Вторичные процессы переработки нефти

Вторичные процессы переработки нефти подразделяют на термические и термокаталитические. В особые группы выделяют процессы переработки нефтяных газов, производства масел и парафинов, очистки светлых и темных нефтепродуктов.  [1]

Вторичные процессы переработки нефти характеризуются большим разнообразием выходов основных видоз топлив – бензина и дизельного топлива.  [2]

Вторичные процессы переработки нефти подразделяют на термические и термокаталитические. В особые группы выделяют процессы переработки нефтяных газов, производства масел и парафинов, очистки светлых и темных нефтепродуктов.  [3]

Отходы вторичных процессов переработки нефти, обогащенные ароматически ми соединениями, близки по спекающей способности и реологическим характерна тикам к каменноугольным пекам, н они наиболее приемлемы в качестве сырь: для получения нефтяного связующего.  [4]

Компоненты вторичных процессов переработки нефти используют, однако, только в некоторых сортах топлив и после глубокой очистки, которая радикально изменяет их первоначальный состав.  [5]

Совершенствование вторичных процессов переработки нефти в условиях ухудшения качества сырья ( увеличение содержания серы и т. п.) и ужесточения требований к охране окружающей среды происходит в направлении повышения их экономичности и улучшения качества продуктов.  [6]

На экономику вторичных процессов переработки нефти значительное влияние оказывает степень подготовки сырья. Предварительная гидроочистка сырья для каталитического риформинга увеличивает срок службы дорогостоящих катализаторов, способствует стабилизации технологического режима и улучшению его экономики. То же наблюдается при подготовке сырья для каталитического крекинга.  [7]

Изменение структуры вторичных процессов переработки нефти при углублении существенно сказывается на компонентном составе товарных нефтепродуктов. На рис. 67 показано влияние глубины переработки нефти на компонентный состав производимых светлых нефтепродуктов. Общим в изменении компонентного состава всех товарных продуктов является то, что с углублением переработки нефти происходит уменьшение доли прямогонных компонентов и соответственное увеличение количества вовлекаемых продуктов вторичных деструктивных процессов.  [8]

Широкое распространение вторичных процессов переработки нефти ( каталитического риформинга бензинов, нефтехимических процессов, гидрокрекинга, гидроочистки средних и тяжелых дистиллятов и др.) повышает требования к четкости разделения нефти и более глубоким отборам. Ритмичность – работы современного нефтеперерабатывающего завода и высокое качество всех выпускаемых товарных нефтепродуктов зависят от четкости работы установок первичной переработки нефти по получению сырья для вторичных процессов, в связи с чем необходимо совершенствовать навыки персонала по квалифицированному обслуживанию основного оборудования, ведению технологического режима и удлинению межремонтного пробега.  [9]

Керосиновые фракции продуктов вторичных процессов переработки нефти могут представлять интерес как дополнительный источник получения реактивных топлив. По количеству ароматических углеводородов керосины крекинга мало отличаются от прямогонных. Соотношение парафиновых и нафтеновых углеводородов в них, так же как и в керосинах прямой перегонки, определяется в основном природой исходного сырья.  [10]

Более жесткие режимы вторичных процессов переработки нефти снижают выход целевой фракции, что требует увеличения переработки нефти и мощности риформинга.  [11]

Http://www. ngpedia. ru/id346263p1.html

К вторичным процессам нефтепереработки относятся: коксование нефтяных остатков, деасфальтизация нефтяных остатков пропаном, каталитический крекинг, каталитический риформинг, деструктивная гидрогенизация, гидрокрекинг, гидроочистка.

Коксованием называется термохимический процесс превращения тяжелых остатков нефтепереработки в нефтяной кокс и светлые нефтепродукты (бензин, газойль).

Существует несколько методов коксования. На рисунке 3 приведена схема замедленного коксования. При этом процессе кроме кокса образуются газы, бензиновые и керосино-дизельные фракции. Выход кокса составляет 12-36%, бензина – 8-18% и углеводородных газов – до 10 %.

Недостатком дистиллятов коксования является наличие в них непредельных углеводородов (20-40 %.) и сернистых соединений.

Нефтяные остатки содержат большое количество асфальто-смолистых веществ. Процесс очистки нефтяных остатков от этих примесей называется деасфальтизацией. В результате процесса деасфальтизации получаются очищенные от асфальто-смолистых веществ масла, а также сырье для каталитического крекинга и гидрокрекинга.

Процесс деасфальтизации протекает в деасфальтизационной колонне при 60-80 єС и давлении 3,5-4,2 МПа и отношении пропана к сырью по массе 3-5:1.

Основное назначение каталитического крекинга: получение высокооктановых компонентов бензина из более тяжелых дистиллятов.

Крекинг осуществляют при 470-550єС. В качестве катализатора применяются алюмосиликаты [22].

1 — теплообменники, 2Трубчатая печь, 3 — реактор «КС», 4Ректификационная колонна, 5 — холодильник-конденсатор, 6Газоотделитель, 7Отпарная колонна, 8–холодильники, 9Шламоотделитель, 10Узел смешения, 11Регенератор катализатора «КС», 12Котел-утилизатор, 13 — электрофильтр.

На рис.4 представлена технологическая схема установки каталитического крекинга с кипящим слоем катализатора 1–А/1–М [22]. Крекируемое сырье через теплообменники 1 подается в печь 2. Нагретое сырье смешивается с рециркулятом (частью тяжелой фракции) и по катализаторопроводу поступает в реактор крекинга 3. В нижнюю отпарную зону реактора вводится водяной пар для отдувки катализатора. Пары продуктов реакции и водяной пар при температуре 450°С из верхней части реактора 3 поступают в нижнюю часть ректификационной колонны 4. Пары бензина и водяной пар отбираются с верхней части колонны, проходят холодильник-конденсатор 5 и поступают в сепаратор 6, в котором разделяются на водяной слой, бензиновый слой и газ. Газ компрессируется и подается на газофракционирование, а бензин поступает на ректификацию. Часть бензина отбирается на орошение колонны.

Дизельное топливо и тяжелая фракция проходят через секции отпарной колонны 7, охлаждаются в теплообменниках 1 и холодильниках 8 и отводятся как товарные продукты. Часть тяжелой фракции в виде рециркулята смешивается с сырьем и подается в реактор 3, а часть направляется на орошение нижней части колонны 4. Смесь тяжелых жидких продуктов крекинга и катализаторной пыли из низа колонны 4 поступает в шламоотделитель 9, из которого шлам возвращается в реактор 3, а богатый ароматическими углеводородами декантат отводится с установки.

