива и 20% воды, при этом восстановление дизельного топлива в процессе термодесорбции в пределах 97% %.

18 Технологический процесс темодесорбционной обработки

19 Основные блоки термодесорбционной системы 1. Блок приема и загрузки материала в термодесорбционную систему Исходный материал загружается в бункер – питатель термодесорберционной системы. Для дозированной подачи шлама из бункера-питателя используется расположенный в его донной части двухшнековый питатель, который дозирует и уплотняет обрабатываемый материал. В системе питания имеется возможность изменения скорости загрузки материала в термодесорбер за счет регулирования скорости вращения двухшнекового питателя. С двухшнекового питателя материал поступает на второй – транспортирующий шнек, который подает материал в камеру сушки. 2. Блок нагрева терможидкости Нагреватель терможидкости с собственным PLC контроллером, для опитимизации теплового КПД. Нагрев терможидкости производится через теплообменник путем сжигания топлива (газа или дизельного топлива);

20 Основные блоки термодесорбционной системы (продолжение) 3. Блок Сушки Предварительная сушка обеспечивается за счет нагрева материала теплоносителем через рубашку корпуса сушки и двух полых лопастных роторов встречного вращения. Роторы обеспечивают перемешивание материала и его транспортировку к разгрузочному отверстию. Главная задача предварительной сушки – обезвоживание материала. С выхода предварительной сушки обезвоженный материал поступает в камеру термодесорбера. 4. Блок регенерации паров воды Система газоочистки процессных газов предварительной сушки включает в себя двух-стадийный скруббер Вентури с водяным орошением. Вторая ступень скруббера имеет орошаемую набивку для удаления пыли из процессных газов. Скруббер обеспечивает удаление паров воды и пыли.

21 Основные блоки термодесорбционной системы (продолжение) 5. Блок термодесорбции Обработка материала в термодесорбере обеспечивается за счет нагрева материала электрическими нагревателями через рубашку корпуса термодесорбера и двух лопастных роторов встречного вращения нагреваемых электрическими нагревателями. Роторы обеспечивают перемешивание материала и его транспортировку к разгрузочному отверстию. Температура электрических нагревателей регулируется в зависимости от требуемой температуры материала на выходе термодесорбера. 6. Блок регенерации паров углеводородов и очистки процессных газов Система газоочистки процессных газов термодесорбера включает в себя двухстадийный скруббер Вентури с масляным орошением. Вторая ступень скруббера имеет орошаемую набивку для удаления пыли из процессных газов. Скруббер обеспечивает удаление паров воды, углеводородов и пыли. С выхода теплообменника масло орошения поступает на форсунки распыления внутри скруббера. Излишки масла орошения перекачиваются Заказчику для хранения и дальнейшей переработки. 7. Блок выгрузки и охлаждения материала из термодесорбера

22 Особенности дизайна 1.Уникальный дизайн Holo- SCRU® значительно повышает коэффициент объемного заполнения ее материалом. Объем твердого материала в камере существенно превышает объем газовой фазы. При этом, создание вытяжным вентилятором отрицательного давления, позволяет постоянно отводить образующиеся пары, обеспечивая высокую эффективность процесса термодесорбции. 2. Высокая тепловая эффективность за счет обеспечения большой поверхности контакта материала с горячей поверхностью роторов (А) по длине камеры. 3. По длине роторов имеются безвитковые зоны (В), где специальными лопатками обеспечивается разрушение крупных комков и гомогенизация частиц шлама. 4. Запатентованные приспособления, обеспечивающие самоочистку шнеков.

23 Основные преимущества предлагаемой термодесорбционной системы – Минимальное потребление энергоносителей. Применение двухстадийного процесса термического обезвреживания (для материалов содержании влаги выше 50%). Первая стадия – модуль сушки с КПД до 96% (нагрев материала через стенку терможидкостью и полное удаление влаги), вторая стадия – термодесорбер (нагрев материала с помощью электрических тенов установленных в кожухе и внутри роторов термодесорбера). – Полная автоматизация процесса. Использование современной системы логического контроля и управления процессом (PLC контроллер сенсорного типа Allen Bradley) практически полностью исключают участие операторов в ходе процесса. – Широкий диапазон применения. Возможность переработки твердых НСО с высоким исходным содержанием углеводородов и воды без предварительного их разбавления инертными материалами. – Компактность системы. Система занимает значительно меньшую площадь по сравнению с любыми другими системами аналогичной производительности. Это значительно снижает капитальные затраты на строительство здания, в котором устанавливается система. – Надежность системы и минимизация технического обслуживания. Система расчитана минимум на 15 лет эксплуатации при минимальном времени ее обслуживания.