Дезактивированный в процессе работы катализатор из кипящего слоя реактора опускается в его отпарную зону и катализаторопроводом отводится в узел смешения с воздухом 10. Из него за счет воздушного потока катализатор переносится в регенератор 11, в котором создается кипящий слой. Основная часть воздуха для выжигания катализатора подается непосредственно в регенератор. Газы, образовавшиеся в результате выжигания кокса, проходят котел-утилизатор 12, электрофильтр 13 для улавливания катализаторной пыли и выбрасываются в атмосферу. Регенерированный катализатор из нижней части регенератора 11 поступает в катализаторопровод и вместе с сырьем и рециркулятом возвращается в реактор 3 [22].

Назначение: превращение низкооктановых бензиновых фракций в высокооктановые фракции бензинов, ароматизация узких или широких бензиновых фракций в катализат, из которого методами экстракции выделяют ароматические углеводороды.

Риформинг протекает в среде водорода при высоких температурах и среднем давлении с применением специальных катализаторов (в основном платиновой группы).

Суть процесса: присоединение водорода к молекулам сырья под давлением до 32 МПа, расщепление высокомолекулярных компонентов сырья и образование низкомолекулярных углеводородов, используемых в качестве моторных топлив.

Гидрокрекинг – это каталитический процесс, протекающий в среде водорода при температуре до 400єС и давлении до 32 МПа. Этот процесс в зависимости от исходного сырья позволяет получать широкую гамму продуктов: от сжиженных газов до масел и нефтяных остатков с низким содержанием серы.

Гидроочистка – это процесс, протекающий в среде водорода в присутствии катализатора при температуре 325-425 єС, давлении 3-7 МПа.

При этом процессе происходит деструкция сераорганических, кислород – и азоторганических соединений до сероводорода, воды и аммиака, предельных и ароматических углеводородов. При этом получается цвет, запах нефтепродуктов и снижается содержание серы до заданных норм.

Вторичные процессы переработки нефти поставляют в окружающую среду основное количество загрязнителей.

Серосодержащие газы – диоксид серы и сероводород – отходящие газы регенерации катализаторов на установках крекинга. Кроме того, источниками диоксида серы являются дымовые трубы печей, факельные стояки. Сероводород поступает в атмосферу также с установок гидроочистки и термокрекинга [2].

Технологические печи, факельные стояки выбрасывают в атмосферу оксиды азота, диоксид и монооксид углерода, твердые вещества.

Источниками попадания углеводородов в атмосферу и воду являются технологические установки (выбросы и утечки за счет неплотностей технологического оборудования, трубопроводной аппаратуры, сальников насосов, а также из рабочих клапанов при аварийных ситуациях, вентиляционные выбросы из рабочих помещений), системы оборотного водоснабжения (испарение углеводородов в нефтеотделителях и градирнях), технологические конденсаты.

Отработавшие катализаторы, зола, пыль, кислые гудроны представляют собой отходы вторичных процессов нефтепереработки.

Рассмотренные процессы переработки нефти загрязняют окружающую среду. В этой связи необходимым является изучение воздействия нефтеперерабатывающих предприятий на отдельные оболочки биосферы.

Http://studbooks. net/842516/ekologiya/vtorichnye_protsessy_neftepererabotki

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

    Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д. Облагораживающие: риформинг, гидроочистка, изомеризация и т. д. Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг – каталитическая ароматизация нефтепродуктов. Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

Каталитический крекинг – процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль. Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга.

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения изоуглевородов из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства и высокооктановых компонентов автомобильных бензинов.

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Http://4108.ru/u/pererabotka_nefti_-_vtorichnyie_protsessyi

По химическому составу нефть представляет собой смесь различных углеводородов, сернистых, кислородных и азотистых соединений. В состав нефти входят углеводороды трех классов: Парафиновые, Нафтеновые и Ароматические. В нефтепродуктах могут содержаться, иногда в значительных количествах, непредельные углеводороды, образующиеся в процессе переработки нефтии нефтепродуктов.

Являются гомологами простейшего углеводорода метана (CH4). При последовательном замещении атомов водорода метана на радикал (CH3), называемый метильной группой, получается гомологический ряд парафиновых углеводородов. Общая формула парафиновых углеводородов СnНn+2 . Начинай с метана (CH4), эти углеводороды газообразные, начиная с пентана (С5Н12) — жидкие, а с гексадекана (С16Н34) — твердые.

Твердые и газообразные углеводороды растворены в жидких. При повышении температуры испаряются газообразные углеводороды, а при понижении температуры выпадают твердые парафины.

Имеют циклическое строение. Общая эмпирическая формула ихСпН2п. В молекулы нафтеновые углеводородов входят замкнутыекольца атомов углерода. Циклическое

Строению эти углеводородов обуславливает их высокую химическую прочность.

Имеют общую формулу СnН2n-6. Наиболее важным ароматическим углеводородом является бензол (С6Н6). Ароматические углеводороды легко вступают в реакции замещения, образуя фенол, нитробензол и др.

Образуются в результате переработкинефти. Между атомами углерода существуют двойные или тройные непрочные связи, легко разрушаемыепод действием температуры. В связи с малой стабильностью непредельных углеводородов из них образуются оксиды, кислоты, смолисто-асфальтовые вещества.

Кислородные соединения в нефти, как правило, состоят из органических кислот исмолисто-асфальтовых веществ. Органические кислоты чаше всего представлены нафтеновыми кислотами, которые хорошо растворяются в нефти и сильно коррозируют цветные металлы (например, свинец, цинк).

Смолисто-асфальтовые вещества обычно делят на нейтральные смолы, асфальтены, карбены, карбоиды и асфальтогеновые кислоты. Нейтральные смолы представляют собой высокомолекулярные компонент нефти с нейтральными свойствами. В различныхнефтях может содержаться от 1,5 до 40 % смол.

Асфальтены это твердые хрупкие вещества обычно черного цвета, не плавящиееся при нагревании и нерастворимы вбензине.

КарбеныПредставляют собой продукты уплотнения асфальтенов. Это твердые вещества с плотностью больше единицы. Они нерастворимы в бензоле.

КарбоидыОбразуются в результате уплотнения и полимеризации углеводородов при термическом разложении нефти. Они состоят в основном из углерода и небольшого количества водорода, практически нерастворимы в органических и минеральных растворителях.

Асфальтогеновые (полинафтеновые) кислоты это полутвердые или твердые вещества, мало растворимые в бензине.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

– углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д.

– прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг – каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения индивидуальных ароматических углеводородов, таких как бензол, толуол и ксилолы.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки. Гидроочистке подвергаются следующие фракции нефти:

Каталитический крекинг – процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит водородсодержащий газ, образующийся при риформинге бензиновых фракций. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина)

Коксование — процесс переработки жидкого и твёрдого топлива нагреванием без доступа кислорода. При разложении топлива образуются твёрдый продукт — кокс и летучие продукты.

Разновидность глубокого термического крекинга углеводородов с целью получения нефтяного кокса и газойлевых фракций. Осуществляется при 420—560 °C и давлениях до 0,65 МПа. Продолжительность процесса варьирует от десятков минут до десятков часов.

Сырьём для процесса служат: тяжёлые фракции перегонки нефти, остатки деасфальтизации, термического и каталитического крекинга, пиролиза бензинов и газойлей.

Сущность процесса состоит в последовательном протекании реакций крекинга, дегидрирования, циклизации, ароматизации, поликонденсации и уплотнения с образованием сплошного «коксового пирога». Выделяющиеся летучие продукты подвергают ректификации для выделения целевых фракций и их стабилизации, кубовый остаток возвращают в процесс. Готовый кокс периодически выгружают, подвергают сушке и прокаливанию.

По аппаратурному оформлению различают: т. н. «замедленное» коксование в необогреваемых камерах (для получения малозольного кокса), обогреваемых кубах (для получения электродного и специальных видов кокса), коксование в «кипящем слое» порошкообразного кокса (т. н. «термоконтактный крекинг»). При сочетании последнего способа с газификацией кокса в процесс могут быть вовлечены кроме нефтяных остатков природные асфальты и битумы.

Изомеризация – процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изоп из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

Процесс алкилирования направлен на получения высокооктановых компонентов автомобильного бензина из непредельных углеводородных газов. В основе процесса лежит реакция соединения алкена и алкана с получением алкана с числом атомов углерода, равным сумме атомов углерода в исходном алкене и алкане. Поскольку наибольшим октановым числом обладают молекулы алканов с изо-строением, то молекулы исходного сырья тоже должны иметь изо-строение. В нефтепереработке наибольшее распространение получило сырье алкилирования бутан-бутиленовая фракция (ББФ), которая получается в процессе каталитического крекинга.

Http://mydocx. ru/11-53340.html

Вторичные процессы переработка нефти. Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д.

Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Все химические процессы переработки нефти различны, сначала можно рассмотреть Риформинг и гидроочистку нефти.

Риформинг – это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина.

Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.

Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.

Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

– дегидрирование нафтенов и их превращение в соответствующие ароматические соединения;

– превращение линейных парафиновых углеводородов в их разветвленные изомеры;

– гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;

– образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.

Если Риформинг это процесс предполагающий кипение, то с, следует рассмотреть такой отличный от него процесс переработки нефти как гидроочистка. Уравнение реакции:

Гидроочистка осуществляется действием водорода на прямогонные нефтяные фракции и вторичные продукты их термокаталитической переработки в присутствии катализатора. Применяется с целью получения малосернистых бензинов, реактивных, дизельных и печных топлив, а также подготовки сырья для каталитического крекинга и риформинга, гидрокрекинга. Основные реакции, происходящие при гидроочистке: гидрогенолиз связей углерод – гетероатом с практически полным превращение серо-, азот – и кислородсодержащих органических соединений в предельные углеводороды с одновременным образованием легко удаляемых H2S, NH3 и водяных паров; гидрирование непредельных углеводородов. При гидроочистке происходит также разрушение металлоорганических соединений.

Гидроочистку проводят при 250-415 °С, 1-10 МПа, объемной скорости подачи сырья 1-15 ч -1 , соотношении водородсодержащий газ: сырье, равном (50-1000):1. Катализаторы обычно алюмокобальтмолибденовый (9-15% МоО3, 2-4% СоО) или алюмоникельмолибденовый (до 12% NiO, до 4% СоО), носитель-А12О3, иногда с добавками цеолитов, алюмосиликатов и др. Содержание водорода в водородсодержащем газе до 90% по объему, расход водорода 0,1-1,0% от массы сырья. Выход жидких продуктов обычно достигает 96-99%, суммарный выход углеводородных газов, бензина, H2S, NH3 ипаров Н2О – 1-4%.

Принципиальная технологическая схема гидроочистки: смешение сырья с водородсодержащим газом и предварит. подогрев смеси в теплообменнике; нагрев смеси в трубчатой печи; собственно гидроочистка в одно – или многосекционном реакторе – стальном цилиндрическом аппарате (поскольку процесс экзотермичный, в различные зоны реактора вводят холодный водородсодержащий газ); охлаждение полученного гидрогенизата; отделение его от водородсодержащего, а затем от углеводородных газов соотв. в сепараторах высокого и низкого давления с послед. ректификацией на целевые продукты; очистка газов от H2S, NH3 и водяных паров.

В зависимости от назначения процесса и состава сырья схемы установок гидроочистки могут несколько различаться. Так, для облагораживания бензинов, содержащих значит. кол-во непредельных углеводородов, применяют т. наз. селективную гидроочистку, при к-рой в сравнительно мягких условиях (250-325 °С) гидрированию подвергаются главным образом диены.

В результате гидроочистки может быть снижено содержание (% по массе): серы в бензинах – с 0,03-0,6 до 10 -5 , в дизельных топливах с 0,6-2,5 до 0,01-0,2, в вакуумных газойлях с 1,5-3,5 до 0,15-0,4; азота в бензинах с 0,01-0,03 до 10 -4 , в вакуумных газойлях с 0,05-0,2 до 0,02-0,15; непредельных углеводородов в бензинах с 3-120 до 0,2-0,5, в дизельных топливах с 3-100 до 0,5-6,0; металлов (Ni + V) в вакуумных газойлях с 5*10 -5 -3*10 -4 до 2*10 -5 -5*10 -5 . Кроме того, в нефтяных фракциях уменьшается содержание смолистых в-в, улучшаются их запах и цвет, повышается устойчивость к окислению.

Http://vuzlit. ru/739202/vtorichnyy_protsessy_pererabotki_nefti

Классификация методов вторичной переработки нефти приведена на рис. 8.3. Все они делятся на две группы – термические и каталитические.

К термическим методамОтносятся термический крекинг, коксование и пиролиз.

Термический крекинг– это процесс разложения высокомолекуляр-ныхуглеводородов на более легкие при температуре 470. 540°С и давлении 4. 6 МПа. Сырьем для термического крекинга является мазут и другие тяжелые нефтяные остатки. При высоких температуре и давлении длинноцепочные молекулы сырья расщепляются. Продукты реакции разделяются с получением топливных компонентов, газа икрекинг – остатка.

Коксование– это форма термического крекинга, осуществляемого при температуре 450. 550 °С и давлении 0,1. 0,6 МПа. При этом получаются газ, бензин, керосино-газойлевые фракции, а также кокс.

Пиролиз– это термический крекинг, проводимый при температуре 750. 900 °С и давлении близком к атмосферному, с целью получения сырья для нефтехимической промышленности. Сырьем для пиролиза являются легкие углеводороды, содержащиеся в газах, бензины первичной перегонки, керосины термического крекинга, керосино-газойлевая фракция. Продукты реакции разделяются с получением индивидуальных непредельных углеводородов (этилен, пропилен и др.). Из жидкого остатка, называемого смолой пиролиза, могут быть извлечены ароматические углеводороды.

Каталитический крекинг– это процесс разложения высокомолекулярных углеводородов при температурах 450. 500 °С и давлении 0,2 МПа в присутствии катализаторов – веществ, ускоряющих реакцию крекинга и позволяющих осуществлять ее при более низких, чем при термическом крекинге, давлениях.

В качестве катализаторов используются, в основном, алюмосиликаты и цеолиты.

Сырьем для каталитического крекинга являются вакуумный газойль, а также продукты термического крекинга и коксования мазутов и гудронов. Получаемые продукты – газ, бензин, кокс, легкий и тяжелый газойли.

Риформинг – это каталитический процесс переработки низкооктановых бензиновых фракций, осуществляемый при температуре около 500"С и давлении 2. 4 МПа. В результате структурных преобразований октановое число углеводородов в составе катализата резко повышается. Данный катализат является основным высокооктановым компонентом товарного автомобильного бензина. Кроме того, из катализата могут быть выделены ароматические углеводороды (бензол, толуол, этилбензол, ксилолы).

Гидрогенизационными называются процессы переработки нефтяных фракций в присутствии водорода, вводимого в систему извне. Гидрогенизационные процессы протекают в присутствии катализаторов при температуре 260. 430 "С и давлении 2. 32 МПа.

Таким образом, применение гидрогенизационных процессов позволяет углубить переработку нефти, обеспечив увеличение выхода светлых нефтепродуктов, а также удалить нежелательные примеси серы, кислорода, азота (гидроочистка).

3) недеструктивная гидрогенизация (гидроочистка). Данные процессы требуют больших капиталовложений и резко

Увеличивают эксплуатационные расходы, что ухудшает технико-экономические показатели заводов. Затраты тем больше, чем выше давление, применяемое в процессе, чем более тяжелым по плотности и фракционному составу является сырье и чем больше в нем серы.

Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. Состав и концентрация примесей, содержащихся в дистиллятах, зависят от вида используемого сырья, применяемого процесса его переработки, технологического режима установки. Для удаления вредных примесей дистилляты подвергаются очистке.

Нежелательными примесями в дистиллятах светлых нефтепродуктов являются сернистые соединения, нафтеновые кислоты, непредельные соединения, смолы, твердые парафины. Присутствие в моторных топливах сернистых соединений и нафтеновых кислот вызывает коррозию деталей двигателей. Непредельные соединения в топливах при хранении и эксплуатации образуют осадки, загрязняющие систему топливопроводов и препятствующие нормальной эксплуатации двигателей. Повышенное содержание смол в топливе приводит к нагарообразова-нию, осаждению смол на деталях камер сгорания. Присутствие в нефтепродуктах твердых углеводородов приводит к увеличению температуры их застывания, в результате чего парафин осаждается на фильтрах, ухудшается подача топлива в цилиндры, двигатель глохнет.

К отдельным нефтепродуктам предъявляются специфические требования. Так, в осветительных керосинах нежелательно присутствие ароматических углеводородов, образующих коптящее пламя. Наличие ароматических углеводородов в ряде растворителей (например, уайт-спирите) делает последние токсичными.

Для удаления вредных примесей из светлых нефтепродуктов применяются следующие процессы:

Щелочная очисткаЗаключается в обработке бензиновых, керосиновых и дизельных фракций водными растворами каустической или кальцинированной соды. При этом из бензинов удаляют сероводород и частично меркаптаны, из керосинов и дизельных топлив – нафтеновые кислоты.

Кислотно-щелочная очисткаПрименяется с целью удаления из дистиллятов Непредельных и ароматических углеводородов,А также смол. Заключается она в обработке продукта сначала серной кислотой, а затем – в ее нейтрализации водным раствором щелочи.

ДепарафинизацияИспользуется для понижения температуры застывания дизельных топлив и заключается в обработке дистиллята раствором карбамида. В ходе реакции парафиновые углеводороды образуют с карбамидом соединение, которое сначала отделяется от продукта, а затем при нагревании разлагается на парафин и карбамид.

ГидроочисткаПрименяется для удаления сернистых соединений из бензиновых, керосиновых и дизельных фракций. Для этого в систему при температуре 350. 430 °С и давлении 3. 7 МПа в присутствии катализатора вводят водород. Он вытесняет серу в виде сероводорода.

Гидроочистку применяют также для очистки продуктов вторичного происхождения от непредельных соединений.

ИнгибированиеПрименяется для подавления реакций окисления и полимеризации непредельных углеводородов в бензинах термического крекинга путем введения специальных добавок.

Селективными растворителями называют вещества, которые обладают способностью извлекать при определенной температуре из нефтепродукта только какие-то определенные компоненты, не растворяя других компонентов и не растворяясь в них.

Очистка производится в экстракционных колоннах, которые бывают либо полыми внутри, либо с насадкой или тарелками различного типа.

Для очистки масел применяют следующие растворители: фурфурол, фенол, пропан, ацетон, бензол, толуол и другие. С их помощью из масел удаляют смолы, асфальтены, ароматические углеводороды и твердые парафиновые углеводороды.

В результате селективной очистки образуются две фазы: полезные компоненты масла (рафинат) и нежелательные примеси (экстракт).

Депарафинизации подвергают рафинаты селективной очистки, полученные из парафинистых нефтей и содержащие твердые углеводороды. Если этого не сделать, то при понижении температуры масла теряют подвижность и становятся непригодными для эксплуатации.

Депарафинизация осуществляется фильтрацией после предварительного охлаждения продукта, разбавленного растворителем.

Целью гидроочистки является улучшение цвета и стабильности масел, повышение их вязкостно-температурных свойств, снижение коксуемости и содержания серы. Сущность данного процесса заключается в воздействии водорода на масляную фракцию в присутствии катализатора при температуре, вызывающей распад сернистых и других соединений.

Деасфальтизация полугудрона производится с целью их очистки от асфальто-смолистых веществ. Для разделения полугудрона на деасфальтизат (масляная фракция) и асфальтит применяется экстракция легкими углеводородами (например, сжиженным пропаном).

Щелочная очистка применяется для удаления из масел нафтеновых кислот, меркаптанов, а также для нейтрализации серной кислоты и продуктов ее взаимодействия с углеводородами, остающимися после деасфальтизации.

Http://lektsii. org/2-26745.html

1. Термические процессы: термический крекинг; битумное производство; визбрекинг; коксование; гидролиз; производство технического углерода.

2. Термокаталитические процессы: каталитический крекинг; каталитический риформинг; изомеризация.

3. Термогидрокаталетические процессы(среда водорода): гидроочистка; гидрокрекинг; гидрогенизация.

4. Переработка нефтезаводских газов: фракционирование; производство метилтребутиловый эфир (МТБЭ); производство серы; производство водорода; алкелирование алифинами(непредельные углеводороды-алкены)

Термокрекинг – предназначен для переработки остаточных продуктов (мазутов) и тяжелых фракций для получения компонента автомобильных бензинов. Параметры: Р 2-4МПа, температура до 900 0 С.

Виброкрекинг – процесс легкого термокрекинга при не высоком Р до 2МПа и Т до 500 0 С. Предназначен для получения компонентов котельных топлив из тяжелых нефтяных остатков (гудрона) или для получения пеков.

Коксование – процесс термообработки нефтяных остатков и их смесей с тяжелыми газойлями при Т 450-550 0 С и Р 0,1-0,6МПа при этом получается: газ, бензин керосиногазойлевые фракции и кокс.

Пиролиз – это жесткая форма термокрекинга, проводимых Т 750-900 0 С и Р близком к атмосферному с целью получения олефино содержащего газа. Сырьем является углеводородные газы и жидкие фракции.

Производство битумов – осуществляется путем термо-окисления тяжелых остатков при Т 230-270 0 С, в присутствии кислорода воздуха.

Производство технического углеводорода и пека – процесс обработки жидкого или газообразного углеводорода сырья при Т до 2000 0 С.

Термокаталитический крекинг – это процесс разложения высокомолекулярных углеводородов при Т 450-500 0 С и Р 0,2МПа с присутствием катализатора.

Сырье – вакуумный газойль, продукты крекинга и коксования является газ, бензин, газойль, кокс.

Каталитический риформинг – процесс переработки низкооктановых бензиновых фракций осуществляемых при Т 500 0 С и Р 2-4МПа. В результате структурных преобразований увеличивается доля ароматических углеводородов именующих высокооктановое число.

Изомеризация низкотемпературная – это процесс получения изомерных углеводородов являющихся высокооктановыми компонентами производится при Т 100-150 0 С при Р1,4-4,5МПа в присутствии катализатора на основе оксидов алюминия церконий содержащий платину.

Гидроочистка – процесс производимый при Т 280-340 0 С, под р до 50 атмосфер для очистки бензиновых, керосиновых и дизельных фракций, а также вакуумного газойля от сернистых и азотосодержащих соединений.

Гидрокрекинг – процесс переработки ритилетного и остаточного сырья, производится при высоком давлении белее 15МПа и при среднем до 10МПа давлении ВСГ со структурным превращением углеводородов сырья и образовавших широкого ассортимента продуктов.

Алкелирование – осуществляют при Т 5-40 0 С на кислотных жидких или твердых катализаторах с целью получения алкилата, изобутана.

Алигомеризация олефинов (полимеризация) этилена, пропилена, бутиленов предназначена для получения компонентов моторных топлив, смазочных синтетических масел, для производства моющих средств и полимеров. Процесс осуществляется в присутствии катализатора при Т 160-230 0 С при Р до 6МПа.

Http://studopedia. org/8-196445.html

К вторичным процессам нефтепереработки относятся: коксование нефтяных остатков, деасфальтизация нефтяных остатков пропаном, каталитический крекинг, каталитический риформинг, деструктивная гидрогенизация, гидрокрекинг, гидроочистка.

Коксованием называется термохимический процесс превращения тяжелых остатков нефтепереработки в нефтяной кокс и светлые нефтепродукты (бензин, газойль).

Существует несколько методов коксования. На рисунке 3 приведена схема замедленного коксования. При этом процессе кроме кокса образуются газы, бензиновые и керосино-дизельные фракции. Выход кокса составляет 12-36%, бензина – 8-18% и углеводородных газов – до 10 %.

Недостатком дистиллятов коксования является наличие в них непредельных углеводородов (20-40 %.) и сернистых соединений.

Нефтяные остатки содержат большое количество асфальто-смолистых веществ. Процесс очистки нефтяных остатков от этих примесей называется деасфальтизацией. В результате процесса деасфальтизации получаются очищенные от асфальто-смолистых веществ масла, а также сырье для каталитического крекинга и гидрокрекинга.

Процесс деасфальтизации протекает в деасфальтизационной колонне при 60-80 ºС и давлении 3,5-4,2 МПа и отношении пропана к сырью по массе 3-5:1.

Основное назначение каталитического крекинга: получение высокооктановых компонентов бензина из более тяжелых дистиллятов.

Крекинг осуществляют при 470-550ºС. В качестве катализатора применяются алюмосиликаты [22].

1 — теплообменники, 2 — трубчатая печь, 3 — реактор «КС», 4 — ректификационная колонна, 5 — холодильник-конденсатор, 6 — газоотделитель, 7 — отпарная колонна, 8—холодильники, 9—шламоотделитель, 10 — узел смешения, 11— регенератор катализатора «КС», 12 — котел-утилизатор, 13 — электрофильтр.

На рис.4 представлена технологическая схема установки каталитического крекинга с кипящим слоем катализатора 1—А/1—М [22]. Крекируемое сырье через теплообменники 1 подается в печь 2. Нагретое сырье смешивается с рециркулятом (частью тяжелой фракции) и по катализаторопроводу поступает в реактор крекинга 3. В нижнюю отпарную зону реактора вводится водяной пар для отдувки катализатора. Пары продуктов реакции и водяной пар при температуре 450°С из верхней части реактора 3 поступают в нижнюю часть ректификационной колонны 4. Пары бензина и водяной пар отбираются с верхней части колонны, проходят холодильник-конденсатор 5 и поступают в сепаратор 6, в котором разделяются на водяной слой, бензиновый слой и газ. Газ компрессируется и подается на газофракционирование, а бензин поступает на ректификацию. Часть бензина отбирается на орошение колонны.

Дизельное топливо и тяжелая фракция проходят через секции отпарной колонны 7, охлаждаются в теплообменниках 1 и холодильниках 8 и отводятся как товарные продукты. Часть тяжелой фракции в виде рециркулята смешивается с сырьем и подается в реактор 3, а часть направляется на орошение нижней части колонны 4. Смесь тяжелых жидких продуктов крекинга и катализаторной пыли из низа колонны 4 поступает в шламоотделитель 9, из которого шлам возвращается в реактор 3, а богатый ароматическими углеводородами декантат отводится с установки.

Дезактивированный в процессе работы катализатор из кипящего слоя реактора опускается в его отпарную зону и катализаторопроводом отводится в узел смешения с воздухом 10. Из него за счет воздушного потока катализатор переносится в регенератор 11, в котором создается кипящий слой. Основная часть воздуха для выжигания катализатора подается непосредственно в регенератор. Газы, образовавшиеся в результате выжигания кокса, проходят котел-утилизатор 12, электрофильтр 13 для улавливания катализаторной пыли и выбрасываются в атмосферу. Регенерированный катализатор из нижней части регенератора 11 поступает в катализаторопровод и вместе с сырьем и рециркулятом возвращается в реактор 3 [22].

Назначение: превращение низкооктановых бензиновых фракций в высокооктановые фракции бензинов, ароматизация узких или широких бензиновых фракций в катализат, из которого методами экстракции выделяют ароматические углеводороды.

Риформинг протекает в среде водорода при высоких температурах и среднем давлении с применением специальных катализаторов (в основном платиновой группы).

Суть процесса: присоединение водорода к молекулам сырья под давлением до 32 МПа, расщепление высокомолекулярных компонентов сырья и образование низкомолекулярных углеводородов, используемых в качестве моторных топлив.

Гидрокрекинг – это каталитический процесс, протекающий в среде водорода при температуре до 400ºС и давлении до 32 МПа. Этот процесс в зависимости от исходного сырья позволяет получать широкую гамму продуктов: от сжиженных газов до масел и нефтяных остатков с низким содержанием серы.

Гидроочистка – это процесс, протекающий в среде водорода в присутствии катализатора при температуре 325-425 ºС, давлении 3-7 МПа.

При этом процессе происходит деструкция сераорганических, кислород – и азоторганических соединений до сероводорода, воды и аммиака, предельных и ароматических углеводородов. При этом получается цвет, запах нефтепродуктов и снижается содержание серы до заданных норм.

Вторичные процессы переработки нефти поставляют в окружающую среду основное количество загрязнителей.

Серосодержащие газы – диоксид серы и сероводород – отходящие газы регенерации катализаторов на установках крекинга. Кроме того, источниками диоксида серы являются дымовые трубы печей, факельные стояки. Сероводород поступает в атмосферу также с установок гидроочистки и термокрекинга [2].

Технологические печи, факельные стояки выбрасывают в атмосферу оксиды азота, диоксид и монооксид углерода, твердые вещества.

Источниками попадания углеводородов в атмосферу и воду являются технологические установки (выбросы и утечки за счет неплотностей технологического оборудования, трубопроводной аппаратуры, сальников насосов, а также из рабочих клапанов при аварийных ситуациях, вентиляционные выбросы из рабочих помещений), системы оборотного водоснабжения (испарение углеводородов в нефтеотделителях и градирнях), технологические конденсаты.

Отработавшие катализаторы, зола, пыль, кислые гудроны представляют собой отходы вторичных процессов нефтепереработки.

Рассмотренные процессы переработки нефти загрязняют окружающую среду. В этой связи необходимым является изучение воздействия нефтеперерабатывающих предприятий на отдельные оболочки биосферы.

Http://www. refsru. com/referat-13823-4.html

Продукты первичной переработки нефти, как правило, не являются товарными нефтепродуктами. Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1,0% и более, тогда как норматив составляет, в зависимости от марки, от 0,005% до 0,2%. Кроме того, тёмные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

В связи с этим, нефтяные фракции поступают на установки вторичных процессов, призванные осуществить улучшение качества нефтепродуктов и углубление переработки нефти.

Приведённые в статье параметры технологических режимов, размеров аппаратов, выходов продуктов в целом приводятся справочно, так как в каждом конкретном случае могут варьироваться в зависимости от качества сырья, заданных параметров продуктов, выбранного аппаратурного оформления, типов применяемых катализаторов и других факторов.

Поскольку при описании процессов вторичной переработки используются наименования групп углеводородов, входящих в состав нефти и нефтепродуктов, приведём краткие описания данных групп и влияние углеводородного состава на показатели качества нефтепродуктов.

Парафины – насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвлённого строения. Подразделяются на следующие основные группы:

1. Нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп.

2. Изопарафины – с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками (например, изооктан – эталонное вещество с октановым числом 100) и пониженной, по сравнению с нормальными парафинами, температурой застывания.

Нафтены (циклопарафины) – насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

Ароматические углеводороды – ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом. Поэтому процесс, направленный на повышение октанового числа прямогонных фракций – каталитический риформинг, предусматривает превращение других групп углеводородов в ароматические. При этом предельное содержание ароматических углеводородов и, в первую очередь, бензола в бензинах ограничивается стандартами.

Олефины – углеводороды нормального, разветвлённого, или циклического строения, в которых связи атомов углерода, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

Рис.8. Структурные формулы молекул углеводородов, относящихся к различным группам

Каталитический риформинг предназначен для повышения октанового числа прямогонных бензиновых фракций путём химического превращения углеводородов, входящих в их состав, до 92-100 пунктов. Процесс ведётся в присутствии алюмо-платино-рениевого катализатора. Повышение октанового числа происходит за счёт увеличения доли ароматических углеводородов. Научные основы процесса разработаны нашим соотечественником – выдающимся русским химиком Н. Д.Зелинским в начале ХХ века.

Выход высокооктанового компонента составляет 85-90% на исходное сырьё. В качестве побочного продукта образуется водород, который используется на других установках НПЗ, которые будут описаны ниже.

Мощность установок риформинга составляет от 300 до 1000 тыс. тонн и более в год по сырью.

Оптимальным сырьём является тяжёлая бензиновая фракция с интервалами кипения 85-180С. Сырьё подвергается предварительной гидроочистке – удалению сернистых и азотистых соединений, даже в незначительных количествах необратимо отравляющих катализатор риформинга.

Установки риформинга существуют 2-х основных типов – с периодической (рис. 9,10) и непрерывной (рис.11) регенерацией катализатора – восстановлением его первоначальной активности, которая снижается в процессе эксплуатации. В России для повышения октанового числа в основном применяются установки с периодической регенерацией, но в 2000-х гг. в Кстово и Ярославле введены установки и с непрерывной регенерацией, которые эффективнее технологически (возможно получения компонента с октановым числом 98-100), однако, стоимость их строительства выше.

Процесс осуществляется при температуре 500-530С и давлении 18-35 атм (2-3 атм на установках с непрерывной регенерацией). Основные реакции риформинга поглощают существенные количества тепла, поэтому процесс ведется последовательно в 3-4 отдельных реакторах, объёмом от 40 до 140 м3, перед каждым из которых продукты подвергаются нагре�

Http://www. studsell. com/view/30225/

Нефтепродукт, прошедший первичную переработку, не может считаться готовым к непосредственному применению. Для того, чтобы нефтепродукты достигли соответствующего качества и отвечали определенным требованиям, их подвергают вторичной переработке.

По той причине, что в описании процессов переработки нефтепродуктов используются наименования различных углеводородов, следует привести их описание и зависимость товарного сырья от содержания этих углеводородов.

Парафины – вещества, не обладающие устойчивыми двойными связями между атомами углерода. Такие парафины, имеющие линейное и разветвленное строение, именуют насыщенными. Парафины подразделяют на следующие виды:

    Нормальные. Обладают линейным строением, низким октановым числом и высокой температурой застывания. По этим причинам данные углеводороды при вторичной переработке подвергаются трансформации. Изопарафины. Имеют разветвленное строение, неплохие антидетонационные показатели и довольно низкой температурой застывания. Циклопарафины или нафтены обладают циклическим строением. Данные углеводороды положительным образом сказываются на качестве дизельного топлива и масел для смазки. Проведение риформинга продукта, содержащего нафтены в тяжелых фракциях бензина, располагает к высокому выходу и октановому числу. Ароматические углеводороды состоят из бензольных колец. Данные кольца имеют атом водорода, который связан с шестью атомами углерода. Имеют довольно высокое октановое число, но негативно сказываются на экологической составляющей топлива. По этой причине для повышения октанового числа углеводороды подвергают превращению в ароматические методом каталитического риформинга. Олефины могут обладать нормальным, разветвленным или циклическим строением. Нефтепродукты, получаемые после первичной переработки, данными углеводородами практически не обладают. Олефины оказывают негативное влияние на качество масел из-за химической агрессивности.

Каталитический риформинг, каталитическая изомеризация и гидроочистка дистиллятов — технология, особенности процессов

Данный процесс применяют в тех случаях, когда необходимо повысить октановое число за счет преобразований углеводородов. Значения октанового числа при этом могут составлять 92-100 позиций. Повышение данного значения осуществляется за счет увеличения доли ароматических углеводородов в смеси. Теоретические основы процесса были изложены в начале прошлого столетия Зелинским Н. Д.

При мощности установок от 300000 до 1000000 тонн/год объемная доля необходимого высококачественного сырья достигает 85-90 %. Сопутствующим компонентом риформинга является водород, который поступает на другие установки для дальнейшей переработки.

Самым лучшим сырьем является фракция бензина с температурой кипения от 85 до 180 0С. Перед риформингом нефтепродукт предварительно очищается от серы и азота, негативно сказывающихся на конечном результате.

Риформинг может происходить на установках двух видов: с периодической и постоянной регенерацией катализатора. В нашей стране на большинстве установок происходит периодическая регенерация. Относительно недавно в эксплуатацию введено несколько установок с постоянной регенерацией, которые значительно эффективнее. Однако, цена их также выше.

Рабочая температура в таких установках достигает значений в 500 – 530 0С, а давление – до 35 Атм. Для примера, в установках с непрерывной регенерацией давление составляет от двух до трех «атмосфер». Из-за того, что реакция риформинга поглощает значительное тепло, процесс протекает постепенно в трех-четырех отдельных камерах. Перед каждой секцией сырье предварительно подогревается. На выходе из последней камеры происходит отделение водорода, охлаждение готового продукта и вывод с установки.

На ряде нефтеперерабатывающих заводов данный технологический процесс применяется для получения ароматических углеводородов, которые являются сырьевой базой для многих продуктов химической промышленности.

Данный процесс осуществляется также с целью повышения октанового числа. Сырьем для изомеризации являются легкие фракции бензина, температура которых колеблется в пределах от 62 до 85 0С. Повысить октановое число удается благодаря увеличению содержания изопарафинов. Весь процесс протекает в одной камере при температуре 160 – 380 0С и давлении до 35 Атм.

В практику ряда НПЗ вошло переоборудование устаревших установок риформинга в установки для изомеризации. Нередко также происходит объединение этих процессов под началом единого комплекса.

Основной задачей данного процесса является устранение присутствия серы и азота в различных нефтепродуктах. Для этого применяют, как чистые дистиллянты, так и те, которые уже были использованы, то есть вторичные. Водород, который отделяется при риформинге, поступает также сюда.

Разрушение сернистых и азотосодержащих компонентов происходит после смешения сырья с газом, содержащим водород, нагрева до 280 – 340 0С и подачи смеси под давлением в 50 Атм. на катализаторы из никеля, кобальта или молибдена. На выходе получается небольшое количество низкооктанового бензина и дизельной фракции. Далее из смеси удаляется лишний водородосодержащий газ, и она поступает колонну ректификации. Результатом гидроочистки, например, может являться снижение содержания серы в дизельной фракции до 0,005 % при первоначальном значении в 1 %.

Гидрокрекинг и каталитический крекинг — технология, особенности процессов

Данный процесс вторичной переработки нефтепродуктов относится к числу самых значимых. От его осуществления зависит эффективность работы нефтеперерабатывающего завода. Суть процесса сводится к воздействию на нефтепродукт температурным режимом в присутствии катализатора. В результате этого, ряд углеводородов разлагается, а на выходной линии установки можно получить бензин с октановым числом более 90 позиций. Количество готовой продукции составляет 50-65 %. Каталитический крекинг включает в себя также изомеризацию. Этим объясняется высокое октановое число. Второстепенными продуктами переработки являются пропилен и бутилен, применяемые в нефтехимической промышленности, а также компоненты для производства дизельного топлива, сажи и мазута.

Средняя производительность большинства установок достигает 2,5 млн. тонн, но существуют системы, позволяющие производить и 4 млн. тонн продукции в год.