24 KMT INTERNATIONAL INC Mission Blvd #101 Fremont, California USA WEB: Телефоны в США: , Факс в США:

Нефтяные шламы и кислые гудроны – самые многочисленные и крупнотоннажные отходы современной нефтедобывающей и нефтеперерабатывающей промышленности в мире. []

Нефтешламы представляют собой сложные системы, состоящие из нефтепродуктов, воды и минеральной части (песок, глина и т.д.). Состав шламов может существенно различаться, т.к. зависит от типа и глубины перерабатываемого сырья, схем переработки, оборудования, типа коагулянта и др. В основном, шламы представляют собой тяжелые нефтяные остатки, содержащие в среднем (по массе) 10 – 56% нефтепродуктов, 15 – 55% воды, 2 – 35% твердых примесей.

Нефтешламы образуются в процессе эксплуатации нефтяных скважин, очистке сточных вод, содержащих нефтепродукты, чистке резервуаров с нефтью и нефтепродуктами, а также другого оборудования, ликвидации разливов на производственной территории.

Главной причиной образования резервуарных нефтешламов является физико-химическое взаимодействие нефтепродуктов в объеме конкретного нефтеприемного устройства с влагой, кислородом воздуха и механическими примесями, а также с материалом стенок резервуара. В результате таких процессов происходит частичное окисление исходных нефтепродуктов с образованием смолоподобных соединений и ржавление стенок резервуара. Попутно попадание в объем нефтепродукта влаги и механических загрязнений приводит к образованию водно-масляных эмульсий и минеральных дисперсий. Поскольку любой шлам образуется в результате взаимодействия с конкретной по своим условиям окружающей средой и в течение определенного промежутка времени, одинаковых по составу и физико-химическим характеристикам шламов в природе не бывает. По результатам многих исследований в нефтешламах резервуарного типа соотношение нефтепродуктов, воды и механических примесей (частицы песка, глины, ржавчины и т.д.) колеблется в очень широких пределах: углеводороды составляют (5-90) %, вода (1-52) %, твердые примеси (0,8-65) % []. Как следствие, столь значительного изменения состава нефтешламов диапазон изменения их физико-химических характеристик тоже очень широк. Плотность нефтешламов колеблется в пределах (830-1700) кг/м3, температура застывания от – 3 єС до +80 єС. Температура вспышки лежит в диапазоне от 35 до 120єС.

В качестве конкретного примера можно привести результаты анализа массовой проверки чистоты и технического состояния резервуаров автозаправочных станций г. Москвы, проведенной в конце 2009 г. Анализ показал, что основу механических примесей составляют окислы железа (ржавчина) – 50-80% с включением кварцевого песка и смолистых отложений. Механические примеси содержатся в природных отложениях в 85% обследованных резервуаров, а вода – в 60% [].

При попадании воды в объем нефтепродуктов происходит образование устойчивых эмульсий типа вода-масло, стабилизация которых обусловливается содержащимися в нефтепродуктах природными стабилизаторами из разряда асфальтенов, смол и парафинов.

Устойчивость эмульсий типа вода-масло объясняется главным образом наличием на поверхности капелек эмульсии структурно-механического барьера, представляющего собой двойной электрический слой на межфазной поверхности. В состав таких защитных пленок могут входить соли поливалентных металлов органических кислот и других полярных компонентов нефтепродукта, которые дополнительно адсорбируются на асфальто-смолистых агрегатах и переводят их в коллоидное состояние. В коллоидном же состоянии асфальтены обладают наибольшей эмульгирующей способностью. Многочисленные исследования указывают на существование прямой связи между устойчивостью эмульсии и концентрацией природных стабилизаторов на границе раздела фаз. Естественно, что концентрация таких веществ возрастает в объеме нефтепродуктов по мере увеличения их молекулярного веса (переход к тяжелым фракциям нефти). Помимо образования эмульсий в среде нефтепродуктов в процессе перевозки и хранения происходит образование полидисперсных систем при взаимодействии жидких углеводородов и твердых частиц механических примесей.

При длительном хранении резервуарные нефтешламы со временем разделяются на несколько слоев с характерными для каждого из них свойствами.