В основном блоке установки происходит нагревание сырья, крекинг и регенирация катализатора. В последнем случае происходит выжигание кокса, который выделяется после крекинга и осаждается на поверхностях. Циркуляция катализатора происходит по трубопроводам, которыми обвязаны все основные узлы установки.

В настоящее время можно сказать, что мощностей установок крекинга в России не хватает. Решение проблемы заключается не только в строительстве новых установок, но и реконструкции имеющихся систем нефтеперерабатывающих заводов.

Совсем недавно в нашей стране осуществили реконструкцию установок в Рязани и Ярославле, а в Нижнекамске введена в эксплуатацию новая установка крекинга. В нижнекамской установке применяется технология иностранных компаний.

Каталитический крекинг нередко включают в состав установок, позволяющих последовательно осуществлять гидроочистку сырья.

Назначение этого процесса связано с выработкой керосиновых и дизельных дистиллятов высочайшего качества. Достигается это за счет крекинга углеводородов нефтепродукта с одновременным присутствием водорода. Отличные показатели эксплуатации и влияния на экологию достигаются за счет качественной очистки сырья от серы, насыщения олефинов и ароматических углеводородов. Для примера можно отметить, что присутствие серы в конечном дизельном дистилляте после гидрокрекинга, составляет лишь миллионные доли процентов. Фракция бензина также характеризуется высоким показателем октанового числа, а тяжелая фракция может использоваться в качестве сырья для риформинга. Кроме того, гидрокрекинг применяется для получения моторных масел, которые по своим показателям близки к синтетическим продуктам.

Мощности установок гидрокрекинга, чаще всего, достигают значений в три-четыре млн. тонн в год.

Водорода, который поступает с установок риформинга, обычно недостаточно для осуществления гидрокрекинга. Для обеспечения потребностей в этом газе на заводах строят дополнительные установки. Водород на них производится благодаря паровой конверсии газов на основе углеводорода.

Технология процесса гидрокрекинга схожа с той, которая применяется на установках гидроочистки. Нефтепродукт, поступая в установку, смешивается с газом, содержащим водород. Далее он нагревается и поступает в реактор вместе с катализатором. Продукты, отделившиеся от газов, отправляются на ректификацию. Из-за того, что при гидрокрекинге происходит выделение тепла, водородосодержащий газ подается в охлажденном состоянии. Температура при этом регулируется объемом подаваемого газа. Из-за того, что контроль температуры значительно влияет на безопасность процесса, его осуществление относится к числу важнейших задач по недопущению вероятных аварий.

Установки гидрокрекинга, как любое другое сооружение, имеют различия, которые обусловлены различными конечными результатами и применяемым сырьем.

Давление до 80 Атм. и температура порядка 350 0 С в единственном реакторе позволяют получать вакуумный газойль с незначительным содержанием серы.

Для того, что получить максимум светлых фракций реакции проводят на двух реакторах. При таком процессе продукт из первого реактора отправляется на ректификацию. Там отделяются светлые фракции. Повторный гидрокрекинг проводится с остатками во втором реакторе. Гидрокрекинг вакуумного газойля осуществляют при давлении 180 Атм, мазута и гудрона – свыше 300. А температура при этом составляет, соответственно, 380 и 450 0 С.

Гидрокрекинг как таковой, в нашей стране появился относительно недавно. Такие установки в 2000-х годах появились в Перми, Уфе, Ярославле. На некоторых НПЗ проведена реконструкция имеющихся установок под установки гидрокрекинга.

Наличие современных установок гидрокрекинга позволяет проводить полноценную вторичную переработку с целью получения бензинов с высоким октановым числом и средних дистиллятов высокого качества.

Коксование и товарное производство — технология, особенности процессов

Процесс коксования проводят с тяжелыми остатками нефти любой стадии переработки. Результатом этого является получение кокса, который используется в металлургии качестве сырья для изготовления электродов. Кроме того, из кокса получают определенное количество светлых фракций.

Основное отличие коксования от прочих процессов переработки второй стадии – отсутствие катализатора.

В России применяют установки коксования замедленного действия. Температура, при которой происходит этот процесс, достигает 500 0 С, а давление примерно равно атмосферному. Нефтепродукт, поступая по змеевикам в печи, подвергается термической обработке, и из него в соседних секциях выделяется кокс. На таких установках имеется четыре камеры с попеременным режимом работы. Процесс заполнения камеры коксом протекает в течение 24 часов. По истечении этого времени кокс выгружают и запускают следующий цикл работы установки.

Удаление кокса из камеры осуществляют при помощи гидравлического резака. Внешне он выглядит как бур, на конце которого имеются сопла. Через эти сопла струи воды под давлением 150 Атм. разбивают кокс. После этого происходит сортировка отбитых частиц кокса.

В верхней части камеры для коксования имеются каналы для отвода паров на установку по ректификации. Следует отметить, что светлые фракции, получаемые коксованием необходимо повторно перерабатывать, так как повышенное присутствие олефинов значительно снижает их качество.

Объемный выход светлых фракций достигает 35 %, а кокса (при коксовании гудрона) – 25 %.

Вышеперечисленные процессы переработки позволяют получить составные компоненты различных видов топлив, которые обладают отличительными показателями эксплуатации и применения.

Для получения качественного продукта с конкретными показателями качества необходимо получить смесь данных компонентов. Этот процесс осуществляют также на нефтеперерабатывающих заводах.

Производственный комплекс любого НПЗ направлен на осуществление смешения компонентов на основе конкретных математических моделей. Данный процесс зависит от различных факторов: планируемых остатков переработки нефтепродуктов, необходимых объемов поставок сырья и реализации готового нефтепродукта.

Нередко смешение происходит по привычным рецептурам, которые подвергаются корректировке при изменяющихся технологических процессах.

Процесс смешивания компонентов довольно прост: они подаются в определенную емкость в необходимом количестве. Сюда же могут быть добавлены определенные присадки. После перемешивания, товарный нефтепродукт подвергается контролю качества и перекачивается в резервуары для хранения и дальнейшей реализации.

Основные объемы готового нефтепродукта в нашей стране транспортируются по железным дорогам в цистернах. Налив нефтепродукта в цистерны осуществляется с помощью эстакад, расположенных на территории заводов. Определенная часть нефтепродуктов транспортируется также по трубопроводам, которые используют также для реализации топлива за границу. Менее распространенными видами транспорта являются речные и морские пути передвижения.

Http://1cert. ru/stati/protsessy-vtorichnoy-pererabotki-nefteproduktov

Добавить комментарий