Верхний слой представляет собой обводненный нефтепродукт с содержанием до 5% тонкодисперсных механических примесей и относится к классу эмульсий “вода в масле”. В состав этого слоя входят 70-80% масел, 6-25% асфальтенов, 7-20% смол, 1-4% парафинов. Содержание воды не превышает 5-8%. Довольно часто органическая часть свежеобразованного верхнего слоя нефтешлама по составу и свойствам близка к хранящемуся в резервуарах исходному нефтепродукту. Такая ситуация обычно имеет место в расходных резервуарах автозаправочных станций.

Средний, сравнительно небольшой по объему слой представляет собой эмульсию типа “масло в воде”. Этот слой содержит 70-80% воды и 1,5-15% механических примесей.

Следующий слой целиком состоит из отстоявшейся минерализованной воды с плотностью 1,01-1,19 г/см3. Наконец, придонный слой (донный ил) обычно представляет собой твердую фазу, включающую до 45% органики, 52-88% твердых механических примесей, включая окислы железа. Поскольку донный ил представляет собой гидратированную массу, то содержание воды в нем может доходить до 25%.

Накопление нефтешламов осуществляется в специальных земляных отстойниках – шламонакопителях. При этом гидроизоляция дна и стенок не производится, и, как следствие, происходит фильтрация и проникновение экологически опасной жидкой фазы в окружающую среду. В шламонакопителях происходят естественные процессы – накопление атмосферных осадков, развитие микроорганизмов, протекание окислительных и других процессов, т.е. идет самовосстановление, однако в связи с наличием большого количества солей и нефтепродуктов при общем недостатке кислорода процесс самовосстановления протекает десятки лет [12]. Состав нефтяного шлама, хранящегося в шламонакопителях в течение нескольких лет, отличается от состава свежего. Нефтяной шлам, образующийся в резервуарах для хранения нефтепродуктов, по составу и свойствам также отличается от нефтяного шлама очистных сооружений. Именно различие составов нефтешлама в пределах одного шламонакопителя обуславливает необходимость строительства установок, способных устойчиво работать в широком диапазоне свойств и состава питания.

При переработке одного миллиона тонн нефти образуется от 3 до 5 тысяч тонн нефтешлама – одного из наиболее опасных загрязнителей природной среды, в том числе поверхностных и подземных вод, почвы, атмосферного воздуха. Отметим, что все нефтеперерабатывающие заводы России имеют шламоотстойники, из которых после соответствующей подготовки углеводородные фракции направляются на первичную переработку вместе с сырой нефтью. Однако тяжелые фракции нефтешлама не находят квалифицированной переработки.

Проблема утилизации и обезвреживания нефтешламов всегда остро стояла перед нефтеперерабатывающими и нефтедобывающими предприятиями. Особое внимание ее решению стали уделять в последнее десятилетие, после выхода новых нормативных актов по защите окружающей среды.

Проведенные исследования показывают, что 45-50% объема накопленного на НПЗ нефтешлама приходится на трудноразделимые нефтяные эмульсии. Они могут годами находиться в нерасслоенном состоянии и, циркулируя в системе подготовки ловушечного нефтепродукта, перемешиваться с ним, постоянно увеличивая свой объем [57, 59, 61].

На отдельных заводах имеется большое количество “мазутных ям”, в которых до недавнего времени находилось более 150 тысяч тонн высоковязкого застарелого мазута с минеральными примесями (нефтешлама) с высоким содержанием смолисто-асфальтеновых веществ, характеристика которого приведена в таблице 2. В настоящее время администрация указанного предприятия проводит огромную работу по экологическому благоустройству загрязненных застарелыми мазутами территорий.

Указанное сырье (таблица 2) может быть эффективно переработано с получением дистиллятных нефтяных фракций, котельных топлив, а остаток, выкипающий свыше 350 о С, с повышенным содержанием смол и асфальтенов, является благоприятным сырьем для получения модифицированных битумов и разнообразных связующих.

Рассмотрим особенности утилизации нефтешламов нефтедобывающей промышленности: на современном этапе развития технологии нефтедобычи при эксплуатации нефтяных месторождений образуются большие объемы отходов, преимущественное количество которых накапливается в шламовых амбарах.

Строительство шламовых амбаров заключается в выемке определенного объема грунта и обваловывании полученного котлована. При этом гидроизоляции дна и стенок амбара не производится. При такой конструкции избежать фильтрации жидкой фазы и попадания ее на окружающий ландшафт практически невозможно, что представляет собой большую экологическую угрозу.

Таблица 2 – Характеристики вязкого НШ с повышенным содержанием смолистых компонентов.

Поделиться ссылкой: