Химическая переработка нефти

Установки от экстрасенса 700х170

Нефть долгое время применялась только в качестве топлива. В небольших масштабах производилась разгонка ее с отбором легкокипящей фракции — бензина, находившего лишь ограниченное применение, средних фракций — керосина и осветительных масел и, наконец, тяжелых фракций — смазочных масел и вазелинов. Нефтяные остатки от перегонки — мазут — опять-таки применялись как топливо. С развитием применения двигателей внутреннего сгорания и их специализацией (авто – и авиамоторы, тракторные двигатели, судовые двигатели и т. п.) возрастала потребность в легкокипящих видах топлива, которые не могли быть получены в достаточном количестве простой разгонкой нефти. Кроме того, возникла необходимость выпуска специальных видов топлива, вообще не получающихся из нефти без химической переработки входящих в нее углеводородов.

В настоящее время нефтеперерабатывающая промышленность должна производить высокооктановые бензины для четырехтактных двигателей, высокоцетановое тяжелое топливо для дизелей, высококалорийное горючее для реактивных двигателей, высококачественные смазочные материалы для быстроходных машин и целый ряд продуктов для химической промышленности (бензол, толуол, циклогексан, бутадиен, низшие олефины и т. д.).

Одним из основных приемов переработки нефти и ее дистиллятов является так называемый Крекинг. Это — процесс расщепления высших углеводородов на углеводороды с меньшим молекулярным весом, сопровождающийся процессами частичной полимеризации, дегидрирования, циклизации, изомеризации и т. п. Крекинг ведут при 450—550° С под давлением 7—35 Ат, пропуская исходный нефтепродукт через обогреваемые снаружи трубы (Термический крекинг). Кроме процессов термического крекинга, применяется Каталитический крекинг. Здесь катализатором может служить хлористый алюминий (Н. Д. Зелинский); в настоящее время применяются также различные алюмосиликаты.

Главными преимуществами каталитического крекинга по сравнению с термическим являются: большой выход бензинов и их высокое октановое число, попутное удаление серы из нефтепродуктов (обессеривание) и более ценный состав газов крекинга (больше пропана и бутана, меньше метана и этана). Правда, при каталитическом крекинге требуется периодическая регенерация катализатора, загрязняемого отлагающимся на нем коксом, однако тепло, выделяющееся при выжигании кокса, не теряется, а используется для поддержания высокой температуры процесса крекинга. Между тем в термическом крекинге для ведения процесса при достаточно высокой температуре расходуется ценное топливо.

Возникший за последние два десятилетия огромный спрос на бензины с высоким октановым числом вызвал к жизни целую группу технических процессов каталитического облагораживания (Риформинг) низкооктановых бензинов. Риформинг проводится с применением платиновых и окисных катализаторов. В процессе риформинга происходят различные превращения углеводородов, входящих в состав бензинов. Парафины изомеризуются в более разветвленные и частично крекируются. Циклогексаны дегидрируются в ароматические углеводороды, а циклопентаны сначала превращаются с расширением цикла в циклогексаны, которые далее дегидрируются. Одновременно происходит обессеривание бензина.

Среди процессов риформинга наиболее важное место занимают в настоящее время Гидроформинг И Платформинг. Гидроформинг проводится в атмосфере водорода на окисных катализаторах. При платформинге используются катализаторы, содержащие немного платины (менее 1%), отложенной на носителе, обладающем кислотными свойствами (окись алюминия, алюмосиликаты).

При громадных масштабах переработки нефти каталитическим крекингом и риформингом огромное значение приобретает вопрос о регенерации катализатора. Для осуществления обоих процессов как непрерывных с одновременной регенерацией катализатора предложено два пути: схемы с движущимся слоем катализатора и схемы с неподвижным слоем.

В схемах с движущемся слоем катализатора последний применяется либо в виде крупных зерен, либо в виде пыли. В первом случае слой катализатора медленно продвигается в реакционной камере, затем поступает в камеру регенерации и, пройдя через нее, возвращается в реакционную камеру. Самая ранняя из предложенных схем этого типа получила название Термофор-процесса. В схемах, в которых применяется пылевидный катализатор, его подают в реакционную камеру взвешенным в парах перерабатываемого нефтепродукта или вдувают струей газа. В восходящем потоке жидкого нефтепродукта, протекающего через реакционную камеру, образуется тонкая взвесь катализатора. Такой процесс называется Процессом в псеедоожиженном слое или Флюид-процессом. Поскольку слой катализатора по виду напоминает кипящий, очень распространено также название Процесс в кипящем слое.

Непрерывный процесс с неподвижным слоем катализатора (например, Процесс Гудри) представляет собой в сущности периодический процесс, проводимый в двух (или более) реакционных камерах. Пока в одной из них идет каталитический процесс, в другой происходит регенерация катализатора. Когда активность катализатора в первой камере снижается, а регенерация его во второй камере заканчивается, камеры переключают.

Первоначально указанные выше схемы были разработаны для каталитического крекинга, а впоследствии были применены (с заменой катализатора) и для каталитического риформинга.

Процессы, протекающие при действии высоких температур на высшие углеводороды, все еще мало изучены. Более изучены эти процессы для низкомолекулярных углеводородов. Здесь можно считать установленным образование при действии высоких температур алифатических Свободных радикалов (Райс).

Действительно, при крекинге этана наблюдается образование этилена, метана, водорода, пропана, бутана и продуктов их дегидрогенизации. Таким образом, при этом процессе, кроме расщепления, идут и реакции синтеза.

При крекинге пропана аналогичным образом может происходить образование пропилена, этилена, метана и высших углеводородов:

Для крекинга низкомолекулярных углеводородов такие схемы процессов превращения наиболее вероятны. Здесь образование радикалов (метила и этила) доказано с несомненностью методом переноса металлических зеркал (см. ниже). При крекинге больших молекул первичный распад заключается, вероятно, не в отщеплении радикала СН3, а в расщеплении всей молекулы на сравнительно крупные осколки. Непосредственное отщепление атомарного водорода маловероятно, так как связь С—Н прочнее связи С—С.

Рассматривая сложные вещества, мы часто называем радикалами те или иные произвольно взятые группы взаимно связанных между собой атомов, входящих в состав этих веществ. Мы говорим, например, что спирты жирного ряда можно рассматривать как соединения алифатических радикалов с гидроксильным радикалом и т. п. Однако всегда, когда можно было бы ожидать образования таких радикалов в свободном виде, химики получали продукты их удвоения, т е. соединения друг с другом (реакции ВюрцаФиттига, Кольбе).

Учение о постоянстве четырехвалентности углерода, послужившее фундаментом теории строения, как раз и постулировало невозможность существования как устойчивых веществ частиц, содержащих трех – или двухвалентный углерод. Существование радикалов вроде метила или этила стало вообще счи таться невозможным. Лишь открытие М. Гомбергом (1900) диссоциации гексафенилэтана, приводящей к частичному образованию трифенилметильных радикалов, и последующие работы В. Шленка и А. Е. Чичибабина, которым удалось получить более сложные триарилметилы почти нацело в мономерном состоянии, убедили органиков в том, что в особых условиях такие сложные свободные радикалы могут все же существовать.

Доказать возможность кратковременного существования простейших алифатических свободных радикалов удалось лишь в 1929 г. Панету. Он пропускал через кварцевую трубку при остаточном давлении 1—2 Мм рт. ст. пары тетраметилсвинца, сильно разбавленные чистым водородом, со скоростью 15— 20 М/сек. При нагревании газовой горелкой узкого участка трубки пары тетраметилсвинца разлагались, оставляя кольцеобразное зеркало металлического свинца, а образующиеся метильные радикалы уносились газовым потоком дальше. Если дать образовавшемуся зеркалу принять температуру, близкую к комнатной, и начать накаливать горелкой участок трубки, лежащий раньше зеркала (по ходу газов), то разложение тетраметилсвинца приведет здесь к образованию нового зеркала и в то же время ранее полученное холодное зеркало будет исчезать. Это исчезновение обусловлено взаимодействием свободных метальных радикалов с металлом:

Метильные радикалы, образующиеся при термическом разложении металлоорганических соединений, могут взаимодействовать не только со свинцом, но и с цинком, сурьмой, теллуром, ртутью, нанесенными в виде зеркала или тонкого налета. Во всех этих случаях при взаимодействии радикалов с металлом образуются соответствующие летучие металлоорганические соединения, например со ртутью — диметилртуть:

Пары диметилртути можно сконденсировать в приемнике, охлаждаемом жидким воздухом, и, обработав конденсат бромной ртутью, получить хорошо кристаллизующееся, обладающее четкой температурой плавления смешанное ртутноорганическое соединение:

Это доказывает присутствие в газовом потоке именно метильных радикалов.

Если взять достаточно длинную трубку, то можно при данной линейной скорости газового потока найти, на каком расстоянии от места нагрева холодное зеркало уже перестает сниматься. Определив это расстояние, можно найти полупериод существования свободных метильных радикалов, который оказывается равным около 0,002 Сек.

Разложением тетраэтилсвинца Рb(С2Н5)4 можно получить свободный этил, способный существовать также лишь короткое время.

Попытки обнаружить методом Панета образование высших алифатических радикалов, пропильного или бутильного, показали, что при повышенных температурах они еще менее устойчивы, чем метил и этил. По-видимому, пропильный радикал весьма быстро распадается на этилен и метильный радикал:

Установлено, что при термическом разложении алифатических диазосоединений образуется метиленовый радикал СН2. Например, при разложении диазометана CH2N2 в условиях, аналогичных условиям разложения тетраметилсвинца, газовый поток приобретает способность снимать налеты сурьмы, мышьяка и селена; налеты свинца, цинка и кадмия метиленовыми радикалами не снимаются. С теллуром метиленовые радикалы образуют характерное, очень трудно летучее темно-красное соединение (СН2Те)X.

Исчезновение свободных радикалов в газовом потоке, спустя короткое время после их образования, и превращение их в устойчивые продукты может происходить в результате Рекомбинации Радикалов

Встречаясь с более сложными молекулами, свободные радикалы могут отнимать у них более слабо связанные атомы водорода и образовывать новые радикалы:

Образование и существование свободных радикалов возможно не только в газовой фазе, но и в жидкой, где их присутствие может быть доказано рядом косвенных методов.

В настоящее время все отчетливее выясняется роль и значение радикалов в инициировании и продолжении множества химических процессов, которые были бы вообще, по-видимому, невозможны без их участия.

Крекинг позволяет в ряде случаев получить из нефти вдвое больше бензинов, чем при простой разгонке. Одновременно при этом получается много так называемых газов нефтекрекинга состоящих из продуктов более глубокого расщепления углеводородов нефти. Эти газы содержат, наряду с низшими предельными углеводородами парафинового ряда, много олефинов и являются в настоящее время важнейшим сырьем для промышленности основного органического синтеза (производства этанола, изопропилового спирта, ацетона, дихлорэтана, дивинила, фенола и других многочисленных исходных продуктов для изготовления пластмасс, синтетических каучуков, химических волокон и др.).

Значительная часть газов крекинга нефти используется для синтеза жидких углеводородов, в частности высокооктановых компонентов моторного топлива (изооктана, неогексана, триптана, алкилированных бензолов и т. п.). Для превращения газовых фракций, содержащих непредельные углеводороды С3 и С4, в жидкие углеводороды применяют процессы Полимеризации, чаще всего каталитической. Полимеризация может проводиться в жидкой фазе (см., например, полимеризацию изобутилена) или в газовой фазе над фосфатными катализаторами при 200—250° С и давлении около 20 Ат.

Для получения жидких углеводородов могут быть использованы также содержащиеся в газах крекинга нефти парафиновые углеводороды, перерабатываемые методом Алкилирования олефинами.

Алкилированию подвергаются преимущественно парафины с третичными атомами углерода. Установлено, что нормальные парафины с неразветвленной цепью при повышенных температурах в присутствии катализаторов превращаются в более стойкие изомеры с разветвленной цепью. Особенно легко идет изомеризация над хлористым алюминием:

Алкилирование предельных углеводородов, содержащих третичные атомы углерода, можно прозодить непосредственно под высоким давлением (до 350 Ат) при 500° С. Этим путем можно, например, получить Неогексан (2,2-диметилбутан) — углеводород с октановым числом 94:

Легче совершается Каталитическое алкилирование. В присутствии 98%-ной серной кислоты или жидкого фтористого водорода алкилирование идет при комнатной температуре или даже при 0° С под небольшим давлением. Из изобутана и бутена-1

Можно получить этим путем октан с сильно разветвленной цепью (2,2,3-триметилпентан):

Другой октан с сильно разветвленной цепью (2,2,4-триметилпентан, называемый в технике Изооктаном) можно получать алкилированием изобутана изобутиленом, а также гидрированием смеси диизобутиленов водородом в присутствии никелевого катализатора или сернистого молибдена.

Важное значение имеют процессы Дегидрогенизации Предельных газообразных углеводородов. Этан и пропан могут быть этим путем превращены в этилен и пропилен при 600—650° С (катализаторами служат окислы тяжелых металлов, осажденные на окиси алюминия); бутан может быть в одну или в две стадии превращен в дивинил:

Крекинг нефти, проводимый при более высоких температурах (Пиролиз), приводит к образованию значительных количеств ароматических углеводородов. Впервые образование ароматических углеводородов при пиролизе нефти для получения «нефтяного» газа установили А. А. Летний (1878) и В. В. Руднев (1880). Пиролиз под давлением — метод, получавший впоследствии широкое распространение, — был предложен и осуществлен впервые инженером А. Никифоровым (1896). Создателем весьма совершенных технических конструкций крекинг-установок явился замечательный советский инженер-конструктор академик В. Г. Шухов.

В настоящее время ароматические углеводороды стремятся получать более эффективными методами, чем пиролиз. Так, путем Дегидрогенизации Содержащиеся в нефтях циклопарафины с шестичленным кольцом могут быть превращены в ароматические углеводороды, например:

Из производных циклопентана, содержащихся в больших количествах в некоторых нефтях, также могут получаться производные бензола (с расширением цикла и дегидрогенизацией):

Наконец, парафиновые углеводороды могут замыкаться в шестичленные кольца и, теряя водород, превращаться в ароматические углеводороды. Путем такой Дегидроциклизации (ароматизации) из нефтяных фракций, содержащих Н-гептан, можно получать фракции, содержащие толуол (Б. А. Казанский. А. Ф. Платэ; Б. Л. Молдавский, Г. Д. Камушер; 1936):

В области химии нефти и современных технологических путей ее переработки громадную роль сыграли исследования русских химиков. Начало этим исследованиям положено классическими работами В. В. Марковникова и его учеников: М. И. Коновалова, Н. М. Кижнера, А. М. Беркенгейма. Выдающимися успехами ознаменовались работы Н. Д. Зелинского и его учеников, в первую очередь Б. А. Казанского и С. С. Наметкина. Должны быть отмечены также работы А. Д. Петрова.

Http://www. xumuk. ru/organika/214.html

Во вводных лекциях отмечалось, что современные производства органических ве-ществ базируются в основном на ископаемом органическом сырье – угле, нефти, природ-ном газе.

Нефть как источник сырья промышленного органического синтеза занимает доми-нирующее положение в сырьевом балансе этой отрасли. Поэтому некоторые процессы ее переработки будут предметом нашего рассмотрения.

Нефть различных месторождений заметно отличается по фракционному составу – содержанию легких, средних и тяжелых фракций. Большинство нефтей содержит 15-20% бензиновых фракций, выкипающих до 180С, и 45-55% фракций, перегоняющихся до 300-350С.

Основные химические элементы, входящие в сосав нефти – углерод (82-87%), во-дород (11-14%), сера (0,1-7%), азот (0,001-1,8%), кислород (0,5-1%).

Общее количество алканов в нефтях достигает 30-50%, циклоалканов – от 25 до 75%. Арены содержатся, как правило, в меньшем количестве по сравнению с алканами и циклоалканами (10-20%).

Соотношения между группами углеводородов придает нефтям различные свойства и оказывают влияние на выбор метода переработки нефти и номенклатуру получаемых продуктов.

Нефть является основным источником сырья для нефтеперерабатывающих заводов при получении моторных топлив, масел и мазута. Нефть и продукты ее переработки слу-жат также сырьем для синтеза многочисленных органических продуктов, полимерных ма-териалов, пластмасс, синтетических каучуков и волокон, спиртов, растворителей и др.

В перспективе большая часть нефтепродуктов-энергоносителей может быть заме-щена альтернативными энергоносителями, в то время как замена нефтяного сырья в каче-стве источника получения ценных органических продуктов – проблематична и маловеро-ятна. Более того, доля нефти, используемой в нефтехимических производствах, в бли-жайшие годы в мире возрастет до 8% и по прогнозам в 2020 г. достигнет 20-25%. В связи с этим происходит интеграция нефтеперерабатывающей и нефтехимической промышлен-ности и формирование нефтехимических комплексов.

Комбинирование нефтепереработки (первичная переработка, каталитический кре-кинг, реформинг) с нефтехимическими процессами (пиролиз, синтез мономеров, произ-водство пластмасс и др.) значительно расширяет возможность выбора оптимальных схем глубокой переработки нефти, повышает гибкость производственных систем для получе-ния моторных топлив или нефтехимического сырья, способствует увеличению их рента-бельности. В настоящее время имеется большое число процессов и их комбинаций, кото-рые потенциально могут обеспечить глубокую переработку нефти вплоть до 100%. Выбор структуры нефтехимического комплекса зависит от регионального и общего спроса на нефтепродукты, природы нефти, ее состава и природоохранных факторов.

Существуют первичная и вторичная переработки нефти. Первичными являются процессы разделения нефти на фракции перегонкой, вторичные процессы – это деструк-тивная (химическая) переработка нефти и очистка нефтепродуктов.

Перегонка нефти – первый технологический процесс переработки нефти. Это про-цесс разделения взаиморастворимых жидкостей на фракции, которые отличаются по тем-пературам кипения.

При однократном испарении и последующей конденсации паров получают две фракции: легкую, в которой содержатся больше низкокипящих компонентов, и тяжелую, в которой содержится меньше низкокипящих компонентов, чем в исходном сырье. При этом достичь требуемого разделения компонентов нефти и получить конечные продукты, кипящие в заданных температурных интервалах с помощью перегонки нельзя. В связи с этим после однократного испарения нефтяные пары подвергают ректификации.

Ректификация – массообменный процесс разделения жидкостей, различающихся по температурам кипения, за счет противоточного многократного конденсирования паров и жидкости. Теплоту, необходимую для проведения процесса получают в трубчатых печах, оборудованных горелками. В зависимости от свойств перерабатываемой нефти ректифи-кацию осуществляют либо на атмосферных трубчатых (АТ) установках, либо на установ-ках сочетающих атмосферную и вакуумную перегонку – атмосферно-вакуумных трубча-тых (АВТ) установках.

Нефть, как показано на рисунке 1 подается на перегонку через теплообменник, где она нагревается до 170-175С теплотой продуктов перегонки и поступает в трубчатую печь (1). Нагревая до 350С нефть подается в испарительную часть колонны (2), рабо-тающей под атмосферным давлением. Здесь происходит так называемое однократное ис-парение нефти. При впуске в испаритель нефть, нагретая в трубчатой печи, мгновенно ис-паряется вследствие резкого снижения давления; при этом расходуется часть тепла. Пары низкомолекулярных фракций устремляются вверх навстречу стекающей вниз жидкости – флегме, при соприкосновении с которой они охлаждаются и частично конденсируются. Жидкость при этом нагревается, и из нее испаряются более летучие фракции, т. е. жид-кость обогащается высококипящими углеводородами, а пары – легколетучими. По высоте колонны отбираются дистилляты различного состава в строго определенных интервалах температур. Так, при 300-350С конденсируется и отбирается соляровое масло, при 200-300С керосин, при 160-200С – лигроиновая фракция. Из верхней части колонны выводятся пары бензина, которые охлаждаются и конденсируются в теплообменниках (3) и (4). Часть жидкого бензина подают на орошение колонны (2). В ее нижней части собирается мазут, который подвергают дальнейшей перегонке для получения из него смазочных масел во второй ректификационной колонке (6), работающей по вакуумом. При перегонке мазута вакуум используется с целью предотвращения расщепления углеводородов под воздействием высоких температур. Предварительно мазут направляют во вторую трубчатую печь (5), где он нагревается до 400-420С. Образующиеся пары поступают в ректификационную колонну (6), в которой поддерживается остаточное давление 5,3-8,0 кПа. Стекающая вниз по колонне жидкость продувается острым водяным паром для облегчения условий испарения легких компонентов и снижения температуры в нижней части колонны. Ассортимент продуктов вакуумной перегонки мазута зависит от варианта переработки – масляной или топливной. По масляной схеме получают несколько фракций – легкий, средний и тяжелый масляные дистилляты; по топливной схеме полу-чают одну фракцию, называемую вакуумным газойлем, используемым как сырье катали-тического крекинга или гидрокрекинга. Дистилляты, получаемые по первой схеме, под-вергают специальной очистке и затем смешивают в различных соотношениях для получе-ния тех или иных сортов масел. Из нижней части колонны выводят остаток перегонки нефти. Гудрон используется как сырье для термического крекинга, коксования, производ-ства битума и высоковязких масел.

Каталитический риформинг углеводородов относят к одному из вторичных спосо-бов переработки нефти. Основные цели каталитического риформинг углеводородов в нефтехимическом комплексе следующие:

1.превращение низкокачественных бензиновых фракций в катализат – высоко-октановые компоненты бензина;

2.превращение бензиновых фракций в катализат из которого выделяют арома-тические углеводороды – бензол, толуол, этилбензол, изомеры ксилола.

Каталитический риформинг проводят в среде водорода при высоких темпера (480-530С), сравнительно низких давлениях (2-4 МПа), с применением специальных катализа-торов. В процессе образуется избыточное количество водорода, которое выводится в виде водородсодержащего газа (до 80% Н2) и используется для процессов гидрирования.

Каталитический риформинг – сложный химический процесс, в котором протекают реакции, приводящие к образованию ароматических углеводородов:

Температура процесса является фактором его ускорения. Однако с ростом темпера-туры прогрессируют процессы коксообразования на поверхности катализатора, что при-водит к его дезактивации. Поэтому оптимальная температура должна сочетать достаточ-ную скорость процесса со стабильностью работы катализатора. Такими являются темпе-ратуры от 480 до 530С.

Давление – фактор смещения равновесия ароматизации в левую сторону, однако рост давления препятствует коксообразованию. Кроме того, повышение давления приво-дит к росту энергетических затрат на компримирование. Учет всех этих факторов обу-словливает выбор оптимального давления 2-4 МПаю

Соотношение Н2 : углеводородное сырье. Увеличение избытка водорода препятст-вует образованию ароматических соединений. В то же время этот избыток способствует снижению скорости коксообразования на поверхности катализатора, поскольку способст-вует насыщению непредельных углеводородов, образующихся в побочных реакциях кре-кинга. Увеличение соотношения Н2 : углеводородное сырье достигается путем увеличения кратности циркуляции реакционного потока, что приводит к росту энергетических затрат. Оптимальное мольное соотношение Н2 : углеводородное сырье, учитывающее противо-борство указанных факторов составляет от 6:1 до 10:1.

Время контакта. За время контакта принимают то минимальное время, при котором достигается практически полное превращение исходной фракции в продукты риформинга. Это время составляет обычно 1 секунду.

Катализаторы. В промышленности для риформинга применяют платиновые или полиметаллические катализаторы, содержащие кроме платины другие металлы: рений, иридий, кадмий, свинец, палладий. И в том и в другом случае катализаторы наносятся на пористые носители – оксид алюминия, промотированный фтором или хлором; алюмоси-ликат, цеолит, и др. В качестве промоторов, увеличивающих активность, селективность и термическую стабильность, предложены также разные элементы, иттрий и церий.

Наиболее широкое распространение получил алюмоплатиновый катализатор, а сам процесс риформинга на этом катализаторе известен под названием платформинга. Содер-жание платины в катализаторе составляет 0,3-0,65%.

Катализаторы платформинга могут стабильно работать без регенерации от 6 меся-цев до 1 года, но проявляют высокую чувствительность к сернистым и азотистым соеди-нениям, примесям свинца и мышьяка. Нежелательной примесью является влага, всту-пающая во взаимодействие с хлором катализатора. Образующийся при этом хлороводород вызывает сильную коррозию оборудования. Для продления срока службы катализатора сырье платформинга подвергают гидроочистке и сушке. Регенерация дезактивированного катализатора осуществляется медленным выжиганием кокса. Технологическая схема платформинга представлена на рисунке 2.

Исходную нефтяную фракцию подогревают в теплообменнике (5), смешивают с во-дородом и нагревают в трубчатой печи (6) до температуры, необходимой для очистки от серы. Гидроочистка проводится в реакторе (4) на катлизаторе, стойком к соединениям серы. Горячие газы по выходе из аппарата (4) отдают свое тепло исходной нефтяной фракции в теплообменнике (5) и охлаждаются водой (и частично конденсируются) в холодильнике (2). В сепараторе (1) конденсат отделяют от Н2 и H2S и насосом 3 подают на стадию риформинга. Перед теплообменником (10) сырье смешивается с циркулирующим водородом, а затем подогревается в теплообменнике (10) и трубчатой печи (6). Платформинг осуществляется в реакторах (7), (8) и (9) адиабатического типа. Ввиду высокой эндотермичности процесса приходится подогревать реакционную массу из аппаратов (7) и (8) в печи (6). В последнем реакторе (9) платформинг завершается. Тепло горячих газов используют в теплообменнике (10) для подогрева смеси, идущей на риформинг, а затем охлаждают газы в холодильнике (11). Полученный конденсат отделяют от водорода в сепараторе (13) и направляют на стабилизацию. Водород (с примесью низших алканов) из сепаратора (13) разделяют на три потока. Один циркуляци-онным компрессором (12) подают на смешение с очищенной нефтяной фракцией, направ-ляемой на риформинг, другой смешивают с исходной фракцией и подают на гидроочист-ку, а остальное выводят.

Стабилизация жидкого продукта риформинга заключается в отгонке низших угле-водородов (C4H10, C3H8 и отчасти C2H6), растворившихся в нем при повышенном давле-нии. Конденсат из сепаратора (13) подогревается в теплообменнике (17) и поступает в стабилизационную колонну (14). В ней отгоняются низшие углеводороды, их пары кон-денсируются в конденсаторе (15) и конденсат стекает в емкость (16). Часть его подают на верхнюю тарелку в виде флегмы, а остальное количество отводят с установки в виде сжи-женного газа. Стабилизированный продукт из куба колонны (14) отдает тепло конденсату в теплообменнике (17) и направляется на дальнейшую переработку для выделения инди-видуальных ароматических углеводородов из жидких продуктов риформинга.

Http://www. liveinternet. ru/community/3168041/post103454648/

Химическая переработка нефтяного сырья приобретает в настоящее время все большее значение в народном хозяйстве. Для выполнения задач, стоящих перед этой отраслью отечественной химической промышленности, необходимы, с одной стороны, дальнейшая разработка и усовершенствование технологии процессов нефтепереработки и, с другой стороны, создание научных основ проведения этих процессов.  [1]

Важным путем химической переработки нефтяного сырья является пиролиз. Используемое сырье и условия процесса ( температура, давление и др.) определяют структуру и выход продуктов.  [2]

Некоторые способы химической переработки нефтяного сырья имеют много общего со способами переработки каменноугольного сырья, поэтому в учебнике в общих чертах освещены возможности использования каменного угля как источника сырья для промышленности органического синтеза.  [3]

Процессы алкилирования, полимеризации и изомеризации являются ведущими процессами химической переработки нефтяного сырья, в том числе и нефтяных углеводородных газов.  [4]

Любой современный нефтеперерабатывающий завод включает тс или иные установки химической переработки нефтяного сырья. Необходимость в этих установках диктуется, с одной стороны, высокими требованиями, предъявляемыми к товарным нефтепродуктам, а с другой – все возрастающей потребностью в светлых нефтепродуктах и сырье для химической промышленности.  [5]

Книга рассчитана на широкие круги инженерно-технических работников, занимающихся химической переработкой нефтяного сырья и газов, и может быть использована как учебное пособие студентами вузов.  [6]

В книге изложены достаточно полные и хорошо подобранные сведения по всем основным процессам химической переработки нефтяного сырья. В первой части книги описываются углеводороды как исходное сырье для нефтехимической промышленности, во второй части приводятся теоретические основы нефтехимии, принципиальные технологические схемы промышленных установок технические показатели процессов химической переработки нефтяного сырья.  [7]

В книге изложены достаточно полные и хорошо подобранные сведения по всем основным процессам химической переработки нефтяного сырья. В первой части книги описываются углеводороды как исходное сырье для нефтехимической промышленности, во второй части приводятся теоретические основы нефтехимии, принципиальные технологические схемы промышленных установок, технические показатели процессов химической переработки нефтяного сырья.  [8]

В отличие от первой части курса, в которой рассматривались процессы физического разделения нефти и газа на составляющие их компоненты, данный раздел учебника посвящен технологии химической переработки нефтяного сырья. Соответствующие промышленные процессы расположены по родственным признакам в изложенной ниже последовательности.  [9]

Основными продуктами современной нефтяной промышленности, как известно, являются моторное топливо и разного рода смазочные масла; их производство в настоящее время все более и более приобретает характерные особенности химической переработки нефтяного сырья. Вместе с тем за последние 15 – 20 лет был разработан ряд новых методов глубокой химической переработки нефтяных продуктов, совокупность которых образовала новую могучую отрасль нефтяной промышленности; эту отрасль с полным правом можно назвать нефтехимической промышленностью. Ее продукцию составляют ароматические углеводороды, спирты и фенолы, альдегиды и кетоны, органические кислоты, их производные и многочисленные другие продукты, находящие разнообразное практическое приложение. Положение, что нефть – не топливо, а сырье для химической переработки, получает в развитии нефтехимической промышленности наглядную иллюстрацию.  [10]

Имеются в виду, главным образом, процессы массопередачи – перегонка, ректификация, адсорбция, десорбция, экстракция; тепловые процессы – выпаривание, нагревание, охлаждение, конденсация; процессы химической переработки нефтяного сырья. Многие параметры аппаратов нормализованы.  [11]

Несмотря на небольшой объем книги, читатель найдет в ней множество необходимых для понимания существа дела сведений о химическом составе и физических свойствах как сырой нефти, так и отдельных нефтепродуктов; о принципах работы установок по физическому разделению нефти и газа на составляющие их компоненты, а также о технологии химической переработки нефтяного сырья.  [12]

Более 90 % всей добываемой нефти перерабатывается в топлива, масла, битумы и другие традиционные нефтепродукты, а остальная ее часть служит сырьем для нефтехимической переработки. Химическая переработка нефтяного сырья, как правило, заключается в глубоком разрушении созданных природой органических соединений с последующим конструированием из полученных элементарных звеньев ( этилена, пропилена, бензола и др.) более сложных молекул с заданными свойствами.  [13]

Так, например материальный баланс регенератора установки каталитического крекинга составляется на основе данных по количеству и составу выжигаемого с катализатора кокса, учитывая, что известны реакции горения составных частей кокса ( углерод, водород, сера) и коэффициент избытка воздуха. Однако в большинстве случаев при химической переработке нефтяного сырья происходят сложные химические превращения и поэтому материальные балансы надежно могут быть составлены на основе экспериментальных данных, полученных на промышленных или опытных установках.  [14]

Так, например, материальный баланс регенератора установки каталитического крекинга составляется на основе данных по количеству и составу выжигаемого с катализатора кокса, учитывая, что известны реакции горения составных частей кокса ( углерод, водород, сера) и коэффициент избытка воздуха. Однако в большинстве случаев при химической переработке нефтяного сырья происходят сложные химические превращения и поэтому материальные балансы надежно могут быть составлены только на основе экспериментальных данных, полученных на промышленных или опытных установках.  [15]

Http://www. ngpedia. ru/id251733p1.html

– актуализировать знания учащихся об основных источниках углеводородов;

– формировать умение видеть перспективы развития и основные подходы к решению проблем современности;

– формировать активную жизненную позицию учащихся при оценке глобальных проблем человечества;

– развивать навыки коммуникативной культуры и умение сотрудничества при работе в группе.

?1.Что собой внешне представляет нефть и каков состав этой жидкости?

Нефть – маслянистая жидкость от светло-коричневого до темно-бурого, почти черного цвета, с характерным запахом, в воде не растворяется, образует на поверхности воды пленку, не пропускающую воздух. Нефть – это сложная смесь насыщенных и ароматических углеводородов, циклопарафинов, а также некоторых органических соединений, содержащих гетероатомы – кислород, серу, азот и др. Каких только восторженных имен не давали люди нефти: и «черное золото», и «кровь земли». Нефть и в самом деле заслуживает нашего восхищения и благодарности.

По составу нефть бывает: парафиновая – состоит из алканов с прямой и разветвленной цепью; нафтеновая – содержит предельные циклические углеводороды; ароматическая – включает ароматические углеводороды (бензол и его гомологи). Несмотря на сложный компонентный состав, элементный состав нефти более-менее одинаков: в среднем 82-87% углерода, 11-14% водорода, 2-6% других элементов (кислород, сера, азот).

В 1859 г. в США, в штате Пенсильвания 40-летний Эдвин Дрейк с помощью собственного упорства, денег нефтяной компании и старого парового двигателя пробурил скважину глубиной 22 метра и извлек из нее первую нефть.

Приоритет Дрейка как пионера в области бурения скважин оспаривается, однако его имя все равно связано с началом эры. Нефть обнаружили во многих частях света. Человечество наконец приобрело в большом количестве превосходный источник искусственного освещения… и не только. Не за горами автомобильная эра, пластмассы и многое другое.

В среде ученых доминировали две основные концепции: органическая и неорганическая. Согласно первой концепции, органические остатки, захороненные в осадочных породах, с течением времени разлагаются, превращаясь в нефть, уголь и природный газ; более подвижные нефть и газ затем скапливаются в верхних пластах осадочных пород, имеющих поры. Другие ученые утверждают, что нефть образуется на «больших глубинах в мантии Земли».

Русский ученый-химик был сторонником неорганической концепции. В 1877г. он предложил минеральную (карбидную) гипотезу, согласно которой возникновение нефти связано с проникновением воды вглубь Земли по разломам, где под воздействием ее на «углеродистые металлы» и получаются углеводороды.

Еще была гипотеза космического происхождения нефти – из углеводородов, содержавшихся в газовой оболочке Земли еще во время ее звездного состояния.

С 1950-з гг. были получены убедительные доказательства биогенной природы нефти. Детальное изучение, сравнение молекулярного состава углеводородов (и их биохимических предшественников) в органическом веществе осадочных пород и в различных нефтях из залежей, изучение распределения стабильных изотопов углерода (12С, 13С) в нефтях, органическом веществе пород и в организмах и многое другое подтвердило неправомочность неорганических гипотез.

Поисками нефти и ее изучением занимались многие русские ученые: высказал первую научную гипотезу происхождения нефти; разработал способ непрерывной перегонки нефти; занимался изучением химического состава нефти; – один из организаторов нашей нефтяной геологии.

?4.Одинаковыми ли физическими свойствами обладает нефть различных месторождений?

Нефть имеет несколько различные физические свойства, это объясняется ее различным составом.

?5.Какой метод можно предложить для разделения углеводородов, входящих в состав нефти? На чем он должен быть основан? Какова цель переработки нефти?

Переработка нефти, или ректификация, – это процесс термического разделения нефти и нефтепродуктов на фракции по температуре кипения.

Существует два метода переработки нефти: физический (первичная переработка) и химический (вторичная переработка).

Первичную переработку нефти осуществляют в ректификационной колонне – аппарате для разделения жидких смесей веществ, различающихся по температуре кипения.

– лигроин – производство пластмасс, сырье для получения бензина при вторичной переработке;

– газойль – дизельное и котельное топливо, сырье для вторичной переработки;

При первичной переработке нефти выход бензина составляет 20%. Поэтому необходима вторичная переработка – крекинг и риформинг – химические методы получения бензина, переработка не самой нефти, а ее высококипящих фракций. Выход бензина при данной переработке составляет 80%.

Крекинг – это процесс термического и каталитического расщепления молекул тяжелых углеводородов, содержащихся в нефти, на вещества с меньшим числом углеродных атомов в молекуле. Продукты крекинга определяются структурой и составом исходной смеси углеводородов и условиями проведения крекинга. Промышленный крекинг был разработан русским инженером (впоследствии академиком) еще в 1891г.. Однако первые установки крекинга в нашей стране были построены только в советское время.

Различают два основных типа крекинга – термический и каталитический.

Термический крекинг проводят при температуре 470-540 0С и давлении 40-60 атм.. Ему обычно подвергаются высококипящие нефтяные фракции, например мазут. При термическом крекинге с молекулами углеводородов происходят следующие процессы, которые протекают одновременно: расщепление, изомеризация, ароматизация, алкилирование.

Каталитический крекинг проводят в присутствии катализатора при температуре 450-520 0С и атмосферном давлении. Каталитическому крекингу подвергают дизельную (газоль-соляровую) фракцию. Каталитический крекинг более прогрессивный метод переработки нефтяных продуктов, чем термический.

Риформинг – это каталитический процесс промышленной переработки бензиновой и лигроиновой фракций нефти с целью получения ароматических углеводородов и бензина более высокого качества. До внедрения этого процесса в промышленность бензол, толуол и другие ароматические вещества получали при коксовании углей.

Известно, что важнейшей составной частью природного газа является метан. Из метана можно получить большое количество веществ, имеющих применение в народном хозяйстве. Напишите уравнения для предложенной ниже схемы превращений метана, назовите полученные продукты и предложите способы их применения.

Из нефти и продуктов ее крекинга можно извлечь достаточно большое количество гексана. Из гексана можно получить большое количество веществ, применяющихся в народном хозяйстве. Напишите уравнения для предложенной ниже схемы превращений гексана, назовите полученные продукты и предложите способы их применения.

Напишите уравнения реакций, которые могут протекать с углеводородом гексадеканом (С16Н34) при крекинге нефтепродуктов.

Напишите уравнения реакций, которые могут протекать с углеводородом додеканом (С12Н26) при крекинге нефтепродуктов.

Перечислите области применения продуктов, полученных в результате перегонки нефти.

?7.С какими проблемами может столкнуться человечество при добыче, транспортировке и переработке нефти?

Ежегодно в Мировой океан сбрасывается около 10 млн. т нефти, часть поверхности воды уже покрыта тончайшей радужной пленкой.

Такое положение чревато многими неприятностями глобального масштаба. Тончайшая пленка нефти на поверхности воды уменьшает испарения с этого участка на 60%. В результате усиливается нагрев водной поверхности. Воздух из-за пленки мало насыщается влагой (водяными парами), поэтому, проходя над континентами, такие воздушные массы дадут мало осадков. Перепад температур также способствует возникновению более частых циклонов. Разлитая нефть лишает кислорода рыб и других обитателей океана. Тонна нефти может загрязнить около 12 км2 поверхности океана, погубить в нем все живое: планктон, молодь рыб, многие водоросли – то, что находится большую часть времени именно в приповерхностных слоях воды, где встреча с нефтью более вероятна. Достается от нефтяных загрязнений даже тем обитателям, которые постоянно проживают в глубине, например коралловые полипы могут жить лишь в чистой, прозрачной воде. А вместе с кораллами гибнут и те обитатели моря, которые привыкли жить и кормиться в районе рифов.

Нефть досаждает и океанским млекопитающим: китам, дельфинам, тюленям, а также птицам. Если тюлень вынырнет в районе нефтяного пятна, его запачканный мех перестанет быть надежным теплоизолятором. То же самое происходит и с птичьим оперением.

Проникая в глубину перьевого покрова, нефть нарушает его структуру и теплоизолирующие свойства. Кроме того, чистя перья клювом, птицы довольно часто заглатывают капли нефти и отравляются. От нефтяного отравления погибают даже киты. Массовую гибель китов, которые выбрасываются на берег, некоторые ученые связывают с губительным воздействием нефти на организм.

Нефть попадает в воду при разведке и добыче с плавающих или стационарных, работающих на прибрежном шельфе буровых платформ; при загрязнении рек химическими и нефтеперерабатывающими заводами; при авариях и катастрофах морских танкеров…

Общее количество нефти, разлитое танкерами за период с 1970 по 2000г., составляет более 5 млн. т. Самый большой разлив нефти случился в 1979г., когда «Атлантик Экспресс» столкнулся с «Эгеан Кэптен» в Карибском море, в результате чего разлилось почти 300 тыс. т нефти.

Однако, чаще всего разливы нефти бывают при погрузке, разгрузке и бункеровке. Наверное, самый худший вариант – преднамеренный выброс нефти. Как это было в 1991г. в Персидском заливе.

Идеального метода нет. Поэтому поиски новых технологий очистки рек и морей от нефти продолжаются. Из существующих методов можно выбрать самый эффективный. Сейчас я расскажу вам про способы удаления нефти, а вы заполните таблицу.

Оценивать методы будете по четырем критериям: денежные затраты, трудности из-за природных условий и экологические проблемы. Оценка ведется по 6-бальной системе от 0 до 5. чем меньше баллов наберется у того или иного метода, тем этот метод лучше, и наоборот.

Вам предстоит выбрать на основании анализа самый эффективный метод очистки морской, речной воды от нефтяного загрязнения и заполнить таблицу.

На сегодняшний день существует пять методов борьбы с загрязнениями нефтью в океане.

1.Самоликвидация – этот метод применяют в том случае, если нефть разлита далеко от берегов и пятно небольшое (в этом случае пятно лучше не трогать). Постепенно оно растворится в воде и частично испарится. Иногда нефть не исчезает и через несколько лет, мелкие пятна достигают побережья в виде кусочков скользкой смолы.

Итак: не используются химические препараты; нефть держится на поверхности длительное время.

2.Химическое рассеивание. Существуют химические препараты для ликвидации нефтяных пятен.

Диспергенты – вещества, которые разбивают нефтяной слой на мельчайшие капельки, не смешивающиеся друг с другом. Применяют для активизации естественного рассеивания нефти.

Итак: используются химические препараты; метод дорогой, позволяющий оперативно удалять нефть с поверхности.

Сюда же можно отнести и Осаждение. Ученые обнаружили, что если нефтяное пятно посыпать слоем мела, то мел будет впитывать в себя нефть и очень быстро тонуть, очищая таким образом поверхность воды от нефтяных пятен, однако, нефть остается на дне и продолжает отравлять флору и фауну океана. Основная цель разбивания на мельчайшие капельки диспергентами и осаждения мелом – быстрое удаление нефти с поверхности воды, раньше, чем разлив нефти достигнет более экологически уязвимого района.

З.Поглощение. Всем вам известна солома и торф. Они поглощают нефть, после чего их можно аккуратно собрать и вывезти с последующим уничтожением. Этот метод годится лишь в условиях штиля и только для небольших пятен. Способ весьма популярен в последнее время из-за большой дешевизны и высокой эффективности. Существуют и другие сорбенты – вещества, впитывающие нефть и позволяющие затем удалить ее с поверхности воды.

4.Ограждение и последующее механическое удаление нефти. Если нефтяное пятно окружить плавающими заграждениями, оно не будет увеличиваться в размерах. Такие заграждения можно даже передвигать в удобное для ликвидации нефти место. Затем специальное судно откачивает нефть насосами. Но эту откачанную нефть использовать как топливо нельзя, кроме того, этот метод применяется только при спокойной погоде, т. е. когда на море нет волн. А, если авария произошла в полярных водах, нефть становится вязкой, что влечет за собой некоторые трудности.

Итак: не используются химические препараты; эффективно в первые часы после разлива, пока толщина нефтяной пленки достаточна для механического удаления.

5.Биологический (биоремедитация). Технология, в основе которой лежит использование микроорганизмов, способных окислять углеводороды.

Итак: минимальный ущерб, удаление нефти с поверхности, но метод трудоемок, дорог и длителен.

Ключевым словом является название процесса переработки нефтепродуктов.

1.Названия различных нефтепродуктов, получаемых при перегонке нефти (от лат. fraction – разламывание).

7.Углеводород – компонент газового бензина, получаемого из попутного нефтяного газа.

Добывая бесконтрольно природные источники углеводородов, мы можем лишиться данного исчерпаемого ресурса. Газы, образующиеся при сжигании топлива, загрязняют атмосферу, приводят к таким экологическим проблемам, как кислотные дожди, парниковый эффект, разрушение озонового слоя Земли, образование смога в городах, к болезням человека.

Нефть, а также попутный нефтяной и природный газы, каменный уголь – не только ценнейшие ископаемые источники углеводородов, но и часть уникальной кладовой невосполнимых природных ресурсов, бережное и разумное использование которых – необходимое условие, прогрессивного развития человеческого общества.

?Какакие решения перечисленных проблем можно реализовать в настоящее время?

Искать альтернативные источники топлива, экологически чистые методы переработки.

Http://pandia. ru/text/78/170/99103.php

Нефть – это природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ).

Соединения сырой нефти – это сложные вещества, состоящие из пяти элементов – C, H, S, O и N, причем содержание этих элементов колеблется в пределах 82-87% углерода, 11-15% водорода, 0,01-6% серы, 0-2% кислорода и 0,01-3% азота. Углеводороды – основные компоненты нефти и природного газа. Простейший из них – метан CH4 – является основным компонентом природного газа. Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей – на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды. См. также ХИМИЯ ОРГАНИЧЕСКАЯ. Парафиновые углеводороды (общей формулы CnH2n + 2) относительно стабильны и неспособны к химическим взаимодействиям. Соответствующие олефины (CnH2n) и ацетилены (CnH2n – 2) обладают высокой химической активностью: минеральные кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи между атомами углерода и переводят их в простые одинарные; возможно, благодаря их высокой реакционной способности такие углеводороды отсутствуют в природной нефти. Соединения с двойными и тройными связями образуются в крекинг-процессе при удалении водорода из парафиновых углеводородов во время деструкции последних при высоких температурах. Циклопарафины составляют важную часть большинства нефтей. Они имеют то же относительное количество атомов углерода и водорода, что и олефины. Циклопарафины (называемые также нафтенами) менее реакционноспособны, чем олефины, но более, чем парафины с открытой углеродной цепью. Часто они представляют собой главную составную часть низкокипящих дистиллятов, таких, как бензин, керосин и лигроин, полученных из сырой нефти. Ароматические углеводороды имеют циклическое строение; циклы состоят из шести атомов углерода, соединенных попеременно одинарной и двойной связью. В легких нефтепродуктах из дистиллятов каменноугольного дегтя ароматические углеводороды присутствуют в больших количествах, чем в первичных и крекинг-дистиллятах нефти. Они входят в состав бензина. В заметных количествах такие соединения присутствуют только в некоторых сырых нефтях, например на месторождениях о. Борнео (Калимантан). Они могут быть получены дегидрированием циклогексанов нефти с использованием катализаторов и высоких температур.

Сернистые соединения. Наряду с углеводородами нефти содержат органические соединения серы, кислорода и азота. Сернистые соединения имеют характер либо открытых, либо замкнутых цепей. Примером первых являются алкил-сульфиды и меркаптаны. Многие сернистые соединения нефти представляют собой производные тиофена – гетероциклического соединения, молекула которого построена как бензольное кольцо, где две CH-группы заменены на атом серы. Большая часть сернистых соединений сосредоточена в тяжелых фракциях нефтей, соответствующих гидрированным тиофенам и тиофанам. Сера в нефтях – нежелательный компонент. Сернистые соединения обычно имеют резкий неприятный запах и часто коррозионноактивны как в природном виде, так и в виде продуктов горения. Для удаления серы и ее соединений разработано много специальных процессов очистки.

Кислородные соединения. Некоторые имеющиеся в нефтях кислородные соединения относятся к нафтеновым кислотам. Соединения этого типа встречаются довольно часто, и содержание их в некоторых нефтях России и Калифорнии достигает одного и более процента. Медьсодержащие нафтены используются как консерванты дерева, а кобальт-, марганец – и свинецсодержащие – как отвердители красок и лаков. Фенолы (производные ароматических углеводородов, в которых присутствует гидроксильная группа ОН), обнаружены в дистиллятах нефтей США, Японии и Польши. Эти соединения обычно являются продуктом крекинг-процессов, поскольку большей частью обнаруживаются в крекинг-дистиллятах и лишь частично в первичных дистиллятах. Промышленное производство креозолов (производных ароматических углеводородов, в которых присутствуют как гидроксильная, так и метильная группы), из крекинг-дистиллятов калифорнийских нефтей экономически выгодно, даже несмотря на их низкое содержание (менее 0,01%).

Азотсодержащие соединения. Содержание азота в нефтях изменяется от следов до 3%. Азотсодержащие соединения в нефтях представлены соединениями ряда хинолина, частично или полностью насыщенными водородом и другими органическими радикалами; эти соединения, как правило, находятся в высококипящих фракциях сырых нефтей, начиная с керосина.

Неорганические соединения. Почти все нефти содержат небольшое количество неорганических соединений, которые остаются в виде золы после сгорания нефтей. Зола содержит кремнезем, алюминий, известь, оксиды железа и марганца. Используя такие методы, как экстракция растворителем, иногда выгодно получать соединения ванадия из сажи, образующейся при сгорании ванадийсодержащих нефтей. Однако, как правило, использование нефтяной золы ныне весьма ограничено.

Обычная сырая нефть из скважины – это зеленовато-коричневая легко воспламеняющаяся маслянистая жидкость с резким запахом. На промыслах она хранится в крупных резервуарах, откуда транспортируется танкерами или по трубопроводам в резервуары перерабатывающих заводов. На многих заводах различные типы сырых нефтей разделяются по их свойствам согласно результатам предварительной лабораторной переработки. Она указывает приблизительное количество бензина, керосина, смазочных масел, парафина и мазута, которое можно выработать из данной нефти. Химически нефти очень различны и изменяются от парафиновых, которые состоят большей частью из парафиновых углеводородов, до нафтеновых или асфальтеновых, которые содержат в основном циклопарафиновые углеводороды; существует много промежуточных или смешанных типов. Парафиновые нефти по сравнению с нафтеновыми или асфальтеновыми обычно содержат больше бензина и меньше серы и являются главным сырьем для получения смазочных масел и парафинов. Нафтеновые типы сырых нефтей, в общем, содержат меньше бензина, но больше серы и мазута, а также асфальта.

Сырая нефть содержит некоторое количество растворенного газа, который соответствует по составу и строению природным газам и состоит из легких парафиновых углеводородов. Жидкая фаза сырой нефти содержит сотни углеводородов и других соединений, имеющих точку кипения от 38° С до примерно 430° С, причем процентное содержание каждого из углеводородов невелико. Например, бензиновая фракция может содержать до 200 индивидуальных углеводородов, однако в типичном бензине присутствует лишь около 60 углеводородов – от метана с т. кип. -161° С до мезитилена (ароматического углеводорода), с т. кип. 165° С. Они включают парафины, циклопарафины и ароматические соединения, но олефины отсутствуют. Огромный труд, необходимый для анализа состава углеводородов бензинов, делает практически невозможным проведение этих исследований при обычных шаблонных определениях. Что касается соединений, кипящих при температурах выше 165° С, присутствующих в керосине и высококипящих дистиллятах и остатках, трудности идентификации отдельных компонентов возрастают из-за большого количества соединений, перекрывания их температур кипения и возрастающей тенденции высококипящих соединений к разрушению при нагревании. Поэтому все горючие нефтяные продукты подразделяются на фракции по температурным пределам их кипения и по плотности, а не по химическому составу. Соединения, присутствующие в асфальтах и подобных им тяжелых остаточных продуктах, чрезвычайно сложны. Анализы показывают, что они представляют собой полициклические соединения.

СТАДИИ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА. Сырые нефть и газ должны пройти серию стадий в процессе их очистки и переработки, прежде чем они превратятся в окончательные продукты, применяемые в промышленности и быту. После подъема под действием давления газа или воды в полевой (промысловый) сепаратор природный газ и легкий природный бензин удаляются, а жидкая нефть сохраняется. Серия насосных станций, работающих обычно в режиме эстафеты, подает нефть по трубопроводам в хранилища нефтеперерабатывающих предприятий. Там, путем термической обработки в ректификационных колоннах, происходит разделение на бензин, керосин, различные типы газойля, масляные дистилляты и тяжелые остатки, а затем их индивидуальная очистка.

Периодическая перегонка. На начальных этапах развития нефтехимической промышленности сырая нефть подвергалась так называемой периодической перегонке в вертикальном цилиндрическом перегонном аппарате. Процессы дистилляции были неэффективны, потому что отсутствовали ректификационные колонны и не получалось чистого разделения продуктов перегонки. Трубчатые перегонные аппараты. Развитие процесса периодической перегонки привело к использованию общей ректификационной колонны, из которой с различных уровней отбирались дистилляты с разной температурой кипения. Эта система используется и сегодня. Поступающая нефть нагревается в змеевике примерно до 320° С, и разогретые продукты подаются на промежуточные уровни в ректификационной колонне. Такая колонна может иметь от 30 до 60 расположенных с определенным интервалом поддонов и желобов, каждый из которых имеет ванну с жидкостью. Через эту жидкость проходят поднимающиеся пары, которые омываются стекающим вниз конденсатом. При надлежащем регулировании скорости обратного стекания (т. е. количества дистиллятов, откачиваемых назад в колонну для повторного фракционирования) возможно получение бензина наверху колонны, керосина и светлых горючих дистиллятов точно определенных интервалов кипения на последовательно снижающихся уровнях. Обычно для того, чтобы улучшить дальнейшее разделение, остаток от перегонки из ректификационной колонны подвергают вакуумной дистилляции. Конструкция ректификационных колонн в нефтеперерабатывающей промышленности становится произведением искусства, в котором ни одна деталь не остается без внимания. Путем очень точного контроля температуры, давления, а также потоков жидкостей и паров разработаны методы сверхтонкого фракционирования. Эти колонны достигают высоты 60 м и выше и позволяют разделять химические соединения, т. кип. которых отличается менее чем на 6° С. Они изолированы от внешних атмосферных воздействий, а все этапы дистилляции автоматически контролируются. Процессы в некоторых таких колоннах происходят в условиях высоких давлений, в других – при давлениях, близких к атмосферному; аналогично температуры изменяются от экстремально высоких до значений ниже -18° С.

Склонность к дополнительному разложению более тяжелых фракций сырых нефтей при нагреве выше определенной температуры привела к очень важному успеху в использовании крекинг-процесса. Когда происходит разложение высококипящих фракций нефти, углерод-углеродные связи разрушаются, водород отрывается от молекул углеводородов и тем самым получается более широкий спектр продуктов по сравнению с составом первоначальной сырой нефти. Например, дистилляты, кипящие в интервале температур 290-400° С, в результате крекинга дают газы, бензин и тяжелые смолоподобные остаточные продукты. Крекинг-процесс позволяет увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки. Выход кокса определяется природой перерабатываемого сырья и степенью рециклизации наиболее тяжелых фракций. Как правило, из исходного крекируемого объема образуется примерно 15-25% лигроина и 35-50% газойля (т. е. легкого дизельного топлива) наряду с крекинг-газами и коксом. Последний используется в основном как топливо, исключая образующиеся специальные виды кокса (один из них является продуктом обжига и используется при производстве углеродных электродов). Коксование до сих пор пользуется популярностью главным образом как процесс подготовки исходного материала для каталитического крекинга.

Катализатор – это вещество, которое ускоряет протекание химических реакций без изменения сути самих реакций. Каталитическими свойствами обладают многие вещества, включая металлы, их оксиды, различные соли.

Процесс Гудри. Исследования Э. Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса. Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т. е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430-480° С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах. Целью большинства крекинг-процессов является достижение оптимального выхода бензина. При крекинге происходят распад тяжелых молекул, а также сложные процессы синтеза и перестройки структуры молекул углеводородов. Влияние разных катализаторов различно. Некоторые из них, такие, как оксиды хрома и молибден, ускоряют реакцию дегидрогенизации (отщепление водорода). Глины и специальные алюмосиликатные составы, используемые в промышленном каталитическом крекинге, способствуют ускоренному разрыву углерод-углеродных связей больше, чем отрыву водорода. Они также способствуют изомеризации линейных молекул в разветвленные. Эти составы замедляют полимеризацию (см. ниже) и образование дегтя и асфальта, так что нефти не просто деструктурируются, а обогащаются полезными компонентами.

Риформинг – это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина. При термическом риформинге, как и при каталитическом крекинге, основная цель состоит в превращении низкооктановых бензиновых компонентов в более высокооктановые. Процесс обычно применяется к парафиновым фракциям прямой перегонки, кипящим в пределах 95-205° С. Более легкие фракции редко подходят для таких превращений. Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга. Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель. Большинство установок риформинга – это установки с неподвижным слоем. (Процесс каталитического риформинга, в котором используется стационарный катализатор, называется платформингом.) Но под действием давления ок. 50 атм (при получении бензина с умеренным октановым числом) активность платинового катализатора сохраняется примерно в течение месяца. Установки, в которых используется один реактор, приходится останавливать на несколько суток для регенерации катализатора. В других установках используется несколько реакторов с одним добавочным, где проводится необходимая регенерация. Жизнь платинового катализатора сокращается при наличии серы, азота, свинца и других “ядов”. Там, где эти компоненты представляют проблему, обычно до входа в реактор проводят предварительную обработку смеси водородом (т. н. гидроочистка, когда до подачи в реактор нефтяных погонов – бензинов прямой перегонки – их пропускают через водородсодержащие газы, которые связывают вредные компоненты и снижают их содержание до допустимых пределов). Некоторые реакторы с неподвижным слоем заменяются на реакторы с непрерывной регенерацией катализатора. В этих условиях катализатор перемещается через реактор и непрерывно регенерируется. Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т. п.

Кроме крекинга и риформинга существует несколько других важных процессов производства бензина. Первым из них, который стал экономически выгодным в промышленных масштабах, был процесс полимеризации, который позволил получить жидкие бензиновые фракции из олефинов, присутствующих в крекинг-газах.

Полимеризация. Полимеризация пропилена – олефина, содержащего три атома углерода, и бутилена – олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82. Нефтеперерабатывающие заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода.

Алкилирование. В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан. Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0-15° C, а затем 20-40° С.

Изомеризация. Другой важный путь получения высокооктанового сырья для добавления в моторное топливо – это процесс изомеризации с использованием хлорида алюминия и других подобных катализаторов. Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями. Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан. Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т. е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду).

Ранние работы по получению жидкого топлива из углей путем гидрирования под высоким давлением (процесс Бергуса) проводились главным образом в Германии с использованием весьма сильных катализаторов, таких, как оксиды молибдена, которые либо нечувствительны к присутствию серы, либо в значительной степени сохраняют свою активность после прошедшей сульфатизации. Для этого были необходимы следующие параметры: давление до 280 атм, температура ок. 450° С и катализатор. Давления, используемые в современных процессах гидрокрекинга, составляют от примерно 70 атм для превращения сырой нефти в сжиженный нефтяной газ (LP-газ) до более чем 175 атм, когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков – мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном – высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе. Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75-80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20-30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации. Необходимость уменьшения загрязнения воздуха в промышленных районах США, Западной Европы и Японии обусловливает значительное увеличение использования процессов гидрирования для десульфатизации дистиллятов и остаточных топлив. Процессы гидрокрекинга, предназначенные главным образом для удаления серы при невысоких требованиях к выходу продукции, известны как “гидроочистка”. Газообразные легкие фракции прежде всего проходят через вакуумную установку для сжижения, затем полученный на этой стадии газойль проходит десульфуризацию гидроочисткой, прежде чем вновь смешивается с некоторыми вакуумными остатками и другими низкосернистыми легкими фракциями сырой нефти.

Гидроочистка в настоящее время – наиболее распространенный метод гидрогенизации олефинов и повышения качества легких продуктов за счет удаления серы и других примесей. По экономическим причинам, а также из-за проблем, связанных с примесями воздуха и воды, применяются и другие методы, например использование сульфида свинца в качестве катализатора в регенеративных растворителях и предварительное рафинирование с применением высоковольтных электропечей для лучшего отделения очищающего реагента от получаемого продукта. МАСЛА И СМАЗКИ

Нефтяная промышленность поставляет масла и смазки, различающихся по вязкости от жидких, почти как вода, до консистенции патоки. Как и в случае с другими нефтяными фракциями и продуктами, появились новые методы их производства – экстракция и деасфальтизация растворителями и др.

Экстракция растворителями. К промышленным растворителям относятся хлорекс, фурфурол (побочный продукт переработки овсяной шелухи), нитробензол, фенолы, метилэтилкетоны и пр. Экстракция растворителями осуществляется обычно в режиме противотока (поток масел идет в одном направлении, а растворителя – в противоположном), что позволяет проводить более выборочное растворение и более глубокую очистку. При еще более избирательной процедуре колонна наполняется пористой средой (выполненной, например, в виде перфорированных пластин).

Сжиженный пропан. Эффективность обработки смазочных масел повышается при использовании сжиженного пропана под давлением. Этот парафиновый углеводород (т. кип. -42° С) практически не оказывает растворяющего действия на асфальты и очень слабо растворяет твердые парафины при низких температурах. Тем не менее, регулируя и подбирая температуру и соотношения растворитель/масла, можно успешно удалять асфальт и твердые парафины.

Депарафинизация растворителями. Депарафинизация растворителями – важный этап производства смазочных масел. Депарафинизация неочищенных или очистка смазочных масел дает разнообразные продукты – от светлых веретенных масел до тяжелых вакуумных смазок и товарных парафинов. Наиболее широко используются для депарафинизации смеси метилэтилкетона и толуола или бензола и ацетона.

Вторичные газообразные продукты получаются из нефти в результате различных процессов крекинга. Тяжелые фракции при крекинге дают бензин, а бензиновые фракции умеренно крекируются с увеличением октанового числа. Газы, получающиеся при этих процессах, могут составлять 2-10% (масс.) от крекируемой нефти; они заметно отличаются от природных нефтяных газов. Главная их особенность – наличие олефинов, которые полностью отсутствуют в природных газах. В газах высокотемпературного крекинга может содержаться 50% олефинов, включая этилен, пропилен и бутилены. Как правило, олефины составляют более 10-25%. Крекинг-газы обычно содержат также небольшое количество водорода. Температура крекинга 540° С или выше при невысоком давлении благоприятна для образования этилена, а более умеренные температуры 455-480° С и высокое давление – для образования меньшего количества этилена и пропорционально большего количества пропилена и бутиленов.

Бензин – самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив. Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина.

Состав. Промышленный бензин представляет собой смесь углеводородов в интервале т. кип. 30-200° C. Некоторые бутаны, кипящие при температуре ниже 38° С, имеет высокое давление паров. Углеводороды в бензине включают многие изопарафины, а также ароматические углеводороды и нафтены, а в бензинах, полученных при крекинге, содержится от 15 до 25% олефинов. Октановое число углеводородов снижается в следующем порядке: изопарафины > ароматические > олефины > нафтены > н-парафины. Имеются различия между компонентами каждой из этих групп, зависящие от структуры молекул и точки кипения. Различные компоненты дают свой вклад в октановое число бензиновых смесей. Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.

Классификация бензинов. Бензины классифицируются по разным основаниям, включая интервалы температур кипения, октановое число, содержание серы.

Интервалы температур кипения. Большинство бензинов кипит в интервале 30-200° С. 50%-ная точка, т. е. температура, при которой кипит половина компонентов смеси и которая определяет состав смеси во время прогрева двигателя, а частично и при разгоне транспортного средства, располагается в пределах 98-104° С. Высокое содержание низкокипящих компонентов, таких, как бутаны и пентаны, обусловливает исключительно высокое давление паров и в теплое время является причиной образования паровых пробок, когда газовые пузырьки препятствуют течению топлива по узким трубам двигателей и тепловых установок. В то же время недостаток низкокипящих компонентов служит причиной трудностей запуска двигателя зимой. 90%-ная точка кипения бензина определяет время прогрева двигателя и эффективность использования топлива.

Октановое число. Октановое число – наиболее важная характеристика бензина. Оно обычно определяется в одноцилиндровой стационарной установке, снабженной различными приборами для регистрации склонности к детонации. Нормальный гептан (семь атомов углерода в линейной цепи) детонирует очень легко; для него принято нулевое октановое число. Изооктан (восемь атомов углерода в разветвленной цепи) не детонирует до тех пор, пока не будут достигнуты экстремальные условия давления, температуры и нагрузки; для него произвольно установлено октановое число 100. При испытании бензина с неизвестными детонационными свойствами его сравнивают со смесью гептана и изооктана, имеющей такую же способность к детонации, как и испытуемый бензин; октановое число бензина – это процентное содержание изооктана в такой смеси. Октановое число, определенное таким образом, не всегда соответствует характеристике в многоцилиндровом двигателе в дорожных условиях при изменяющихся скоростях, нагрузках и ускорениях. В нефтяной промышленности используются два метода, делающие это сравнение более реальным, – моторный метод и исследовательский метод. Октановое число определяется как среднее из двух таких определений.

Присадки. Практически все бензины содержат различные присадки, в том числе ингибиторы смолообразования и небольшое количество красителя. Законодательством многих промышленно развитых стран существенно снижен допустимый уровень соединений свинца в бензине (этилированный бензин, т. е. содержащий добавки тетраэтилсвинца, повышающие октановое число бензина, составляет менее 20% от всего бензина, вырабатываемого в США).

Керосин – это легчайшее и наиболее летучее жидкое топочное топливо. Первоначально керосин использовался только для освещения, теперь он употребляется как топливо в пекарнях, отопительных и нагревательных приборах, оборудовании ферм, а также как компонент моторного топлива. Хороший керосин должен иметь особый цвет (приблизительно 250-300 мм по шкале Штаммера для нефтепродуктов), достаточную вязкость для устойчивой и равномерной пропитки фитиля, должен гореть ясным высоким пламенем без копоти или отложения твердых углистых осадков на фитиле, копоти в дымоходах и на ламповом стекле. Безопасность керосина при использовании в осветительных лампах определяется стандартным тестом на вспышку. Керосин медленно нагревают в небольшой стеклянной или металлической чашке и к поверхности периодически прикасаются пламенем до тех пор, пока не появится небольшой дымок, соответствующий точке воспламенения.

Дизельное топливо. Промежуточные нефтяные дистилляты, кипящие при температурах выше, чем керосин, но ниже, чем смазочные масла, представляют собой горючее для средне – и высокоскоростных дизельных двигателей.

Цетановое число. Дизельные топлива оцениваются их цетановым числом – это реальное измерение легкости воспламенения под действием температуры и давления, а не способности горения. При этом топливо сравнивается со смесью цетана – парафинового углеводорода с 16-ю атомами углерода, который легко воспламеняется под давлением, и a-метилнафталина, который не возгорается. Процент цетана в смеси, показывающий ту же воспламеняемость, что и дизельное топливо в стандартных условиях испытания, называется цетановым числом. Парафиновые топлива более подходят для дизельных двигателей, поскольку они легко воспламеняются под давлением без дополнительной искры зажигания. Однако в связи с возрастающей потребностью в дистиллятах прямой перегонки для других целей, кроме получения дизельного топлива, увеличивается использование тяжелых дистиллятов с более низким цетановым числом, получаемых при каталитическом крекинге. Повышение надежности воспламенения низкокачественных дизельных топлив, улучшение воспламеняемости, более известное как увеличение цетанового числа, достигается добавлением специальных масел. Они включают такие компоненты, как органические оксиды и пероксиды. Небольшие добавки амилнитрата удовлетворительно улучшают качество топлив.

Реактивные топлива. Реактивные нефтяные топлива могут быть керосиновые либо нафтеновые. Они состоят главным образом из бензина прямой перегонки или керосина в топливах керосинового типа либо топливах №1 нафтенового типа.

Топливо для отопления зданий. Использование легких дистиллятов в качестве бытового топлива постоянно возрастает, так как они удобнее и чище по сравнению, например, с углем. Конкуренцию им составляют природный газ и электричество.

Мазут. Большинство промышленных котельных и тепловых электростанций используют в качестве топлив черные вязкие остаточные продукты переработки нефти – топочный мазут. В большинстве случаев это продукты крекинга, хотя имеются и продукты прямой перегонки. Парафиновые воски являются главным средством для защиты оборудования от действия воды. Все они имеют водяно-белый цвет и температуру плавления в пределах 50-95° С. Микрокристаллические воски используются как изоляция в самых разнообразных отраслях, таких, как электротехническая промышленность и промышленность средств связи, а также при печати, гравировке и т. д. Вазелин, состоящий из тяжелых нефтяных остатков и парафиновых восков, производится фильтрованием цилиндровых дистиллятов и применяется в технике (в качестве антикоррозионной смазки и др.) и медицине (главным образом для изготовления мазей).

Получение нефтепродуктов путем фракционирования. Нефтяная промышленность – это главный производитель химикатов. Ее первые успехи в разделении индивидуальных углеводородов были достигнуты при фракционировании природного газа и природного бензина. Первыми компонентами, выделенными таким путем, были метан, этан, пропан, нормальный бутан, изобутан и пентины. Соответствующим образом спроектированные ректификационные колонны дают возможность выделять из крекинг-газов небольшие фракции с узким диапазоном температур кипения, которые служат первичным сырьем для химического производства, – это углеводороды, имеющие от одного до пяти атомов углерода (как парафины, так и олефины). Химические продукты, получаемые окислением природного газа. Большое число химикатов производится в промышленных количествах путем окисления природного газа. Они включают метиловый (древесный) спирт, этиловый (пищевой) спирт, пропиловый спирт (с тремя атомами углерода), формальдегид, ацетон, метилэтилкетон, муравьиную кислоту, уксусную кислоту. Из этих компонентов, первично содержащих кислород, производятся многие другие продукты, хорошо известные в органической химии. Химические продукты, получаемые из олефинов. Олефины в крекинг-газах и низкокипящих фракциях нефтей легко реагируют с хлором, хлороводородной кислотой, серной кислотой и другими реагентами, образуя новые исходные вещества для дальнейшей переработки и производства большого числа химических продуктов. Из этого сырья производятся фреоны, гликоли, глицерин, каучук, пластмассы, инсектициды, спирты и моющие средства. Химические продукты, получаемые с помощью других процессов. Аммиак синтезируется из водорода, получаемого при крекинге природного газа, и азота, извлекаемого дистилляцией из сжиженного воздуха. Азотная кислота и нитрат аммония, используемые для производства удобрений и взрывчатых веществ, также получаются из аммиака.

Эрих В. Н. и др. Химия и технология нефти и газа. Л., 1985 Конь М. Я. и др. Нефтеперерабатывающая и нефтехимическая промышленность за рубежом. М., 1986

Http://dic. academic. ru/dic. nsf/enc_colier/3157/%D0%A5%D0%98%D0%9C%D0%98%D0%AF

Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества—основные задачи, по­ставленные перед нефтеперерабатывающей промышленностью в настоящее время. Решение этих задач в условиях, когда непрерывно возрастает доля переработки сернистых и высокосер­нистых, а за последние годы и высокопарафинистых нефтей, потре­бовало изменения технологии переработки нефти. Большое значение приобрели вторичные и, особенно, каталитические процессы. Производство топлив, отвечающих современным требова­ниям, невозможно без применения таких процессов, как каталити­ческий крекинг, каталитический риформинг, гидроочистка, алкилирование и изомеризация, а в некоторых случаях—гидрокрекинг.

Каталитический крекинг представляет собой современный про­цесс превращения высококипящих нефтяных фракций в базовые компоненты высококачественных авиационных и автомобильных бензинов и в средние дистиллятные фракции—газойли. Промыш­ленные процессы основаны на контактировании сырья с активным катализатором в соответствующих условиях, когда 40-50_вес.% исходного сырья без рециркуляции превращается в бензин и дру­гие легкие продукты. В процессе крекинга на катализаторе обра­зуются углистые отложения, резко снижающие его активность, в данном случае крекирующую способность. Для восстановления активности катализатор регенерируют. Наибольшее распространение получили установки с циркули­рующим катализатором в движущемся потоке и псевдоожиженном, или кипящем, слое.

Каталитический риформинг—современный, широко применяе­мый процесс для производства высокооктановых бензинов из низкооктановых.

Риформинг при более низких давлениях в системе и в сочета­нии с экстрактивной перегонкой или экстракцией растворителями позволяет получать ароматические углеводороды (бензол, толуол, ксилолы и высшие), используемые в нефтехимической промышлен­ности. Промышленные процессы каталитического риформинга, при которых выходы риформата достигают 73—90%, основаны на кон­тактировании сырья с активным катализатором, обычно содержа­щим платину.

Для поддержания активности катализатора его периодически регенерируют; регенерацию проводят тем чаще, чем ниже давление в системе. Исключением является процесс платформинга, когда катализатор не регенерируют. Важной особенностью каталити­ческого риформинга является то, что процесс протекает в среде водорода, который выделяется так же, как и в реакциях риформинга; избыток водорода удаляют из системы. Этот водород намного дешевле специально получаемого, и его используют в гидрогенизационных процессах нефтепереработки.

Гидроочистка нефтяных дистиллятов является одним из наибо­лее распространенных процессов, особенно при переработке сернистых и высокосернистых нефтей. Основной целью гидроочистки нефтяных дистиллятов является уменьшение содержания в них сернистых, азотистых и металлоорганических соединений. При гидроочистке происходит разложение органических веществ, содер­жащих серу и азот. Они реагируют с водородом, циркулирующим в системе, с образованием сероводорода и аммиака, которые уда­ляют из системы.

Промышленные процессы основаны на контактировании неф­тяных дистиллятов с активными катализаторами, в основном алюмокобальтмолибденовыми и алюмоникельмолибденовыми. Процесс протекает в условиях, при которых 95—99 вес.% исходного сырья превращается в очищенный продукт (гидрогенизат). Одновременно образуется незначительное количество бензина. Катализатор периодически регенерируют.

Алкилирование представляет собой процесс получения высоко­качественных компонентов авиационных и автомобильных бензинов. В основе процесса лежит взаимодействие парафиновых угле­водородов с олефиновыми с образованием более высококипящего парафинового углеводорода. До недавнего времени промышленное изменение процесса ограничивалось каталитическим алкилированием изобутана бутиленами в присутствии серной или фтористоводородной кислот. В последнее время в промышленных условиях изобутан алкилируют не только бутиленами, но и этиленом, пропиленом и даже амиленами, а иногда и смесью этих олефинов.

Изомеризация — процесс превращения низкооктановых пара­финовых углеводородов, преимущественно фракций С5 и С6 или их смесей, в соответствующие изопарафиновые фракции с более высоким октановым числом. На промышленных установках в со­ответствующих условиях можно получать до 97—99,7 объемн.% продуктов изомеризации. Изомеризация протекает в среде водо­рода. Катализатор периодически регенерируют:

Полимеризация—процесс превращения пропилена и бутиленов в жидкие олигомерные продукты, используемые в качестве компо­нентов автомобильных бензинов или сырья для нефтехимических процессов. В зависимости от сырья, катализатора и технологиче­ского режима количество продукта может изменяться в широких пределах.

1. Назначение процесса. Основное назначение каталитического крекинга —получение высокооктановых компонентов бензина. Крекинг осуществляется при 420-550єС и является процессом каче­ственного изменения сырья, т. е. процессом образования соедине­ний, отличающихся от первоначальных по своим физико-химиче­ским свойствам. В зависимости от сырья и условий процесса выход бензина при крекинге составляет 7—50 вес.% (на сырье). Наряду с бензином образуются и другие продукты—газообразные, жидкие и твердые (кокс). В качестве сырья обычно применяют тяже­лые дистилляты атмосферной или вакуумной перегонки нефти, а также деасфальтизаты и другие продукты.

При каталитическом крекинге тяжёлые нефтяные фракции при 5ООєС в значительной части превращаются в компоненты, выкипающие в пределах температур кипения бензина, и газообразные продукты, которые могут использоваться для производства высо­кооктановых компонентов бензина или как сырье для химических синтезов.

В отличие от термического крекинга, каталитический кре­кинг проводится в специальной аппаратуре с применением специфического оборудования и в присутствии катализаторов.

Главным преимуществом каталитического крекинга перед тер­мическим являет большая ценность получаемых продуктов:меньший выход метана, этана и диенов при более высоком выходе углеводородов С3 и С4 (особенно изобутана), а также ароматиче­ских углеводородов, олефинов с разветвленной цепью и изопарафинов. Антидетонационные свойства бензинов каталитического крекинга значительно выше, чем бензинов термического крекинга. Продукты крекинга имеют сложный состав. Так, при каталитиче­ском крекинге цетана С16Н34 образуются (в вес.%):

Состав продуктов крекинга керосиновых, соляровых и вакуумных дистиллятов, т. е. смесей весьма большого числа разных углеводородов, еще более сложен. Результаты каталитического крекинга углеводородных смесей существенно зависят от условий проведения процесса применяемого катализатора.

Каталитический крекинг в основном используют для производ­ства высокооктановых компонентов автомобильного и авиацион­ного бензина. При получении автомобильного бензина в качестве сырья обычно используются вакуумные дистилляты первичной пе­реработки нефти, а при производстве авиабензина—керосино-соляровые фракции первичной перегонки нефти.

2.Режим работы установок. Каталитический крекинг происходит, как правило, в паровой фазе в системе без притока и отдачи тепла, поэтому его относят к адиабатическим процессам. При адиабатическом процессе внешняя работа полностью затрачивается на изменение внутренней энергии системы.

В зависимости от характеристик перерабатываемого сырья и системы или типа установки, а также от состава и свойств катализатора устанавливается определенный технологический режим. К основным показателям технологического режима установок каталитического крекинга следует отнести температуру, давление, соотношение количества сырья и катализатора, находящегося в зоне крекинга, а также кратность циркуляции катализатора.

Температура. С повышением температуры увеличивается окта­новое число бензина, возрастает выход газов С1-С3 и олефинов С4 и выше, снижается выход бензина и кокса, но повышается со­отношение бензин: кокс и снижается соотношение выходов легкого и тяжелого газойля.

Давление. При повышении давления увеличивается выход парафиновых углеводородов и бензина, снижается выход газов С1-С3, олефинов и ароматических углеводородов. Выход кокса в условиях промышленного процесса от давления практически не зависит.

Глубина крекинга. Рециркуляция. Глубину превращения (или глубину крекинга) принято оценивать количеством сырья, превращенного в бензин, газ или кокс. При крекинге в одну ступень (однократный крекинг) глубина превращения равна 45-60%. Примерный выход продуктов при однократном каталитическом крекенге керосина – соляровой фракции прямой перегонки нефти приведен ниже (индекс активности катализатора 28-32):

Когда хотят достигнуть более глубокого превращения, т. е. получить из сырья больше бензина, подвергают крекингу не только исходное сырье, но и образующиеся в процессе газойлевые фракции. На большинстве промышленных установок каталитическому крекингу подвергают именно смесь исходного сырья с газойлем каталитического крекинга или иногда раздельно свежее сырье и газойлевые фракции. Таким образом газойль возвращается в систему для использования его в качестве вторичного сырья – рециркулятор. В зависимости от того, сколько газойля подвергается каталитическому крекингу, глубина крекинга может достигать 80-90%.

Отношение массы рециркулирующего газойля к массе свежего сырья называется коэффициентом рециркуляции; оно изменяется от нуля до 2,3 при крекинге с рециркуляцией.

Глубина крекинга возрастает с увеличением коэффициента рециркуляции. Характерно, что выход жидких углеводородов, включая фракцию С3-С4, увеличивается до глубины крекинга 80%, а затем снижается. Если же выделить фракцию С3- С4, то сумма получаемых жидких продуктов по мере увеличения глубины кре­кинга непрерывно снижается, в данном случае до 62,9 объемн.%. По мере увеличения глубины крекинга выход газойля падает, а при 100%-ной глубине крекинга становится равным нулю.

Объемная скорость. Отношение объема сырья, подаваемого в реактор за 1 ч, к объему катализатора, находящегося в зоне кре­кинга, называется объемной скоростью. Обычно на одну весовую единицу катализатора, находящегося в зоне крекинга, подается от 0,6 до 2,5 вес. ед. сырья в час. Часто объемную скорость выражают в объемных единицах — объем/ (объем*ч) или м 3 /(м 3 *ч) и записывают в виде ч -1

Кратность циркуляции катализатора. В системах каталитиче­ского крекинга с циркулирующим пылевидным или микросферичёским катализатором на 1 т поступающего в реактор сырья вво­дится 7-20 т регенерированного катализатора, а на установках каталитического крекинга, где применяются крупнозернистые ка­тализаторы (частицы диаметром 3—6мм),—от 2 до 5—7 т в за­висимости от конструкции установки. Указанное отношение (7— 20 т/т) называют весовой кратностью циркуляции катализатора. Иногда это соотношение выражают в объемных единицах, тогда оно называется объемной кратностью циркуляции катализатора.

Следует различать кратность циркуляции катализатора по све­жему сырью и по всей загрузке реактора (свежее сырье плюс рециркулят). В последнем случае при одном и том же количестве катализатора кратность циркуляции будет меньше.

Жесткость крекинга. Известно, что снижение объемной скорости так. же как и увеличение, кратности циркуляции катализатора, способствует повышению выхода бензина и глубины крекинга. Влияние этих параметров на глубину крекинга можно выразить отношением кратности циркуляции к объемной скорости. Это от­ношение называется фактором жесткости крекинга. Фактор жесткости может быть вычислен по свежему сырью реактора и по суммарной загрузке реактора (свежее сырье плюс рециркулирующий газойль).

Эффективность крекинга. Отношение суммарного выхода (в объемных или весовых процентах) дебутанизированного бензина и фракции С4 к глубине крекинга исходного сырья (в объемных или весовых процентах) именуют эффективностью крекинга. Эф­фективность (коэффициент) обычно равна 0,75—0,8, если она была подсчитана на основе весовых процентов.

В результате каталитического крекинга на установках полу­чают до 15 вес.% газа, содержащего водород, аммиак и легкие углеводороды, 30—55 вес.% высокооктанового компонента авто­мобильного бензина (или 27—50 вес.% авиационного бензина), 2—9 вес.% кокса и легкий и тяжелый газойли. Газ после очистки и газофракционирования используется для технологических или бытовых нужд. Компоненты автомобильного (или авиационного) бензина после стабилизации компаундируются с другими компо­нентами и используются в качестве товарных топлив. Легкий газойль используется как компонент дизельного топлива (при необходимости — после гидроочистки) или, вместе с тяжелым газойлем, как сырье для получения сажи или приготовления сортовых мазутов.

3. Химические основы процесса. При каталитическом крекинге протекают реакции расщепления, алкилирования, изомеризации, ароматизации, полимеризации, гидрогенизации и деалкилирования. Некоторые из них являются первичными, но большинство—вто­ричными.

Крекинг парафинов. При крекинге парафиновых углеводородов нормального строения доминируют реакции разложения. Продук­ты крекинга состоят главным образом из парафиновых углеводо­родов более низкого молекулярного веса и олефинов. Выход олефинов увеличивается с повышением молекулярного веса сырья. Термическая стабильность парафиновых углеводородов понижается с увеличением молекулярного веса. Тяжелые фракции нефте­продуктов являются менее стабильными и крекируются значительно легче, чем легкие фракции. Наиболее часто разрыв молекул проис­ходит в ее средней части.

Механизм каталитического крекинга—карбоний-ионный. Согласно этому механизму, часть молекул парафинов подвергается термическому расщеплению, а образующиеся олефины присоеди­няют протоны, находящиеся на катализаторе, и превращаются в карбоний-ионы. Карбоний-ионы являются агентами распростране­ния цепной реакции. В результате целого ряда превращений об­разуются парафиновые углеводороды меньшего молекулярного веса, чем исходные, и новые большие карбоний-ионы, которые за­тем расщепляются.

Реакции дегидрогенизации при крекинге высокомолекулярных парафинов играют незначительную роль. Однако процесс дегидро­генизации низкомолекулярных парафинов, особенно газообразных, имеет практическое значение для превращения малоценных газо­образных продуктов в ценные — олефины.

При крекинге парафиновых углеводородов нормального строе­ния протекают и вторичные реакции с образованием ароматиче­ских углеводородов и кокса. Много ароматических углеводоро­дов при каталитической ароматизации получается из парафинов, структура которых допускает образование бензольного кольца.

Изопарафиновые углеводороды крекируются легче. Водорода и метана при этом получается больше, чем при крекинге нормаль­ных парафинов, а углеводородов С3 и С4 (газа) – меньше. Фрак­ции С4, С5 и С6 содержат меньше олефинов вследствие того, что насыщение сильно разветвленных молекул непредельных углево­дородов достигается легче, чем для неразветвленных.

Крекинг нафтенов. При крекинге нафтенов одновременно мо­жет происходить отщепление боковых цепей. На первой стадии нафтеновые углеводороды с длинными алкильными цепями пре­вращаются в алкилнафтеновые или алкилароматические углеводо­роды со сравнительно короткими боковыми цепями. Короткие алкильные цепи, особенно метильный и этильный радикалы, тер­мически стабильны и в условиях промышленного каталитического крекинга уже не отщепляются.

Алкильные боковые цепи алкилнафтеновых углеводородов рас­щепляются с образованием парафинов и олефинов, которые вместе с низкомолекулярными моноциклическими нафтеновыми углеводо­родами и деалкилированными ароматическими углеводородами составляют конечные продукты крекинга.

Крекинг ароматических углеводородов сопровождается деалкилированием и конденсацией. При деалкилировании алкилароматических углеводородов получаются парафины, олефины и алкил­ароматические углеводороды с более короткими боковыми цепями. Разрыв связи углерод – углерод происходит непосредственно у кольца, но такое деалкилирование не протекает интенсивно, если алкильная цепь содержит менее трех углеродных атомов. Реак­ционная способность углеводородов возрастает с увеличением мо­лекулярного веса, но все же остается значительно меньшей, чем у изомерных моноалкилбензолов. Инициирование каталитиче­ского крекинга алкилароматических углеводородов, так же как и для парафиновых углеводородов, начинается с образования карбоний-иона в результате присоединения протона катализатора. Между молекулами ароматических углеводородов или между ними и олефинами (или другими непредельными углеводородами) про­исходит конденсация. В результате образуются полициклические ароматические углеводороды вплоть до асфальта и кокса, по­этому при переработке сырья со значительным содержанием поли­циклических углеводородов при одинаковой степени превращения образуется значительно больше кокса, чем при переработке сырья, содержащего преимущественно моноциклические аромати­ческие углеводороды.

Крекинг олефинов, образующихся в результате расщепления парафиновых, нафтеновых и ароматических углеводородов, а так­же самих олефинов, является вторичной реакцией. Инициирование реакции крекинга, как и других реакций олефинов, происходит в результате образования карбоний-иона. Если этот ион достаточно велик (С6 или больше), то он может расщепляться в (β-положении с образованием олефина и меньшего (первичного) карбоний-иона, а вновь образовавшийся ион, если это возможно, изомеризуется во вторичный или третичный ион. Если же карбоний-ион невелик (С3—С5), он превращается либо в олефин (в результате передачи протона катализатору или нейтральной молекуле олефина), либо в парафин (присоединяя гидрид-ион от нейтральной молекулы).

Изомеризация олефинов. При изомеризации олефинов могут происходить миграция двойной связи, скелетная и геометрическая V изомеризация. Возможность изомеризации является важным пре­имуществом каталитического крекинга перед термическим: в ре­зультате изомеризации повышается октановое число бензиновых фракций и увеличивается выход изобутана, имеющего большую ценность как сырье для алкилирования.

Полимеризация и деполимеризация. Полимеризация олефинов также является важной реакцией. В сочетании с последующим крекингом полимеризация приводит к образованию олефинов и парафинов. Однако глубокая полимеризация ведет к образованию тяжелых продуктов, которые адсорбируются на катализаторе и разлагаются на кокс и газ. При высоких температурах (600 °С) и низких давлениях может протекать деполимеризация.

Циклизация и ароматизация. Вторичной реакцией олефинов, протекающей в более поздних стадиях процесса, является частич­ное их дегидрирование. В результате образуются диены или олефины расщепляются на диены и парафины. Вторичные реакции между олефинами и диенами могут привести к образованию циклопарафинов. Ароматические углеводороды получаются в резуль­тате дегидроциклизации циклоолефинов или нафтеновых углево­дородов, образовавшихся в начальных стадиях процесса.

Прочие реакции. Реакцией, возможной в условиях каталити­ческого крекинга, является алкилирование ароматических углево­дородов. Оно нежелательно, так как образующиеся более тяжелые продукты способны алкилироваться дальше или конденсироваться с образованием кокса; при атом уменьшается выход бензина.

Крекинг сложных углеводородов может затрагивать какую-либо часть молекулы независимо от других ее частей. Например, длинные парафиновые цепи нафтеновых и ароматических углево­дородов расщепляются так же, как если бы они были парафино­выми углеводородами с тем же числом атомов углерода в моле­куле. Кольца нафтеновых или ароматических углеводородов не изменяются в том. процессе деалкилирования или расщепления парафиновых боковых цепей. Дегидрогенизация нафтеновых колец обычно происходит после частичного деалкилирования.

Обычно одним из лучших критериев интенсивности побочных реакций является отношение выходой бензина и кокса. Высокое отношение указывает на преобладание желательных реакций, ра­зумеется, при условии, что октановое число бензина высокое. Низ­кое отношение выходов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций. К желательным ре­акциям относятся изомеризация, гидрирование, циклизация и аро­матизация (неглубокая) олефинов; эти реакции ведут к высокому выходу парафиновых, углеводородов изостроения и ароматических углеводородов, выкипающих в пределах температуры кипения бензина, и высокому отношению изо – и нормальных парафиновых углеводородов. Нежелательные реакции (крекинг, дегидрогенизация и полимеризация олефинов, алкилирование и конденсация ароматических углеводородов) приводят к высоким выходам водорода и кокса, низкому выходу олефинов и к получению сравнительно тяжелых газойлей, при этом выход бензина и его октанового числа снижаются.

Основным сырьем промышленных установок каталитического крекинга являются атмосферные и вакуумные дистилляты первич­ной перегонки нефти. В зависимости от фракционного состава дистиллятное сырье можно отнести к одной из следующих групп.

Первая группа — легкое сырьё. К этой группе относятся дистил­ляты первичной перегонки нефти (керосино-соляровые и вакуум­ные). Средняя температура их кипения составляет 260—280 °С. от­носительная плотность 0,830—0,870, средний молекулярный вес 190—220. Легкие керосино-соляровые дистилляты прямой гонки яв­ляются хорошим сырьем для производства базовых авиационных бензинов, так как дают большие выходы бензинов при малом коксообразовании.

Вторая группа— тяжелое дистиллятное сырье. К этой группе относятся тяжелые соляровые дистилляты, выкипающие при тем­пературах от 300 до 550°С или в несколько более узких пределах, а также сырье вторичного происхождения, получаемое на установках термического крекинга и коксования (флегма термического крекинга и газойль коксования). Их средние молекулярные веса приблизительно в 1,5 раза выше, чем у легких видов сырья, а именно 280—330 вместо 190—220. В противоположность легкому сырью, тяжелое дистиллятное сырье перед направлением в реак­тор или в узел смешения с горячим катализатором в парообраз­ное состояние переводят не целиком. Тяжелые соляровые дистилляты с относительной плотностью 0,880—0,920, как правило, ис­пользуются для производства автомобильных бензинов.

Третья группа — сырье широкого фракционного состава. Это сырье можно рассматривать как смесь дистиллятов первой и вто­рой групп; оно содержит керосиновые и высококипящие соляровые фракции, а также некоторые продукты, получаемые при производ­стве масел и парафинов (экстракты, гачи, петролатумы, легкоплав­кие парафины и др.). Предел выкипания дистиллятов третьей груп­пы 210—550 °С.

Четвертая группа — промежуточное дистиллятное сырье. Оно представляет собой смесь тяжелых керосиновых фракций с легки­ми и средними соляровыми фракциями и имеет пределы выкипания – 250—470 °С. К ним можно отнести также и смеси, перегоняющиеся в более узких пределах, например 300—430 °С. Проме­жуточное сырье используется для получения автомобильных и авиационных ба­зовых бензинов.

Керосиновые и соляровые дистил­ляты, вакуумные дистилляты прямой пе­регонки нефти являются хорошим сырьем для каталитического крекинга. Это же относится и к легкоплавким парафинам (отходам от депарафинизации масел).

Менее ценное сырье—экстракты, получаемые при очистке масляных дистиллятов избирательными растворителями так как они содержат много труднокрекируемых ароматических углеводородов. Во избежание сильного коксообразования экстракты крекируют в смеси с прямогонными соляровыми дистиллятами.

Реже в качестве сырья для каталитического крекинга исполь­зуются нефти и остаточные нефтепродукты (без предварительной очистки).

При каталитическом крекинге дистиллятов прямой гонки образуется больше бензина и меньше кокса, чем при крекинге подобных (по фракционному составу) дистиллятов с установок термического крекинга и коксования. При каталитическом крекинге тяжелых вакуумных дистиллятов, мазутов и других смолистых остатков образуется много кокса. Кроме того, содержащиеся в таком сырье сернистые, азотистые и металлорганические соединения отравляют катализатор. Поэтому высокосмолистые мазуты и тем более гудроны каталитическому крекингу не подвергают.

Количество и качество продуктов каталитического крекинга зависят от характеристики перерабатываемого сырья и катализаторов, а также от режима процесса. На установках каталитического крекинга получают жирный газ, нестабильный бензин, легкий и тяжелый каталитические газойли. Иногда предусмотрен отбор легроина.

Жирный газ, получаемый на установках каталитического крекинга характеризуется значительным содержанием углеводородов изостроения, особенно изобутана. Это повышает ценность газа как сырья для дальней шей переработки.

Жирный газ установки каталитического крекинга и бензин для удаления из него растворенных легких газов поступают на абсорбционно-газофракционирующую установку 1 . Работа этой установки тесно связана с работой установки каталитического кре­кинга. Связь заключается не только в том, что на абсорбционно-газофракционирующую установку поступают легкие продукты с установки каталитического крекинга, но и в технологической взаимозависимости обеих установок. Так, с увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорбционно-газофракционирующей установке во избежание повышения давления на уста­новке каталитического крекинга. С увеличением температуры конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутан-бути­леновой фракции.

Сухой газ, получаемый после выделения бутан-бутиленовой и пропан-пропиленовой фикций, большей частью используется как энергетическое топливо.

Нестабильный бензин. При каталитическом крекинге можно вырабатывать высокооктановый автомобильный бензин или сырье для получения базового авиационного бензина путем каталитиче­ской очистки.

При производстве базового авиационного бензина исходным сырьем являются керосиновые и легкие соляровые дистилляты первичной перегонки нефти или их смеси, выкипающие в пределах 240—360 °С. Сначала получают бензин с концом кипения 220-245 °С (так называемый мотобензин). После стабилизации этот бензин поступает на дальнейшую переработку—каталитическую очистку (вторая ступень каталитического крекинга), на которой получают базовый ави. ационный бензин. Последний, в результате каталитической очистки, содержит, по сравнению с автомобиль­ным бензином, значительно меньше олефинов и больше аромати­ческих углеводородов, что соответственно повышает стабильность и октановое число авиационного бензина.

Базовые авиационные бензины в зависимости от свойств пере­рабатываемого сырья и условий процесса имеют октановые числа по моторному методу от 82 до 85, а с добавкой этиловой жидкости(3—4мл на 1 кг бензина)—от 92 до 96.

При производстве автомобильного бензина в качестве исход­ного сырья, как правило, используются дистилляты, полученные при вакуумной перегонке нефти и выкипающие при 300—550°С или в несколько более узких пределах. Получаемые на установках каталитического крекинга автомобильные бензины имеют октано­вые числа по моторному методу 78—82 (без добавки этиловой жидкости), а по исследовательскому методу 88—94 без этиловой жидкости и 95—99 с добавлением 0,8мл ТЭС на 1л.

Нестабильный бензин каталитического крекинга подвергают физической стабилизации с целью удаления растворенных в нем легких углеводородов, имеющих высокое давление насыщенных паров.

Из стабильных бензинов каталитического крекинга приготов­ляют авиационные бензины или используют их как высокооктановые компонента для приготовления автомобильных бензинов разных марок. Компоненты автомобильного бензина ка­талитического крекинга в нормальных условиях хранения доста­точно химически стабильны.

Автомобильные бензины представляют собой, как правило, смеси многих компонентов. Среди них есть фракции, полученные в разных процессах, в том числе и высокооктановые продукты каталитического крекинга. В зависимости от марки бензина состав компонентов может колебаться в широких пределах. Так же, как и при приготовлении авиационных бензинов, в пределах, разре­шенных стандартом, к автомобильным бензинам (кроме бензина А-72) допускается добавление этиловой жидкости.

Для обеспечения нормальной работы более экономичных дви­гателей с высокими степенями сжатия все больше вырабатывается высококачественных автомобильных бензинов АИ-93 и АИ-98. Эти бензины имеют октановые числа по исследовательскому методу со­ответственно 93 и 98 пунктов; максимально допустимая концентра­ция тетраэтилсвинца в бензинах не должна превышать 0,82 г на 1 кг бензина, температура конца кипения их не должна быть выше 195°С. Бензины АИ-93 и АИ-98 обладают хорошей стабильностью, что позволяет хранить их длительное время.

Легкий газойль. Легкий каталитический газойль (дистиллят с н. к. 175—200 °С и к. к. 320—350 °С) по сравнению с товарными дизельными фракциями имеет более низкое цетановое число и повышенное содержание серы. Цетановое число легкого каталити­ческого газойля, полученного из легких соляровых дистиллятов па­рафинового оснований, составляет 45—56, из нафтеноароматических дистиллятов—25—35. При крекинге более тяжелого сырья цетановое число легкого газойля несколько выше, что объясняется меньшей глубиной превращения. Цетановые числа с повышением температуры крекинга снижаются. Легкие каталитические газойли содержат непредельные углеводороды и значительные количества.(28—55%) ароматических углеводородов. Температура застыва­ния этих газойлей ниже, чем температура застывания сырья, из которого они вырабатываются.

На качество легкого газойля влияет не только состав сырья, но и катализатор и технологический режим. С повышением температуры выход легкого каталитического газойля и его цетановое число уменьшаются, а содержание ароматических углеводородов в нем повышается. Понижение объемной скорости, сопровождаю­щееся углублением крекинга сырья, приводит к тем же результа­там. При крекинге с рециркуляцией выход легкого газойля сни­жается (в большинстве случаев он подается на рециркуляцию), уменьшает его цетановое число и возрастает содержание в нем ароматических углеводородов.

Легкие каталитические газойли используются в качестве ком­понентов дизельного топлива в том случае, если смешиваемые компоненты дизельного топлива, получаемые при первичной пере­гонке нефти, имеют запас (превышение) по цетановому числу и содержат серы в количестве ниже нормы. В других случаях легкий газойль используют лишь в качестве сырья (или его компонента) для получения сажи (взамен зеленого масла) или в качестве разбавителя при получении мазутов. Возможно и комбинирован­ное использование легкого газойля, В этом случае его подвер­гают экстракции одним из растворителей, применяемых в произ­водстве масел селективным методом. Легкий газойль, частично освобожденный от ароматических углеводородов, после отгонки растворителя (рафинат) имеет более высокое цетановое число, чем до экстракции, и может быть использован в качестве дизель­ного топлива; нижний слой, содержащий большую часть арома­тических углеводородов, также после отгонки растворителя (экс­тракт) может быть использован в качестве сырья для получения высококачественной сажи.

Тяжелый газойль. Тяжелый газойль является остаточным про­дуктом каталитического крекинга. Качество его зависит от тех­нологических факторов и характеристик сырья, а также от качества легкого газойля. Тяжелый газойль может быть загрязнен катализаторной пылью; содержание серы в нем обычно выше чем в сырье каталитического крекинга. Тяжелый газойль используют либо при приготовлении мазутов, либо в качестве сырья для тер­мического крекинга и коксования. В последнее время его исполь­зует как сырье для производства сажи.

Реакции каталитического крекинга протекают на поверхности катализатора. Направление реакций зависит от свойств катали­затора, сырья и условий крекинга. В результате крекинга на по­верхности катализатора отлагается кокс, поэтому важной особен­ностью каталитического крекинга является необходимость частой регенерации катализатора (выжигание кокса).

Для каталитического крекинга применяются алюмосиликатные катализаторы. Это природные или искусственно полученные твер­дые высокопористые вещества с сильно развитой внутренней по­верхностью.

В заводской практике применяют алюмосиликатные активиро­ванные природные глины и синтетические алюмосиликатные ката­лизаторы в виде порошков, микросферических частиц диаметром 0,04—0,06 мм или таблеток и шариков размером 3—6мм. В массе катализатор представляет собой сыпучий материал, который можно легко транспортировать Потоком воздуха или углеводородных паров.

На установках крекинга применяются следующие алюмосили­катные катализаторы.

Http://www. kazedu. kz/referat/54644

Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества—основные задачи, по­ставленные перед нефтеперерабатывающей промышленностью в настоящее время. Решение этих задач в условиях, когда непрерывно возрастает доля переработки сернистых и высокосер­нистых, а за последние годы и высокопарафинистых нефтей, потре­бовало изменения технологии переработки нефти. Большое значение приобрели вторичные и, особенно, каталитические процессы. Производство топлив, отвечающих современным требова­ниям, невозможно без применения таких процессов, как каталити­ческий крекинг, каталитический риформинг, гидроочистка, алкилирование и изомеризация, а в некоторых случаях—гидрокрекинг.

Каталитический крекинг представляет собой современный про­цесс превращения высококипящих нефтяных фракций в базовые компоненты высококачественных авиационных и автомобильных бензинов и в средние дистиллятные фракции—газойли. Промыш­ленные процессы основаны на контактировании сырья с активным катализатором в соответствующих условиях, когда 40-50_вес.% исходного сырья без рециркуляции превращается в бензин и дру­гие легкие продукты. В процессе крекинга на катализаторе обра­зуются углистые отложения, резко снижающие его активность, в данном случае крекирующую способность. Для восстановления активности катализатор регенерируют. Наибольшее распространение получили установки с циркули­рующим катализатором в движущемся потоке и псевдоожиженном, или кипящем, слое.

Каталитический риформинг —современный, широко применяе­мый процесс для производства высокооктановых бензинов из низкооктановых.

Риформинг при более низких давлениях в системе и в сочета­нии с экстрактивной перегонкой или экстракцией растворителями позволяет получать ароматические углеводороды (бензол, толуол, ксилолы и высшие), используемые в нефтехимической промышлен­ности. Промышленные процессы каталитического риформинга, при которых выходы риформата достигают 73—90%, основаны на кон­тактировании сырья с активным катализатором, обычно содержа­щим платину.

Для поддержания активности катализатора его периодически регенерируют; регенерацию проводят тем чаще, чем ниже давление в системе. Исключением является процесс платформинга, когда катализатор не регенерируют. Важной особенностью каталити­ческого риформинга является то, что процесс протекает в среде водорода, который выделяется так же, как и в реакциях риформинга; избыток водорода удаляют из системы. Этот водород намного дешевле специально получаемого, и его используют в гидрогенизационных процессах нефтепереработки.

Гидроочистка нефтяных дистиллятов является одним из наибо­лее распространенных процессов, особенно при переработке сернистых и высокосернистых нефтей. Основной целью гидроочистки нефтяных дистиллятов является уменьшение содержания в них сернистых, азотистых и металлоорганических соединений. При гидроочистке происходит разложение органических веществ, содер­жащих серу и азот. Они реагируют с водородом, циркулирующим в системе, с образованием сероводорода и аммиака, которые уда­ляют из системы.

Промышленные процессы основаны на контактировании неф­тяных дистиллятов с активными катализаторами, в основном алюмокобальтмолибденовыми и алюмоникельмолибденовыми. Процесс протекает в условиях, при которых 95—99 вес.% исходного сырья превращается в очищенный продукт (гидрогенизат). Одновременно образуется незначительное количество бензина. Катализатор периодически регенерируют.

Алкилирование представляет собой процесс получения высоко­качественных компонентов авиационных и автомобильных бензинов. В основе процесса лежит взаимодействие парафиновых угле­водородов с олефиновыми с образованием более высококипящего парафинового углеводорода. До недавнего времени промышленное изменение процесса ограничивалось каталитическим алкилированием изобутана бутиленами в присутствии серной или фтористоводородной кислот. В последнее время в промышленных условиях изобутан алкилируют не только бутиленами, но и этиленом, пропиленом и даже амиленами, а иногда и смесью этих олефинов.

Изомеризация — процесс превращения низкооктановых пара­финовых углеводородов, преимущественно фракций С5 и С6 или их смесей, в соответствующие изопарафиновые фракции с более высоким октановым числом. На промышленных установках в со­ответствующих условиях можно получать до 97—99,7 объемн.% продуктов изомеризации. Изомеризация протекает в среде водо­рода. Катализатор периодически регенерируют:

Полимеризация—процесс превращения пропилена и бутиленов в жидкие олигомерные продукты, используемые в качестве компо­нентов автомобильных бензинов или сырья для нефтехимических процессов. В зависимости от сырья, катализатора и технологиче­ского режима количество продукта может изменяться в широких пределах.

1. Назначение процесса. Основное назначение каталитического крекинга —получение высокооктановых компонентов бензина. Крекинг осуществляется при 420-550ºС и является процессом каче­ственного изменения сырья, т. е. процессом образования соедине­ний, отличающихся от первоначальных по своим физико-химиче­ским свойствам. В зависимости от сырья и условий процесса выход бензина при крекинге составляет 7—50 вес.% (на сырье). Наряду с бензином образуются и другие продукты—газообразные, жидкие и твердые (кокс). В качестве сырья обычно применяют тяже­лые дистилляты атмосферной или вакуумной перегонки нефти, а также деасфальтизаты и другие продукты.

При каталитическом крекинге тяжёлые нефтяные фракции при 5ООºС в значительной части превращаются в компоненты, выкипающие в пределах температур кипения бензина, и газообразные продукты, которые могут использоваться для производства высо­кооктановых компонентов бензина или как сырье для химических синтезов.

В отличие от термического крекинга, каталитический кре­кинг проводится в специальной аппаратуре с применением специфического оборудования и в присутствии катализаторов.

Главным преимуществом каталитического крекинга перед тер­мическим являет большая ценность получаемых продуктов: меньший выход метана, этана и диенов при более высоком выходе углеводородов С3 и С4 (особенно изобутана), а также ароматиче­ских углеводородов, олефинов с разветвленной цепью и изопарафинов. Антидетонационные свойства бензинов каталитического крекинга значительно выше, чем бензинов термического крекинга. Продукты крекинга имеют сложный состав. Так, при каталитиче­ском крекинге цетана С16 Н34 образуются (в вес.%):

Состав продуктов крекинга керосиновых, соляровых и вакуумных дистиллятов, т. е. смесей весьма большого числа разных углеводородов, еще более сложен. Результаты каталитического крекинга углеводородных смесей существенно зависят от условий проведения процесса применяемого катализатора.

Каталитический крекинг в основном используют для производ­ства высокооктановых компонентов автомобильного и авиацион­ного бензина. При получении автомобильного бензина в качестве сырья обычно используются вакуумные дистилляты первичной пе­реработки нефти, а при производстве авиабензина—керосино-соляровые фракции первичной перегонки нефти.

2.Режим работы установок. Каталитический крекинг происходит, как правило, в паровой фазе в системе без притока и отдачи тепла, поэтому его относят к адиабатическим процессам. При адиабатическом процессе внешняя работа полностью затрачивается на изменение внутренней энергии системы.

В зависимости от характеристик перерабатываемого сырья и системы или типа установки, а также от состава и свойств катализатора устанавливается определенный технологический режим. К основным показателям технологического режима установок каталитического крекинга следует отнести температуру, давление, соотношение количества сырья и катализатора, находящегося в зоне крекинга, а также кратность циркуляции катализатора.

Температура. С повышением температуры увеличивается окта­новое число бензина, возрастает выход газов С1 – С3 и олефинов С4 и выше, снижается выход бензина и кокса, но повышается со­отношение бензин: кокс и снижается соотношение выходов легкого и тяжелого газойля.

Давление. При повышении давления увеличивается выход парафиновых углеводородов и бензина, снижается выход газов С1 – С3, олефинов и ароматических углеводородов. Выход кокса в условиях промышленного процесса от давления практически не зависит.

Глубина крекинга. Рециркуляция. Глубину превращения (или глубину крекинга) принято оценивать количеством сырья, превращенного в бензин, газ или кокс. При крекинге в одну ступень (однократный крекинг) глубина превращения равна 45-60%. Примерный выход продуктов при однократном каталитическом крекенге керосина – соляровой фракции прямой перегонки нефти приведен ниже (индекс активности катализатора 28-32):

Когда хотят достигнуть более глубокого превращения, т. е. получить из сырья больше бензина, подвергают крекингу не только исходное сырье, но и образующиеся в процессе газойлевые фракции. На большинстве промышленных установок каталитическому крекингу подвергают именно смесь исходного сырья с газойлем каталитического крекинга или иногда раздельно свежее сырье и газойлевые фракции. Таким образом газойль возвращается в систему для использования его в качестве вторичного сырья – рециркулятор. В зависимости от того, сколько газойля подвергается каталитическому крекингу, глубина крекинга может достигать 80-90%.

Отношение массы рециркулирующего газойля к массе свежего сырья называется коэффициентом рециркуляции; оно изменяется от нуля до 2,3 при крекинге с рециркуляцией.

Глубина крекинга возрастает с увеличением коэффициента рециркуляции. Характерно, что выход жидких углеводородов, включая фракцию С3 – С4, увеличивается до глубины крекинга 80%, а затем снижается. Если же выделить фракцию С3 — С4, то сумма получаемых жидких продуктов по мере увеличения глубины кре­кинга непрерывно снижается, в данном случае до 62,9 объемн.%. По мере увеличения глубины крекинга выход газойля падает, а при 100%-ной глубине крекинга становится равным нулю.

Объемная скорость. Отношение объема сырья, подаваемого в реактор за 1 ч, к объему катализатора, находящегося в зоне кре­кинга, называется объемной скоростью. Обычно на одну весовую единицу катализатора, находящегося в зоне крекинга, подается от 0,6 до 2,5 вес. ед. сырья в час. Часто объемную скорость выражают в объемных единицах — объем/ (объем*ч) или м3 /(м3 *ч) и записывают в виде Ч-1

Кратность циркуляции катализатора. В системах каталитиче­ского крекинга с циркулирующим пылевидным или микросферичёским катализатором на 1 т поступающего в реактор сырья вво­дится 7-20 т регенерированного катализатора, а на установках каталитического крекинга, где применяются крупнозернистые ка­тализаторы (частицы диаметром 3—6мм),—от 2 до 5—7 т в за­висимости от конструкции установки. Указанное отношение (7— 20 т/т) называют весовой кратностью циркуляции катализатора. Иногда это соотношение выражают в объемных единицах, тогда оно называется объемной кратностью циркуляции катализатора.

Следует различать кратность циркуляции катализатора по све­жему сырью и по всей загрузке реактора (свежее сырье плюс рециркулят). В последнем случае при одном и том же количестве катализатора кратность циркуляции будет меньше.

Жесткость крекинга. Известно, что снижение объемной скорости так. же как и увеличение, кратности циркуляции катализатора, способствует повышению выхода бензина и глубины крекинга. Влияние этих параметров на глубину крекинга можно выразить отношением кратности циркуляции к объемной скорости. Это от­ношение называется фактором жесткости крекинга. Фактор жесткости может быть вычислен по свежему сырью реактора и по суммарной загрузке реактора (свежее сырье плюс рециркулирующий газойль).

Эффективность крекинга. Отношение суммарного выхода (в объемных или весовых процентах) дебутанизированного бензина и фракции С4 к глубине крекинга исходного сырья (в объемных или весовых процентах) именуют эффективностью крекинга. Эф­фективность (коэффициент) обычно равна 0,75—0,8, если она была подсчитана на основе весовых процентов.

В результате каталитического крекинга на установках полу­чают до 15 вес.% газа, содержащего водород, аммиак и легкие углеводороды, 30—55 вес.% высокооктанового компонента авто­мобильного бензина (или 27—50 вес.% авиационного бензина), 2—9 вес.% кокса и легкий и тяжелый газойли. Газ после очистки и газофракционирования используется для технологических или бытовых нужд. Компоненты автомобильного (или авиационного) бензина после стабилизации компаундируются с другими компо­нентами и используются в качестве товарных топлив. Легкий газойль используется как компонент дизельного топлива (при необходимости — после гидроочистки) или, вместе с тяжелым газойлем, как сырье для получения сажи или приготовления сортовых мазутов.

3. Химические основы процесса. При каталитическом крекинге протекают реакции расщепления, алкилирования, изомеризации, ароматизации, полимеризации, гидрогенизации и деалкилирования. Некоторые из них являются первичными, но большинство—вто­ричными.

Крекинг парафинов. При крекинге парафиновых углеводородов нормального строения доминируют реакции разложения. Продук­ты крекинга состоят главным образом из парафиновых углеводо­родов более низкого молекулярного веса и олефинов. Выход олефинов увеличивается с повышением молекулярного веса сырья. Термическая стабильность парафиновых углеводородов понижается с увеличением молекулярного веса. Тяжелые фракции нефте­продуктов являются менее стабильными и крекируются значительно легче, чем легкие фракции. Наиболее часто разрыв молекул проис­ходит в ее средней части.

Механизм каталитического крекинга—карбоний-ионный. Согласно этому механизму, часть молекул парафинов подвергается термическому расщеплению, а образующиеся олефины присоеди­няют протоны, находящиеся на катализаторе, и превращаются в карбоний-ионы. Карбоний-ионы являются агентами распростране­ния цепной реакции. В результате целого ряда превращений об­разуются парафиновые углеводороды меньшего молекулярного веса, чем исходные, и новые большие карбоний-ионы, которые за­тем расщепляются.

Реакции дегидрогенизации при крекинге высокомолекулярных парафинов играют незначительную роль. Однако процесс дегидро­генизации низкомолекулярных парафинов, особенно газообразных, имеет практическое значение для превращения малоценных газо­образных продуктов в ценные — олефины.

При крекинге парафиновых углеводородов нормального строе­ния протекают и вторичные реакции с образованием ароматиче­ских углеводородов и кокса. Много ароматических углеводоро­дов при каталитической ароматизации получается из парафинов, структура которых допускает образование бензольного кольца.

Изопарафиновые углеводороды крекируются легче. Водорода и метана при этом получается больше, чем при крекинге нормаль­ных парафинов, а углеводородов С3 и С4 (газа) — меньше. Фрак­ции С4, С5 и С6 содержат меньше олефинов вследствие того, что насыщение сильно разветвленных молекул непредельных углево­дородов достигается легче, чем для неразветвленных.

Крекинг нафтенов. При крекинге нафтенов одновременно мо­жет происходить отщепление боковых цепей. На первой стадии нафтеновые углеводороды с длинными алкильными цепями пре­вращаются в алкилнафтеновые или алкилароматические углеводо­роды со сравнительно короткими боковыми цепями. Короткие алкильные цепи, особенно метильный и этильный радикалы, тер­мически стабильны и в условиях промышленного каталитического крекинга уже не отщепляются.

Алкильные боковые цепи алкилнафтеновых углеводородов рас­щепляются с образованием парафинов и олефинов, которые вместе с низкомолекулярными моноциклическими нафтеновыми углеводо­родами и деалкилированными ароматическими углеводородами составляют конечные продукты крекинга.

Крекинг ароматических углеводородов сопровождается деалкилированием и конденсацией. При деалкилировании алкилароматических углеводородов получаются парафины, олефины и алкил­ароматические углеводороды с более короткими боковыми цепями. Разрыв связи углерод — углерод происходит непосредственно у кольца, но такое деалкилирование не протекает интенсивно, если алкильная цепь содержит менее трех углеродных атомов. Реак­ционная способность углеводородов возрастает с увеличением мо­лекулярного веса, но все же остается значительно меньшей, чем у изомерных моноалкилбензолов. Инициирование каталитиче­ского крекинга алкилароматических углеводородов, так же как и для парафиновых углеводородов, начинается с образования карбоний-иона в результате присоединения протона катализатора. Между молекулами ароматических углеводородов или между ними и олефинами (или другими непредельными углеводородами) про­исходит конденсация. В результате образуются полициклические ароматические углеводороды вплоть до асфальта и кокса, по­этому при переработке сырья со значительным содержанием поли­циклических углеводородов при одинаковой степени превращения образуется значительно больше кокса, чем при переработке сырья, содержащего преимущественно моноциклические аромати­ческие углеводороды.

Крекинг олефинов, образующихся в результате расщепления парафиновых, нафтеновых и ароматических углеводородов, а так­же самих олефинов, является вторичной реакцией. Инициирование реакции крекинга, как и других реакций олефинов, происходит в результате образования карбоний-иона. Если этот ион достаточно велик (С6 или больше), то он может расщепляться в (β-положении с образованием олефина и меньшего (первичного) карбоний-иона, а вновь образовавшийся ион, если это возможно, изомеризуется во вторичный или третичный ион. Если же карбоний-ион невелик (С3 —С5 ), он превращается либо в олефин (в результате передачи протона катализатору или нейтральной молекуле олефина), либо в парафин (присоединяя гидрид-ион от нейтральной молекулы).

Изомеризация олефинов. При изомеризации олефинов могут происходить миграция двойной связи, скелетная и геометрическая V изомеризация. Возможность изомеризации является важным пре­имуществом каталитического крекинга перед термическим: в ре­зультате изомеризации повышается октановое число бензиновых фракций и увеличивается выход изобутана, имеющего большую ценность как сырье для алкилирования.

Полимеризация и деполимеризация. Полимеризация олефинов также является важной реакцией. В сочетании с последующим крекингом полимеризация приводит к образованию олефинов и парафинов. Однако глубокая полимеризация ведет к образованию тяжелых продуктов, которые адсорбируются на катализаторе и разлагаются на кокс и газ. При высоких температурах (600 °С) и низких давлениях может протекать деполимеризация.

Циклизация и ароматизация. Вторичной реакцией олефинов, протекающей в более поздних стадиях процесса, является частич­ное их дегидрирование. В результате образуются диены или олефины расщепляются на диены и парафины. Вторичные реакции между олефинами и диенами могут привести к образованию циклопарафинов. Ароматические углеводороды получаются в резуль­тате дегидроциклизации циклоолефинов или нафтеновых углево­дородов, образовавшихся в начальных стадиях процесса.

Прочие реакции. Реакцией, возможной в условиях каталити­ческого крекинга, является алкилирование ароматических углево­дородов. Оно нежелательно, так как образующиеся более тяжелые продукты способны алкилироваться дальше или конденсироваться с образованием кокса; при атом уменьшается выход бензина.

Крекинг сложных углеводородов может затрагивать какую-либо часть молекулы независимо от других ее частей. Например, длинные парафиновые цепи нафтеновых и ароматических углево­дородов расщепляются так же, как если бы они были парафино­выми углеводородами с тем же числом атомов углерода в моле­куле. Кольца нафтеновых или ароматических углеводородов не изменяются в том. процессе деалкилирования или расщепления парафиновых боковых цепей. Дегидрогенизация нафтеновых колец обычно происходит после частичного деалкилирования.

Обычно одним из лучших критериев интенсивности побочных реакций является отношение выходой бензина и кокса. Высокое отношение указывает на преобладание желательных реакций, ра­зумеется, при условии, что октановое число бензина высокое. Низ­кое отношение выходов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций. К желательным ре­акциям относятся изомеризация, гидрирование, циклизация и аро­матизация (неглубокая) олефинов; эти реакции ведут к высокому выходу парафиновых, углеводородов изостроения и ароматических углеводородов, выкипающих в пределах температуры кипения бензина, и высокому отношению изо – и нормальных парафиновых углеводородов. Нежелательные реакции (крекинг, дегидрогенизация и полимеризация олефинов, алкилирование и конденсация ароматических углеводородов) приводят к высоким выходам водорода и кокса, низкому выходу олефинов и к получению сравнительно тяжелых газойлей, при этом выход бензина и его октанового числа снижаются.

Основным сырьем промышленных установок каталитического крекинга являются атмосферные и вакуумные дистилляты первич­ной перегонки нефти. В зависимости от фракционного состава дистиллятное сырье можно отнести к одной из следующих групп.

Первая группа — легкое сырьё. К этой группе относятся дистил­ляты первичной перегонки нефти (керосино-соляровые и вакуум­ные). Средняя температура их кипения составляет 260—280 °С. от­носительная плотность 0,830—0,870, средний молекулярный вес 190—220. Легкие керосино-соляровые дистилляты прямой гонки яв­ляются хорошим сырьем для производства базовых авиационных бензинов, так как дают большие выходы бензинов при малом коксообразовании.

Вторая группа— тяжелое дистиллятное сырье. К этой группе относятся тяжелые соляровые дистилляты, выкипающие при тем­пературах от 300 до 550°С или в несколько более узких пределах, а также сырье вторичного происхождения, получаемое на установках термического крекинга и коксования (флегма термического крекинга и газойль коксования). Их средние молекулярные веса приблизительно в 1,5 раза выше, чем у легких видов сырья, а именно 280—330 вместо 190—220. В противоположность легкому сырью, тяжелое дистиллятное сырье перед направлением в реак­тор или в узел смешения с горячим катализатором в парообраз­ное состояние переводят не целиком. Тяжелые соляровые дистилляты с относительной плотностью 0,880—0,920, как правило, ис­пользуются для производства автомобильных бензинов.

Третья группа — сырье широкого фракционного состава. Это сырье можно рассматривать как смесь дистиллятов первой и вто­рой групп; оно содержит керосиновые и высококипящие соляровые фракции, а также некоторые продукты, получаемые при производ­стве масел и парафинов (экстракты, гачи, петролатумы, легкоплав­кие парафины и др.). Предел выкипания дистиллятов третьей груп­пы 210—550 °С.

Четвертая группа — промежуточное дистиллятное сырье. Оно представляет собой смесь тяжелых керосиновых фракций с легки­ми и средними соляровыми фракциями и имеет пределы выкипания — 250—470 °С. К ним можно отнести также и смеси, перегоняющиеся в более узких пределах, например 300—430 °С. Проме­жуточное сырье используется для получения автомобильных и авиационных ба­зовых бензинов.

Керосиновые и соляровые дистил­ляты, вакуумные дистилляты прямой пе­регонки нефти являются хорошим сырьем для каталитического крекинга. Это же относится и к легкоплавким парафинам (отходам от депарафинизации масел).

Менее ценное сырье—экстракты, получаемые при очистке масляных дистиллятов избирательными растворителями так как они содержат много труднокрекируемых ароматических углеводородов. Во избежание сильного коксообразования экстракты крекируют в смеси с прямогонными соляровыми дистиллятами.

Реже в качестве сырья для каталитического крекинга исполь­зуются нефти и остаточные нефтепродукты (без предварительной очистки).

При каталитическом крекинге дистиллятов прямой гонки образуется больше бензина и меньше кокса, чем при крекинге подобных (по фракционному составу) дистиллятов с установок термического крекинга и коксования. При каталитическом крекинге тяжелых вакуумных дистиллятов, мазутов и других смолистых остатков образуется много кокса. Кроме того, содержащиеся в таком сырье сернистые, азотистые и металлорганические соединения отравляют катализатор. Поэтому высокосмолистые мазуты и тем более гудроны каталитическому крекингу не подвергают.

Количество и качество продуктов каталитического крекинга зависят от характеристики перерабатываемого сырья и катализаторов, а также от режима процесса. На установках каталитического крекинга получают жирный газ, нестабильный бензин, легкий и тяжелый каталитические газойли. Иногда предусмотрен отбор легроина.

Жирный газ, получаемый на установках каталитического крекинга характеризуется значительным содержанием углеводородов изостроения, особенно изобутана. Это повышает ценность газа как сырья для дальней шей переработки.

Жирный газ установки каталитического крекинга и бензин для удаления из него растворенных легких газов поступают на абсорбционно-газофракционирующую установку[1]. Работа этой установки тесно связана с работой установки каталитического кре­кинга. Связь заключается не только в том, что на абсорбционно-газофракционирующую установку поступают легкие продукты с установки каталитического крекинга, но и в технологической взаимозависимости обеих установок. Так, с увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорбционно-газофракционирующей установке во избежание повышения давления на уста­новке каталитического крекинга. С увеличением температуры конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутан-бути­леновой фракции.

Сухой газ, получаемый после выделения бутан-бутиленовой и пропан-пропиленовой фикций, большей частью используется как энергетическое топливо.

Нестабильный бензин. При каталитическом крекинге можно вырабатывать высокооктановый автомобильный бензин или сырье для получения базового авиационного бензина путем каталитиче­ской очистки.

При производстве базового авиационного бензина исходным сырьем являются керосиновые и легкие соляровые дистилляты первичной перегонки нефти или их смеси, выкипающие в пределах 240—360 °С. Сначала получают бензин с концом кипения 220-245 °С (так называемый мотобензин). После стабилизации этот бензин поступает на дальнейшую переработку—каталитическую очистку (вторая ступень каталитического крекинга), на которой получают базовый ави. ационный бензин. Последний, в результате каталитической очистки, содержит, по сравнению с автомобиль­ным бензином, значительно меньше олефинов и больше аромати­ческих углеводородов, что соответственно повышает стабильность и октановое число авиационного бензина.

Базовые авиационные бензины в зависимости от свойств пере­рабатываемого сырья и условий процесса имеют октановые числа по моторному методу от 82 до 85, а с добавкой этиловой жидкости(3—4мл на 1 кг бензина)—от 92 до 96.

При производстве автомобильного бензина в качестве исход­ного сырья, как правило, используются дистилляты, полученные при вакуумной перегонке нефти и выкипающие при 300—550°С или в несколько более узких пределах. Получаемые на установках каталитического крекинга автомобильные бензины имеют октано­вые числа по моторному методу 78—82 (без добавки этиловой жидкости), а по исследовательскому методу 88—94 без этиловой жидкости и 95—99 с добавлением 0,8мл ТЭС на 1л.

Нестабильный бензин каталитического крекинга подвергают физической стабилизации с целью удаления растворенных в нем легких углеводородов, имеющих высокое давление насыщенных паров.

Из стабильных бензинов каталитического крекинга приготов­ляют авиационные бензины или используют их как высокооктановые компонента для приготовления автомобильных бензинов разных марок. Компоненты автомобильного бензина ка­талитического крекинга в нормальных условиях хранения доста­точно химически стабильны.

Автомобильные бензины представляют собой, как правило, смеси многих компонентов. Среди них есть фракции, полученные в разных процессах, в том числе и высокооктановые продукты каталитического крекинга. В зависимости от марки бензина состав компонентов может колебаться в широких пределах. Так же, как и при приготовлении авиационных бензинов, в пределах, разре­шенных стандартом, к автомобильным бензинам (кроме бензина А-72) допускается добавление этиловой жидкости.

Для обеспечения нормальной работы более экономичных дви­гателей с высокими степенями сжатия все больше вырабатывается высококачественных автомобильных бензинов АИ-93 и АИ-98. Эти бензины имеют октановые числа по исследовательскому методу со­ответственно 93 и 98 пунктов; максимально допустимая концентра­ция тетраэтилсвинца в бензинах не должна превышать 0,82 г на 1 кг бензина, температура конца кипения их не должна быть выше 195°С. Бензины АИ-93 и АИ-98 обладают хорошей стабильностью, что позволяет хранить их длительное время.

Легкий газойль. Легкий каталитический газойль (дистиллят с н. к. 175—200 °С и к. к. 320—350 °С) по сравнению с товарными дизельными фракциями имеет более низкое цетановое число и повышенное содержание серы. Цетановое число легкого каталити­ческого газойля, полученного из легких соляровых дистиллятов па­рафинового оснований, составляет 45—56, из нафтеноароматических дистиллятов—25—35. При крекинге более тяжелого сырья цетановое число легкого газойля несколько выше, что объясняется меньшей глубиной превращения. Цетановые числа с повышением температуры крекинга снижаются. Легкие каталитические газойли содержат непредельные углеводороды и значительные количества.(28—55%) ароматических углеводородов. Температура застыва­ния этих газойлей ниже, чем температура застывания сырья, из которого они вырабатываются.

На качество легкого газойля влияет не только состав сырья, но и катализатор и технологический режим. С повышением температуры выход легкого каталитического газойля и его цетановое число уменьшаются, а содержание ароматических углеводородов в нем повышается. Понижение объемной скорости, сопровождаю­щееся углублением крекинга сырья, приводит к тем же результа­там. При крекинге с рециркуляцией выход легкого газойля сни­жается (в большинстве случаев он подается на рециркуляцию), уменьшает его цетановое число и возрастает содержание в нем ароматических углеводородов.

Легкие каталитические газойли используются в качестве ком­понентов дизельного топлива в том случае, если смешиваемые компоненты дизельного топлива, получаемые при первичной пере­гонке нефти, имеют запас (превышение) по цетановому числу и содержат серы в количестве ниже нормы. В других случаях легкий газойль используют лишь в качестве сырья (или его компонента) для получения сажи (взамен зеленого масла) или в качестве разбавителя при получении мазутов. Возможно и комбинирован­ное использование легкого газойля, В этом случае его подвер­гают экстракции одним из растворителей, применяемых в произ­водстве масел селективным методом. Легкий газойль, частично освобожденный от ароматических углеводородов, после отгонки растворителя (рафинат) имеет более высокое цетановое число, чем до экстракции, и может быть использован в качестве дизель­ного топлива; нижний слой, содержащий большую часть арома­тических углеводородов, также после отгонки растворителя (экс­тракт) может быть использован в качестве сырья для получения высококачественной сажи.

Тяжелый газойль. Тяжелый газойль является остаточным про­дуктом каталитического крекинга. Качество его зависит от тех­нологических факторов и характеристик сырья, а также от качества легкого газойля. Тяжелый газойль может быть загрязнен катализаторной пылью; содержание серы в нем обычно выше чем в сырье каталитического крекинга. Тяжелый газойль используют либо при приготовлении мазутов, либо в качестве сырья для тер­мического крекинга и коксования. В последнее время его исполь­зует как сырье для производства сажи.

Реакции каталитического крекинга протекают на поверхности катализатора. Направление реакций зависит от свойств катали­затора, сырья и условий крекинга. В результате крекинга на по­верхности катализатора отлагается кокс, поэтому важной особен­ностью каталитического крекинга является необходимость частой регенерации катализатора (выжигание кокса).

Для каталитического крекинга применяются алюмосиликатные катализаторы. Это природные или искусственно полученные твер­дые высокопористые вещества с сильно развитой внутренней по­верхностью.

В заводской практике применяют алюмосиликатные активиро­ванные природные глины и синтетические алюмосиликатные ката­лизаторы в виде порошков, микросферических частиц диаметром 0,04—0,06 мм или таблеток и шариков размером 3—6мм. В массе катализатор представляет собой сыпучий материал, который можно легко транспортировать Потоком воздуха или углеводородных паров.

На установках крекинга применяются следующие алюмосили­катные катализаторы.

1. Синтетические пылевидные катализаторы с частицами раз­меров 1—150 мк.

2. Природные микросферические или пылевидные катализа­торы, приготовляемые из природных глин (бентониты, бокситы и некоторые другие) кислотной и термической обработкой или только термической обработкой. Размеры частиц те же, что указаны в п. 1. По сравнению с синтетическими, природные катализаторы ме­нее термостойки и имеют пониженную активность.

3. Микросферический формованный синтетический катализатор с частицами размером 10-150 мк. По сравнению с пылевидным, микросферический катализатор при циркуляции меньше измель­чается и в меньшей степени вызывает абразивный износ аппара­туры и катализаторопроводов. Удельный расход его ниже, чем расход пылевидного катализатора.

4. Синтетический катализатор в виде стекловидных шариков диаметром 3—6 мм.

5. Природные и синтетические катализаторы с частицами раз­мером 3—4мм искаженной цилиндрической. формы. Их часто на­зывают таблетированными, они характеризуются меньшей прочностью, чем шариковые, и используются преимущественно на установках с неподвижным катализатором.

6. Синтетические кристаллические цеолитсодержащие катали­заторы, содержащие окись хрома (что способствует лучшей реге­нерации), а также окиси, редкоземельных металлов (улучшающие селективность катализатора и увеличивающие выход бензина с некоторым улучшением его свойств). Они вырабатываются гранулированными—для установок с нисходящим потоком ка­тализатора — и микросферическими — для установок в кипящем слое.

1.Назначение процесса. В настоящее время каталитический риформинг стал одним из-ведущих процессов нефтеперерабатывающей и нефтехимической промышленности. С его помощью удается улучшать качество бензиновых фракций и получать ароматические углеводороды) особенно из сернистых и высокосернистых нефтей. В последнее время были разработаны процессы каталитического риформинга для получения топливного газа из легких углеводородов. Возможность выработки столь разнообразных продуктов привела к использованию в качестве сырья не только бензиновых фракций прямой перегонки нефти, но и других нефтепродуктов.

До массового внедрения каталитического риформинга применялся термический риформинг и комбинированный процесс легкого крекинга тяжелого сырья (мазута, полугудрона и гудрона) и термического риформинга бензина прямой перегонки. В дальнейшем термический риформинг прекратил свое существование ввиду низких технико-экономических показателей по сравнению с каталитическим. При термическом риформинге выход бензина на 20—27% меньше и октановое число его на 5—7 пунктов ниже, чем при каталитическом риформинге. Кроме того, бензин термического риформинга нестабилен.

Процесс каталитического риформинга осуществляют при сравнительно высокой температуре и среднем давлении, в среде водородсодержащего газа. Каталитический риформинг проходит в среде газа с большим содержанием водорода (70—80 объемн. %). Это позволяет повысить температуру процесса, не допуская глубокого распада углеводородов и значительного коксообразования. В ре­зультате увеличиваются скорость дегидрирования нафтеновых уг­леводородов и скорости дегидроциклизации и изомеризации пара­финовых углеводородов. В зависимости от назначения процесса, режима и катализатора в значительных пределах изменяются выход и качество получаемых продуктов. Однако общим для боль­шинства систем каталитического риформинга является образова­ние ароматических углеводородов и водородсодержащего газа.

Назначение процесса каталитического риформинга, а также требования, предъявляемые к целевому продукту, требуют гибкой в эксплуатации установки. Необходимое качество продукта дости­гается путем подбора сырья, катализатора и технологического ре­жима.

Получаемый в процессе каталитического риформинга водородсодержащий газ значительно дешевле специально получаемого во­дорода; его используют в других процессах нефтепереработки, та­ких, как гидроочистка и гидрокрекинг. При каталитическом риформинге сырья со значительным содержанием серы или бензинов вторичного происхождения, в которых есть непредельные углево­дороды, катализатор быстро отравляется. Поэтому такое сырье перед каталитическим риформингом целесообразно подвергать гидроочистке. Это способствует большей продолжительности рабо­ты катализатора без регенерации и улучшает технико-экономиче­ские показатели работы установки.

2. Режим работы установок. На рисунке показана принципиальная схема установки каталитического риформинга. Рассмотрим режим работы отдельных ее узлов.

Перед каталитическим риформингом сырье подвергают гид­роочистке рециркулирующим водородсодержащим газом. После гидроочистки продукты поступают в отпарную колонну 3. С верха ее выводятся сероводород и водяные пары, а с низа — гидрогенизат. Гидрогенизат вместе с рециркулирующим водородсодержащим газом нагревается в змеевиках печи 5и поступает в реакторы 6каталитического риформинга. Продукты, выходящие из зоны реак­ции, охлаждаются и разделяются в сепараторе 2на газовую и жидкую фазы. Жидкие продукты фракционируют с целью получе­ния компонента автомобильного бензина с заданным давлением насыщенных паров или других продуктов (например, сжиженного нефтяного газа, ароматических углеводородов и т. д.). Богатый во­дородом газ направляют на рециркуляцию, а избыток его выводят из системы и используют в других процессах.

Рассмотрим влияние давления, температуры и других факто­ров на результаты каталитического риформинга.

Давление. Высокое давление способствует более_длительной работе катализатора; частично это происходит вследствие того, что закоксовывание катализатора (в особенности платины) и чувст­вительность его к отравлению сернистыми и другими ядами зна­чительно уменьшаются с повышением давления. Повышение дав­ления увеличивает скорость реакций гидрокрекинга и деалкилирования, при этом равновесие сдвигается в сторону образования парафинов. Снижение рабочего, а следовательно, и парциального давления водорода способствует увеличению степени ароматизации пара­финовых и нафтеновых углеводородов.

Рис. Принципиальная технологич. схема установки кат. риформинга.

Температура. Применительно к каталитическому риформингу повышение температуры способствует образованию ароматических углеводородов и препятствует протеканию обратной реакции, а также превращению некоторых изомеров нафтеновых углеводо­родов в парафиновые, которые легче подвергаются гидрокрекингу, С повышением температуры в процессе каталитического риформинга уменьшается выход стабильного бензина и снижается концентрация водорода в циркулирующем газе. Это объясняется тем, что при более высоких температурах увеличивается роль гидрокрекинга. С увеличением температуры возрастает выход бо­лее легких углеводородов — пропана, н-бутана и изобутана (очевидно, это происходит за счет усиления реакций гидрокрекинга углеводородов, как содержащихся в сырье, так и вновь обра­зующихся в процессе каталитического риформинга). Увеличивает­ся также содержание ароматических углеводородов в бензине и возрастает его октановое число. В результате увеличивается обра­зование водорода и давление насыщенных паров бензина, воз­растает и содержание в нем фракций, выкипающих до 100 °С.

Объемная скорость . Объемную скорость можно повысить, увеличив расход свежего сырья или умень­шив загрузку катализатора в реак­торы. В результате уменьшается время контакта реагирующих и про­межуточных продуктов с катализа­тором. С повышением объемной скорости увеличивается выход ста­бильного продукта и содержание во­дорода в циркулирующем газе, сни­жается выход водорода и легких углеводородов и, что особенно важ­но, уменьшается выход ароматических углеводородов. Таким обра­зом, с повышением объемной скорости ресурсы ароматических, углеводородов при каталитическом риформинге снижаются, а выход бензина, хотя и увеличивается, но октановое число его стано­вится меньше; давление насыщенных паров бензина и содержание в нем ароматических углеводородов и фракций, выкипающих до 100 °С, также уменьшаются.

С увеличением объемной скорости преобладающую роль в про­цессе начинают играть реакции, протекающие быстрее: дегидри­рование нафтеновых углеводородов, гидрокрекинг тяжелых пара­финовых углеводородов и изомеризация углеводородов С4 и С5. Что же касается реакций, требующих большого времени (дегидроциклизации, деалкилирования и гидрокрекинга легких углеводоро­дов), их роль снижается.

Соотношение циркулирующий водородсодержащий газ: сырье можно регулировать в широких пределах. Нижний предел опре­деляется минимально допустимым количеством газа, подавае­мого для поддержания заданного парциального давления во­дорода, а верхний — мощностью газокомпрессорного оборудо­вания.

Увеличение соотношения водородсодержащий газ: сырье про­является в двух противоположных направлениях. Повышение пар­циального давления водорода подавляет реакции дегидрирования, но, с другой стороны, увеличение количества газа, циркулирую­щего через реактор, уменьшает падение в них температуры, в ре­зультате чего средняя температура катализатора повышается, и скорость протекающих реакций увеличивается. Влияние второго фактора — повышения температуры катализатора — преобладает. Для поддержания постоянного октанового числа риформинг-бензина, вероятно, необходимо снизить температуру на входе в реак­тор.

Жесткость процесса.В последнее время в теории и практике каталитического ри­форминга стали пользоваться понятием «жесткость». Жестким на­зывают режим, обеспечивающий получение бензина с определен­ными свойствами (с определенным октановым числом, причем более высокому числу соответствует более жесткий режим ката­литического риформинга).

В зависимости от жесткости риформинга октановое число бен­зина можно довести до 93—102 по исследовательскому методу без ТЭС. Чем выше октановое число, тем больше содержится в бен­зине ароматических углеводородов. В зависимости от исходного сырья это достигается за счет не только повышения температуры, но и путем изменения давления. Обычно в сырье много парафино­вых углеводородов и получение бензинов с повышенными окта­новыми числами обусловлено повышением температуры и высо­кого давления. При риформинге высококачественного (с относи­тельно большим содержанием нафтеновых углеводородов), но сравнительно редко встречающегося сырья тот же результат до­стигается при давлении около 25 Ат и при несколько более высо­кой температуре.

Наибольшее практическое значение приобрели процессы ката­литического риформинга на катализаторах, содержащих платину. Такие процессы осуществляются в среде водородсодержащего газа (70—90 объемн.% водорода) при следующих условиях: 470—530 °С, 10—40 ат, объемная скорость 1—Зч-1, соотношение циркулирую­щий водородсодержащий газ: сырье = 600—1800м3 /м3.

3.Химические основы процесса. Вначале 20 в. Н. Д. Белинский показал, что на платиновом и палладиевых катализаторах можно без побочных реакций проводить каталитическую дегидрогениза­цию (дегидрирование) шестичленных нафтеновых углеводородов с образованием ароматических углеводородов. Дегидрогениза­цию нафтеновых углеводородов при воздействии окислов металлов наблюдали в 1911 г. В. Н. Ипатьев с Н. Довлевичем и в 1932 г. В. Лозье и Дж. Воген.

В 1936 г. одновременно в трех лабораториях Советского Союза была открыта реакция дегидроциклизации парафиновых углеводо­родов в ароматические. Б. Л. Молдавский и Г. Д. Камушер осу­ществили эту реакцию при 450—470 °С на окиси хрома, В. И. Каржев, М. Г. Северьянов и А. Н. Снова— при 500— 550 °С на медь-хромовом катализаторе, Б. А. Казанский и А. Ф. Платэ осуществили дегидроциклизацию парафиновых уг­леводородов с применением платины на активированном угле при 304—310 °С. В дальнейших работах Б. А. Казанского с сотр. была показана возможность дегидроциклизации н-гексана в бензол с применением алюмохромокалиевого катализатора. Указанные исследования, положившие научные основы процесса каталитиче­ского риформинга, позволили разрабо­тать и осуществить ряд пе­риодических и непрерывных процессов каталитического рифор­минга.

Ниже рассмотрены основные реакции, протекающие при ката­литическом риформинге.

Дегидрирование нафтенов с образованием ароматических угле­водородов можно показать на следующем примере:

Реакция дегидрирования нафтенов играет весьма важную роль в повышении октанового числа бензина за счет образования ароматических углеводородов. Из нафтеновых углеводородов наи­более полно и быстро протекает дегидрирование шестичленных циклов.

Исходные нафтеновые углеводороды, содержащиеся в бензине, имеют октановые числа 65—80 пунктов по исследовательскому ме­тоду. При высоком содержании нафтеновых углеводородов в сырье резко увеличивается выход ароматических углеводородов, напри­мер выход бензола — на 30—40%. Увеличение октанового числа бензина во многом зависит от содержания в нем непревращенных парафиновых углеводородов, так как именно они значительно сни­жают октановое число. Вот почему дегидрирование нафтеновых углеводородов должно сопровождаться одновременным протека­нием других реакций — только в этом случае можно достигнуть высокой эффективности каталитического риформинга.

При процессах каталитического риформинга протекают также реакции Дегидрирования парафиновых углеводородов до олефинов, но это мало повышает октановое число бензина и снижает его стабильность при хранении. Реакция дополнительно усложняется тем, что разрыв связей углерод — углерод протекает в большей степени, чем разрыв связей углерод — водород. Кроме того, при температурах, необходимых для протекания дегидрирования пара­финов, одновременно идет и циклизация этих углеводородов. По­этому при дегидрировании парафиновых углеводородов часто вна­чале образуются нафтеновые (циклические) углеводороды, кото­рые потом превращаются в ароматические:

Иногда эти две стадии объединяют вместе, и тогда реакция но­сит название дегидроциклизации. Следует отметить, что дегидрирование парафинов (с образованием олефинов) протекает при более высокой температуре, чем дегидроциклизация.

В результате Гидрокрекинга высокомолекулярных парафинов образуются два или несколько углеводородов с более низким молекулярным весом, например

Поэтому иногда реакцию называют деструктивным гидрированием. Реакция гидрокрекинга высокомолекулярных углеводородов с об­разованием углеводородов меньшего молекулярного веса (наряду с гидрированием и дегидроциклизацией) может играть важную роль в повышении октанового числа бензина риформинга. Реак­ции гидрокрекинга, вероятно, протекают за счет передачи гидрид-ного иона катализатору с образованием карбоний-иона, последую­щее расщепление которого дает олефиновый углеводород и новый карбоний-ион. Положительное значение гидрокрекинга заклю­чается в образовании низкокипящих жидких углеводородов с бо­лее высоким октановым числом и меньшей плотностью, чем исход­ное сырье.

Катализатор оказывает большое влияние на реакцию гидро­крекинга. Характер реакции можно изменять соответствующим выбором катализатора. В качестве примера можно отметить, что при гидрировании парафиновых углеводородов нормального строе­ния в присутствии никеля на алюмосиликате протекает не только гидрокрекинг, но и изомеризация. Если водород заменить азотом, то изомеризация не протекает.

Изомеризация н-парафинов, протекающая при риформинге, приводит к образованию разветвленных углеводородов:

Следует отметить, что пентановые и гексановые фракции прямогонного бензина и без риформинга имеют сравнительно высо­кое октановое число. Изомеризация нормальных парафинов С7 —С10 теоретически должна дать значительное повышение октановых чи­сел, но практически в существующих условиях каталитического риформинга эта реакция не протекает. Вместо нее указанные уг­леводороды вступают в реакции гидрирования и гидрокрекинга. Поэтому реакция изомеризации играет при процессах каталитиче­ского риформинга лишь подсобную роль. Например, ароматизация замещенных пятичленных нафтенов основывается, как указыва­лось выше, на способности катализатора изомеризовать эти нафтены в шестичленные, которые наиболее легко дегидрируются до ароматических углеводородов.

Дегидроциклизацию парафинов можно показать и на следую­щем примере

Т. е. из одной молекулы н-гексана образуются одна молекула бен­зола и четыре молекулы водорода, и общий объем образовавшихся продуктов в 5 раз превышает объем непревращенного н-гексана. Дегидроциклизация парафинов с образованием ароматических углеводородов стала одной из важнейших реакций каталитического риформинга.

Каталитическая дегидроциклизация парафинов протекает с предпочтительным образованием гомологов бензола с макси­мальным числом метильных заместителей в ядре, которое допус­кается строением исходного углеводорода. При увеличении молекулярного веса парафиновых углеводородов реакция дегидроциклизации облег­чается.

Возможные пути перехода от парафиновых углеводородов к ароматическим можно выразить следующей схемой;

Каталитическая дегидроциклизация парафиновых углеводоро­дов осуществляется в присутствии эффективного катализатора. В настоящее время изучено большое количество катализаторов. Наибольшее применение имеют окиси хрома и молиб­дена на носителях в присутствии добавок (платина, палладий, це­рий и кобальт). Установлено, что дегидроциклизация на алюмохромовом катализаторе в значительной степени подвержена влия­нию давления: при низких давлениях степень превращения сырья повышается. В противоположность этому, на алюмомолибденовых катализаторах степени превращения при высоких и низких давле­ниях примерно одинаковы.

В присутствии платинового катализатора возможны два меха­низма дегидроциклизации: 1) непосредственное образование аро­матических углеводородов из парафинов и 2) образование шести-членных нафтенов с их последующей дегидрогенизацией. В присут­ствии окисных катализаторов парафиновые углеводороды могут превращаться в ароматические углеводороды и через олефины. В последнее время Б. А. Казанский с сотр. разработал и ре­комендовал алюмохромокалиевый катализатор для реакций де­гидрирования и дегидроциклизации различных углеводородов. Ис­пытания этого катализатора на лабораторных и пилотных уста­новках показали его высокие качества.

Процесс дегидроциклизации н-парафинов обладает рядом пре­имуществ и в сочетании с процессом риформинга может быть успешно использован в про­мышленности. Выход бензола в этом процессе в 2—3 раза превосходит его выход при ри­форминге.

Реакции ароматических углеводородов. При каталитическом риформинге некоторая часть ароматических углеводородов (со­держащихся в сырье и образующихся в процессе риформинга) разлагается. В жестких условиях процесса парафины нормального строения превращаются в ароматические углеводороды, но в ре­зультате дегидроциклизации средний молекулярный вес образую­щихся ароматических углеводородов оказывается меньше, чем у ароматических углеводородов, получаемых в мягких условиях. Уменьшение содержания ароматических углеводородов C9 —С10 ивыше при большой жесткости режима объясняется, вероятно, от­щеплением боковых цепей и даже разрывом бензольного ядра. Примерная схема процессов, происходящих при каталитическом риформинге, следующая (на примере н-гептана):

Подбирая условия процесса, можно регулировать протекание указанных выше реакций. Получаемый при каталитическом ри­форминге бензин является смесью ароматических углеводородов с изопарафиновыми и вследствие этого обладает высокими анти­детонационными свойствами. Он очень стабилен и почти не содер­жит серы.

В качестве сырья для каталитического риформинга обычно ис­пользуют бензиновые фракции первичной перегонки нефтей. Пре­делы выкипания этих фракций колеблются в широком интерва­ле— от 60 до 210°С. Для получения ароматических углеводоро­дов в большей части используют фракции, выкипающие при 60— 105 или при 60—140°С, а для получения высокооктановых автомо­бильных бензинов — фракции 85—180 °С. Иногда широкую фрак­цию, выделяемую на установке первичной перегонки нефти, до­полнительно разгоняют на более узкие фракции на установках вторичной перегонки.

На рис. 61 показана зависимость октанового числа бензина от его выхода при каталитическом риформинге различных фракций (62—140, 85—140 и 105—140°С), полученных при первичной пере­гонке сернистых нефтей. С утяжелением сырья в пределах 85— 140 °С уменьшается содержание ароматических углеводородов и несколько снижается октановое число бензинов. Важно подчерк­нуть, что между выходом бензина при риформинге и его октано­вым числом существует определенная зависимость — с повышением октанового числа (независимо от метода определения) выход бензи­на уменьшается. Эта же зависимость подтверждается данными приведенными на рис. 62 и 63. Сопоставление результатов рифор-минга фракций 85—140 °С (при 20 Ат) и 140—180 °С (при 40 Ат) с результатами риформинга широкой фракции 85—180 °С при 20 Ат показывает, что в случае риформинга фракции 85—180 °С выход бензина с октановым числом 95 (по исследовательскому методу) возрастает на 2—2,5%.

Однако раздельный риформинг бензиновых фракций имеет не­которые преимущества: большая продолжительность работы ката­лизатора без регенерации, лучшая маневренность в работе и т. д. Поэтому выбор того или иного варианта получения высокооктано­вого бензина определяется с учетом конкретных условий работы нефтеперерабатывающего завода. Весьма важно учитывать воз­можность и целесообразность получения ароматических углеводо­родов.

В процессе каталитического риформинга образуются газы и жидкие продукты (риформат). Риформат можно использовать как высокооктановый компонент автомобильных и авиационных бен­зинов или направлять на выделение ароматических углеводородов, а газ, образующийся при риформинге, подвергают разделению.

Высвобождаемый при этом водород частично используют для пополнения потерь циркулирующего водородсодержащего газа и для гидроочистки исходного сырья (если она есть), но большую же часть водорода с установки выводят.

Такой водород значительно дешевле специально получаемого. Именно этим объясняется его широкое применение в процессах, потребляющих водород, особенно при гидроочистке нефтяных дис­тиллятов..

Кроме водородсодержащего газа из газов каталитического ри­форминга выделяют сухой газ (C1 —С2 или С1 —С3 ) и сжиженные газы (Сз—С4 ); в результате получают стабильный дебутанизированный бензин.

В ряде случаев на установке (в стабилизационной ее секции) получают стабильный бензин с заданным давлением насыщенных паров. Это имеет значение для производства высокооктановых компонентов автомобильного или авиационного бензина. Для по­лучения товарных автомобильных бензинов бензин риформинга смешивают с другими компонентами (компаундируют). Смешение вызвано тем, что бензины каталитического риформинга содержат 60—70% ароматических углеводородов и имеют утяжеленный со­став, поэтому в чистом виде они непригодны для использования. В качестве компаундирующих компонентов могут применяться легкие бензиновые фракции (н. к. 62 °С) прямой перегонки нефти, изомеризаты и алкилаты. Поэтому для увеличения производства высокооктановых топлив на основе бензинов риформинга не­обходимо расширять производства высокооктановых изопарафиновых компонентов. В табл. 21 приведены данные о составе высокооктановых автомобильных бензинов, полученных компаундиро­ванием соответствующих фракций каталитического риформинга и изопарафиновых компонентов.

Для получения автомобильного бензина с октановым числом 95 (по исследовательскому методу) риформинг-бензин должен иметь октановое число на 2—3 пункта больше. Это компенсирует уменьшение октанового числа бензина при разбавлении его изопарафиновыми компонентами.

С увеличением количества изокомпонента чувствительность бен­зина (разница в его октановых числах по исследовательскому и моторному методам) снижается, так как октановые числа чистых изопарафиновых углеводородов по моторному и исследователь­скому методам практически совпадают

Было установлено, что подвергать изомеризации н-гексан, вы­деленный из рафината каталитического риформинга, нецелесооб­разно. Лучше получать изокомпонент из пентановой фракции бен­зина прямой перегонки нефти и выделять изогексановую фракцию из рафината каталитического риформинга.

Катализаторы риформинга обычно обладают двумя функциями: кислотной и дегидрирующей. В качестве катализаторов обычно используют платину на окиси алюминия. Кислотные свойства ка­тализатора определяют его крекирующую и изомеризующую активность. Кислотность имеет особенно большое влияние при пе­реработке сырья с большим содержанием парафиновых углеводо­родов: инициирование кислотными катализаторами реакций гид­рокрекинга парафинов и изомеризации пятичленных нафтенов в шестичленные с последующей их дегидрогенизацией и дегидроциклизацией (в результате дегидрирующей способности катализа­тора) ведет к образованию ароматических углеводородов.

Платиновый компонент катализатора обладает дегидрирующей функцией. Он ускоряет реакции гидрирования и дегидрирования и, следовательно, способствует образованию ароматических углеводо­родов и непрерывному гидрированию и удалению промежуточных продуктов, способствующих коксообразованию. Содержание пла­тины обычно составляет 0,3—0,65 вес.%; при снижении этой вели­чины уменьшается устойчивость катализатора против ядов. Но и чрезмерное содержание металла нежелательно: при повышении концентрации платины усиливаются реакции деметилирования и расщепления нафтеновых углеводородов. Другим фактором, огра­ничивающим содержание платины в катализаторе, является ее вы­сокая стоимость.

Таким образом, кислотная функция катализатора необходима для протекания реакций гидрокрекинга и изомеризации, а дегид­рирующая— для процессов дегидрирования. Сочетание этих двух функций определяет качество бифункционального катализа­тора риформинга.

5.2. Промышленные катализаторы риформинга. В промышленности применяются следующие катализаторы: платиновые (носители— окись алюминия, промотированная фтором или хлором, алю­мосиликат, цеолит и др.); палладиевые (носители те же, что и для платины); сернистый вольфрамоникелевый; окисный алюмомолиб-деновый (

10% окиси молибдена на окиси алюминия); алюмо-хромовый (32% окиси хрома и 68% окиси алюминия); алюмо-кобальтмолибденовый (молибдат кобальта на носителе — окиси алюминия, стабилизированной кремнеземом). Наиболее широкое применение нашли алюмоплатиновые катализаторы. В последнее время в состав катализаторов с платиной и палладием стали вво­дить редкоземельные элементы. Некоторое распространение полу­чили также цеолитсодержащие катализаторы.

5.3. Требования к катализаторам. Катализаторы рифор­минга должны обладать высокой активностью в реакциях арома­тизации; достаточной активностью в реакциях изомеризации пара­финов; умеренной или низкой активностью в реакциях гидрокре­кинга; высокой селективностью (показателем которой может слу­жить выход риформата при заданном октановом числе или задан­ном выходе ароматических углеводородов); высокой активностью гидрирования продуктов уплотнения; термической устойчивостью и возможностью восстановления активности путем регенерации непосредственно в реакторах; устойчивостью к действию сернистых и азотистых соединений, кислорода, влаги, солей тяжелых метал­лов и других примесей; стабильностью (способностью сохранять первоначальную активность в течение продолжительного срока ра­боты); невысокой стоимостью.

6. Классификация промышленных процессов. Промышленные процессы каталитического риформинга часто подразделяют на процессы на платиновых катализаторах и на катализаторах, не содержащих драгоценный металл.

Процессы каталитического риформинга можно классифициро­вать и по способу регенерации катализатора: без регенерации и с регенерацией. Регенеративные процессы в свою очередь можно раз­делить на процессы с непрерывной и периодической регенерацией катализатора; при такой классификации процессы характери­зуются еще и состоянием катализатора. Неподвижный (стационар­ный) слой характерен для процессов с периодической регенера­цией, а движущийся — для процессов с непрерывной регенерацией. Процессы с периодической регенерацией подразделяются на про­цессы с межрегенерационным периодом более 50 и менее 50 дней.

Реакции, протекающие при каталитическом риформинге, за исключением изомеризации, идут с поглощением тепла, поэтому в условиях промышленных установок проблема подвода тепла имеет исключительное значение. Первой установкой риформинга была установка гидроформинг на неподвижном алюмомолибденовом катализаторе (40-е годы), Процесс был разработан для получения толуола высокой чистоты, предназначенного для нитрования. После окончания второй миро­вой войны значительная часть установок риформинга была переве­дена на производство автомобильного бензина.

Промышленное применение платиновых катализаторов для риформинга началось с процесса платформинга (1949 г.). В даль­нейшем было разработано много других типов установок катали­тического риформинга.

Примером нерегенеративного каталитического риформинга мо­жет служить платформинг — процесс, осуществляемый в адиабати­ческом режиме на платиновом катализаторе. Сырье смешивается с циркулирующим водородсодержащим газом и, пройдя через теп­лообменники, поступает в печь. Тепло для реакции, протекающей в первом (головном) реакторе, подводится в первом змеевике печи промежуточного нагрева, что позволяет регулировать температуру потока на входе во второй реактор. Тепло, затрачиваемое на про­текание эндотермических реакций во втором реакторе, подводится во втором змеевике печи промежуточного нагрева и т. д. Продукты реакции, выходящие из последнего реактора, через теплообменникпоступают в холодильник, а затем в сепаратор. Часть газа, отде­лившаяся в сепараторе, возвращается в систему, а избыток выво­дится из системы. Жидкий продукт из сепаратора направляется в стабилизационную колонну

Примером каталитического риформинга с периодической реге­нерацией (продолжительность работы катализатора менее 50 дней) может служить процесс ультраформинга. Сырье с циркулирующим газом нагревается и проходит последовательно через пять реакторов, работающих в адиабатическом режиме, обеспечиваемом промежуточным нагревом сырья в печах. Имеется и резервный реактор, ко­торый включают в схему на период проведения ре­генерации в любом из остальных пяти реакторов.

1. Назначение процесса. Как известно, недостатком крекинга яв­ляется образование кокса, что обусловливает значительное умень­шение выхода крекинг-бензина. Для устранения коксообразования при крекинге необходим ввод водорода, восполняющего убыль из-за разложения легких продуктов, богатых водородом. Поэтому логическим продолжением обычного крекинга является крекинг в присутствии водорода. Промышленные процессы такого типа име­нуются гидрогенизационными.

Гидрогенизация есть совокупность реакций присоединения водо­рода, протекающих под влиянием катализаторов в соответствую­щих условиях. Процессы гидрогенизации при нормальном давле­нии не нашли применения в нефтяной промышленности, так как они требуют очень «нежных» катализаторов (легко отравляемых сернистыми и другими вредными соединениями, всегда присут­ствующими в нефтепродуктах). При высокой температуре повы­шенное давление водорода не только предохраняет ароматические углеводороды от конденсации, но также способствует разложению нежелательных высококонденсированных ароматических углево­дородов.

Гидрогенизационные процессы, применяемые в нефтяной про­мышленности, протекают в присутствии катализаторов при 250— 430 °С, 30—320 ат, объемной скорости 0,5—10 ч-1 и циркуляции водородсодержащего газа 360—600 м3 /м3 сырья. При этом про­исходит разложение высокомолекулярных соединений, в том числе содержащих серу и азот, с образованием сероводорода и аммиака. Сероводород может образоваться также в результате реакций не­которых более простых сернистых соединений с водородом, содер­жащимся в циркулирующем газе. Катализаторы, применяемые при гидрогенизации, выполняют в основном две функции: гидрирующую (реакции с сернистыми, кислородными и азотистыми соединения­ми) и расщепляющую (крекирующую).

В зависимости от свойств катализатора, от режима, качества сырья и целевого продукта гидрогенизационные процессы значи­тельно отличаются друг от друга. Эти процессы можно применять для синтеза ряда продуктов, например аммиака и метилового спир­та. С ними связано, производство твердых жиров из жидких, а также получение более качественных продуктов из угольных и сланцевых смол.

В нефтеперерабатывающей промышленности применением гидрогенизационных процессов решена важная проблема переработки сернистых и высокосернистых нефтей с получением высококачественных нефтепродуктов и серы или серной кислоты. Направление и выбор конкретного процесса, как и подбор тех­нологии, зависят от цели, которую ставят производственники. Ос­новной целью гидрирования (или гидроочистки) обычно является улучшение качества продукта без значительного изменения его углеводородного состава. В других случаях требуется получать продукты с измененным углеводородным составом, и тогда прихо­дится осуществлять процессы деструктивной гидрогенизации и гидрокрекинга.

В исследование гидрогенизационных процессов большой вклад внесли Н. Д. Зелинский, А. Е. Фаворский, С. В. Лебедев, С. А. Фокин, В. Н. Ипатьев, И. Д. Тиличеев, Д. И. Орочко, М. С. Немцов и В. П. Молдавский…

Большое значение имеет проблема обеспечения гидрогенизационных установок водородом. Расход водорода зависит от условий процесса и состава перерабатываемого сырья. Чем выше давление и содержание серы в сырье, тем больше расход водорода. Так, при увеличении давления в три раза расход водорода возрастает в 3,2—3,3 раза. Расход водорода тем выше, чем большую роль в процессе играет крекирующая функция катализатора. Меньше всего водорода расходуется при гидроочистке дистиллятов, т. е. в процессах, где преобладает гидрирующая функция катализатора. При переработке фракций из одной и той же нефти расход во­дорода увеличивается по мере увеличения молекулярного веса фракции. Следует отметить, что специально получаемый водород значительно дороже водорода, получаемого при каталитическом риформинге.

2. Основные параметры процессов. К основным параметрам гидрогенизационных процессов, как и других каталитических процессов, описанных ранее, относятся температура, давление, объемная ско­рость подачи сырья, количество циркулирующего водородсодержащего газа и содержание в нем водорода.

Температура. С повышением температуры жесткость процесса возрастает, что приводит к снижению содержания серы, азота, кислорода и металлов в продуктах гидрогенизации. По мере повы­шения температуры расход водорода увеличивается, а затем может несколько снизиться, так как могут начаться реакции дегидриро­вания. Однако до этого момента расход водорода возрастает весь­ма быстро при увеличении температуры. Поэтому рекомендуется поддерживать температуру процесса возможно более низкой, есте­ственно, если это не отражается на качестве получаемых продук­тов. При этом надо стремиться еще и к тому, чтобы свести к мини­муму скорость отравления катализатора. При гидроочистке темпе­ратуру поддерживают в пределах 260—415 °С. Если температура выше, например 400—455 °С, преобладающими становятся реакции гидрокрекинга.

Давление в гидрогенизационных процессах следует рассматри­вать комплексно — учитывать общее давление в системе и пар­циальное давление водорода в циркулирующем газе. С повышением парциального давления водорода увеличивается скорость гидриро­вания и достигается более полное удаление серы, азота, кислорода и металлов, а также насыщение непредельных углеводородов; на катализаторах, вызывающих деструкцию (гидрокрекинг), снижает­ся содержание ароматических углеводородов и асфальтенов и уменьшается закоксованность катализаторов, что увеличивает срок их службы. Целесообразно также поддерживать содержа­ние водорода в циркулирующем газе на максимально возможном уровне.

Влияние парциального давления водорода на процесс гидро­очистки показано на рисунке (см. ниже)

Процесс гидроочистки лучше вести при повышенном парциаль­ном давлении водорода — в циркулирующем газе должно быть 75—90 объемн.% Н2 (во всяком случае, не менее 60 объемн,%).

Рис. Влияние парциального давления водорода на степень гидрирования сернистых соединений в тяжелом циркулирующем крекинг-газойля:

Если ресурсы водорода недостаточны, чтобы поддерживать данный режим, парциальное давление водорода приходится снижать, а для уменьшения расхода водорода — повышать температуру. Послед­нее обеспечивает усиление дегидрогенизации нафтеновых углево­дородов. Однако значительное повышение температуры усиливает реакции гидрокрекинга, что нежелательно, так как это уменьшает выход целевых продуктов и сокращает срок службы катализатора. Снижение давления в реакторах гидроочистки с 40—50 до 28—30 Ат позволило сократить расход водорода на установке на 30% без ухудшения качества очистки. Межрегенерационныйный период работы катализатора составил восемь месяцев. В дальнейшем были разработаны условия процесса с меньшим по­треблением водорода. Они благоприятствуют наилучшему дегидри­рованию нафтеновых углеводородов, способствуя в то же время частичной гидрогенизации сернистых и смолистых соединений.

Объемная скорость подачи сырья может сильно влиять на ре­зультаты гидрогенизации. Повышение скорости ведет к снижению интенсивности реакций, вследствие этого снижаются расход водо­рода и коксообразование. Чем легче продукт, подвергаемый гидри­рованию, тем более высокую объемную скорость можно поддер­живать в процессе. Обычно объемную скорость поддерживают на уровне 0,5—7 ч-1 .

При переработке продуктов, полученных из вторичных процес­сов, объемную скорость приходится снижать по сравнению со ско­ростью переработки продуктов такого же фракционного состава, но полученных при первичной переработке нефти. Так, при пере­работке фракции 240—350 °С первичной переработки сернистой нефти типа Ромашкинской объемную скорость можно поддержи­вать на уровне 4 ч-1, а при переработке такой же фракции и из той же нефти, но полученной на установках вторичной переработки (термического и каталитического крекинга), объемную скорость приходится снижать до 2—1,5 ч-1 .

Важное значение имеет и содержание серы в перерабатываемом сырье: чем оно выше, тем ниже должна быть объемная скорость, так как скорость гидрирования органических сернистых соединений выше, чем для других соединений (за исключением кислородсодер­жащих).

Выбор объемной скорости в значительной степени зависит от природы и фракционного состава сырья, а также от технологии его получения (первичная перегонка или вторичные процессы). При переработке того или иного сырья необходимо выдерживать объем­ные скорости, соответствующие данному сырью. Если на установ­ку направляется новый вид сырья, приходится менять объемную скорость; при этом меняется производительность установки и дру­гие параметры технологического режима. Если новое сырье, по сравнению с ранее перерабатываемым, позволяет повысить объем­ную скорость, производитель­ность установки будет повы­шаться.

При неизменных темпера­турах, объемной скорости и общем давлении соотношение циркулирующего водородсодержащего газа и сырья влия­ет на долю испаряющегося сырья, парциальное давление водорода и продолжительность контакта с катализатором.

Скорость реакции. Хотя скорости реакций гидрогенизации раз­личных нефтепродуктов изучены недостаточно, некоторые законо­мерности все же выявлены. Как правило, кислородсодержащие соединения гидрируются легче, чем сернистые с такими же угле­водородными радикалами, а эти, в свою очередь, легче, чем соот­ветствующие азотсодержащие соединения. На активных катализа­торах, если в сырье нет катализаторных ядов, обеспечивается гид­рирование непредельных углеводородов. Скорость гидрирования зависит не только от режима, но и от фазового состояния, актив­ности и структуры катализатора.

Температура влияет не только на скорость реакций, протекаю­щих на поверхности катализатора, но и на диффузию (особенно в

Гетерофазных системах) к активным центрам внутри катализатора. Вследствие увеличения летучести углеводородов при повышении температуры уменьшается количество жидкой фазы, что ведет к увеличению скорости диффузии. Повышение температуры в целях увеличения скорости реакции может привести к нежелательным реакциям, что значительно снижает выход целевых продуктов в результате образования большого количества газа и кокса.

3. Химические основы процесса. При различных гидрогенизационных процессах протекает большое число реакций. Как правило, с повышением температуры усиливаются реакции гидрокрекинга, т. е. реакции, при которых происходит разрыв связей С—С, напри­мер деалкилирование, разрыв колец, разрыв цепей. Если парциаль­ное давление водорода недостаточно высоко, одновременно проис­ходит также разрыв связей С—Н, сопровождающийся выделением Н2 и образованием олефинов и ароматических углеводородов.

В реакциях гидрирования непредельные углеводороды, образую­щиеся в результате расщепления крупных молекул, присоединяют водород и превращаются в предельные углеводороды. В первую очередь гидрированию подвергаются диены. Олефины играют наи­большую роль в процессе, они легко гидрируются в присутствии ка­тализаторов даже при обычной температуре. Однако большинство катализаторов, содержащих металлы, отравляется серой, поэтому на промышленных установках гидрирования олефинового сырья, содержащего сернистые соединения, применяют окислы или суль­фиды молибдена, вольфрама или хрома, иногда в сочетании с окислами или сульфидами металлов VIII группы. Такие окисносульфидные катализаторы обладают высокой активностью при срав­нительно умеренных температурах и повышенных давлениях. Не­насыщенные, особенно циклоолефиновые, соединения насыщаются значительно легче, чем ароматические. Правда, в отсутствие катализаторных ядов никель и платина способны гидрировать арома­тические углеводороды при комнатной температуре.

Реакции гидрокрекинга очень сложны — наряду с расщеплением и гидрированием протекают изомеризация, разрыв и перегруппи­ровка циклов, алкилирование, гидродеалкилирование и т. д. Исследо­вания показали, что механизм гидрокрекинга сходен с механизмом каталитического крекинга, но усложнен реакциями гидрирования. Быстрое гидрирование олефиновых углеводородов, образующихся при крекинге, предотвращает образование кокса на катализаторе и обеспечивает поддержание крекирующей активности катализа­тора. Это, а также сравнительно высокое парциальное давление водорода в системе обусловливает быстрое протекание крекинга при более низких температурах, чем при обычном каталитическом крекинге, и обеспечивает более длительную работу катализатора без регенерации.

Гидрокрекинг парафинов с низким молекулярным весом при гидрировании нефтяных фракций нежелателен, так как он приво­дит к образованию легких углеводородов, вплоть до метана. При переработке высококипящих фракций и нефтяных остатков гидро­крекинг парафинов желателен, так как в результате ‘образуются парафины, по температуре кипения соответствующие светлым неф­тепродуктам. Такие реакции протекают под давлением и в присут­ствии окисных или сульфидных катализаторов. Скорость этих про­цессов лишь немногим больше скорости термического крекинга.

Гидрокрекинг олефинов протекает значительно легче, чем гидро­крекинг парафинов. Однако можно предполагать, что гидрокрекинг углеводородов обоих классов протекает с образованием одних и тех же промежуточных продуктов.

Нафтены расщепляются на углеводороды С3 —С4, причем шестичленные нафтены в значительной степени изомеризуются в пятичленные; у некоторых, например у метилциклопентана, происходит раскрытие цикла без расщепления. Гидрокрекинг полицикличе­ских нафтенов, например декалина, протекает легче, чем гидро­крекинг соответствующих нормальных парафинов (C10 H22 ); при этом получается относительно больше парафинов изостроения и моноциклических пятичленных нафтенов. Для производства высококачественного бензина наиболее важной реакцией при обыч­ном гидрокрекинге является частичное гидрирование полицикли­ческих ароматических структур с последующим разрывом насыщен­ных колец и образованием замещенных моноциклических аромати­ческих углеводородов. Боковые цепи, появляющиеся в результате такого разрыва, легко отщепляются.

Моноциклические ароматические углеводороды наряду с изопарафинами обусловливают высокие октановые числа бензина, и по­этому при гидрокрекинге желательно сохранить их непревращен­ными; в этом случае уменьшается и расход водорода.

При гидрокрекинге полициклических ароматических углеводо­родов образуются более легкие ароматические, нафтеновые и па­рафиновые углеводороды с большим содержанием парафиновых углеводородов изостроения (гидроизомеризация). В присутствии катализаторов, обладающих кислотными свойствами, гидроизоме­ризация протекает одновременно с другими реакциями гидрирова­ния. При температурах выше 350 °С равновесие реакции смещает­ся в сторону образования парафинов нормального строения, а не изопарафинов. Для нафтеновых углеводородов наблюдается обрат­ное Влияние температуры. Гидроизомеризация при гидрокрекинге парафинов имеет большое значение, если ставится цель получать моторные топлива.

Органические соединения серы в условиях гидрогенизационных процессов превращаются в соответствующие углеводороды и серо­водород; реакция может проходить через образование промежуточ­ных сернистых соединений. Меркаптаны, сульфиды и дисульфиды легко гидрируются в сравнительно мягких условиях. В цикличе­ских сероорганических соединениях под воздействием водорода происходит насыщение с последующим разрывом кольца и образо­ванием соответствующего парафинового или алкилароматического углеводорода. В качестве примера приведем две схемы пре­образования более сложных сероорганических соединений — бензтиофенов и дибензтиофенов:

По мере роста молекулярного веса фракций полнота удаления азотсодержащих соединений уменьшается. На полноту удаления влияет также состав катализатора и носитель. При гидрокрекинге в присутствии дисульфида вольфрама на алюмосиликатном носи­теле наличие азотистых соединений в сырье частично подавляет реакции изомеризации вследствие образования аммиака и аминов. В промышленных процессах гидроочистки котельных и дизельных топлив и смазочных масел желательно достигнуть полного удале­ния азотсодержащих соединений основного характера, которые, как давно известно, являются причиной плохой стабильности нефтепро­дуктов — ухудшения цвета и образования нерастворимых осадков при хранении.

Кислородсодержащие органические соединения обычно легко вступают в реакции гидрирования с образованием соответствую­щих углеводородов и воды. В сложных смолистых и асфальтеновых веществах нефти и нефтяных остатков содержится много кисло­рода и поэтому превращение их в углеводородные продукты проте­кает значительно труднее. Из кислородсодержащих соединений наибольшее значение имеют смолы и асфальтены, которые при гидрогенизации превращаются в более низкомолекулярные углево­дороды и воду. Кроме этих соединений в разном сырье могут при­сутствовать фенолы и нафтеновые кислоты, при гидрогенизации которых образуются соответствующие углеводороды и вода.

Промежуточные продукты крекинга нефти, содержащие высоко­активные молекулы, взаимодействуют с кислородом, образуя пере­киси и другие промежуточные продукты окисления. Эти кислород­ные соединения обычно легко разрушаются при гидрировании.

Часто все три рассмотренных выше типа соединений присут­ствуют одновременно, а иногда все три гетероатома находятся в одной и той же молекуле. Такие молекулы содержатся в высоко­кипящих фракциях и остаточных продуктах переработки нефти и угля. Они обычно содержат мало водорода и, кроме того, иногда связаны с металлами, присутствующими в нефтях.

Наряду с никелем в нефтях могут присутствовать другие ме­таллы— железо, медь, алюминий, титан, ванадий, молибден и др. В нефтях и нефтепродуктах содержатся также и некоторые другие элементы, попавшие в них извне (при добыче нефти и ее перера­ботке). Металлоорганические соединения разлагаются в присут­ствии активных катализаторов с выделением свободного металла, являющегося катализаторным ядом; он адсорбируется на поверх­ности катализатора, что снижает активность и избирательность ка­тализатора.

Ванадий в процессе гидроочистки удаляется относительно легко, никель же удаляется несколько труднее. Высказывается предполо­жение, что атомы ванадия концентрируются в наружных порах ка­тализатора, а атомы никеля — во внутренних.

В присутствии обычных катализаторов в условиях, при кото­рых происходит частичное превращение сернистых соединений, до­стигается практически полное превращение олефинов и кислород­содержащих соединений.

4.Разновидности гидрогенизационных процессов . Гидрогенизационные процессы в нефтеперерабатывающей промышленности применяются во все возрастающем объеме. Широкое развитие их обусловлено в основном повышением требований к качеству выра­батываемых нефтепродуктов и значительным объемом сернистых и высокосернистых нефтей, поступающих на переработку. Гидрогенизационные процессы имеют несколько разновидностей.

Деструктивная гидрогенизация — одно – или многоступенчатый каталитический процесс присоединения водорода под давлением, сопровождающийся расщеплением высокомолекулярных компонен­тов сырья и образованием низкомолекулярных углеводородов, ис­пользуемых в качестве моторных топлив. В качестве сырья можно использовать бурые и каменные угли, остатки от перегонки коксо­вых, генераторных и первичных дегтей; остаточные продукты пере­работки нефти (мазут, гудрон, крекинг-остатки), а также тяжелые дистилляты первичной перегонки нефти (350—500 °С) и вторичных процессов (газойли крекингов и коксования); высокосернистую нефть и нефть с высоким содержанием асфальто-смолистых веществ.

Гидрокрекинг — одно – или двухступенчатый каталитический процесс (на неподвижном или движущемся слое), сопровождающийся расщеплением высокомолекулярных компонентов сырья и образованием углеводородов, позволяющих в зависимости от усло­вий процесса и сырья получать широкую гамму продуктов: от сжиженных газов до масел и нефтяных остатков с низким содержа­нием серы. В качестве сырья можно использовать бензины (для получения сжиженного газа); керосино-соляровые фракции и вакуумные дистилляты (для получения бензина, реактивного и дизельного топлив); остаточные продукты переработки нефти (для получения бензина и реактивного и дизельного топлива); гачи и парафины (для получения высокоиндексных масел); высокосернистые нефти, сернистые и высокосернистые мазуты (для получения дистиллятных продуктов или топочного мазута с низким содержанием серы).

Недеструктивная гидрогенизация. Это одноступенчатый каталитический процесс, которому могут подвергаться все виды дистиллятного сырья. В результате они, не подвергаясь расщеплению, улучшают свои свойства: в основном освобождаются от непредельных углеводородов. В некоторых случаях так можно получить высо­кокачественные продукты, например изооктан из диизобутилена. Кроме облагораживания нефтяных и других углеводородных фрак­ций, недеструктивная гидрогенизация позволяет осуществлять ряд синтезов: с ее помощью получают синтетический бензин. Эта же реакция позволяет синтезировать также твердый парафин, церезин и метанол.

Гидроочистка — одноступенчатый процесс, проходящий в наиболее мягких, по сравнению с гидрокрекингом и деструктивной гидрогенизацией, условиях. Процесс протекает при 380—430 °С, 30—66 Ат, циркуляции водородсодержащего газа 100—600 м3 /м3 сырья и объемной скорости 3—10ч-1 с применением катализатора (обычно алюмокобальтмолибденовый или алюмоникельмолибденовый). Гидроочистке (или гидрооблагораживанию) может подвергаться различное сырье, получаемое как при первичной перегонке нефти, так и при термокаталитических процессах, от газа до масел и парафина. Наибольшее применение гидроочистка имеет для обессеривания сырья каталитического риформинга, а также для получения реактивного и малосернистого дизельного топлива из сернистых и высокосернистых нефтей. При гидроочистке происходит частичная деструкция в основном сероорганических и частично кислородных и азотистых соединений. Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.

Гидродеалкилирование — процесс, проводимый в среде водорода при 20—70 Ат и 540—760 °С (при более низких температурах необходим катализатор). Сущность его заключается в превращении алкилароматических углеводородов в соответствующие моноароматические со степенью превращения 60—90% (за один проход). Гидродеалкилированию могут подвергаться индивидуальные соединения (как толуол, ксилолы) и смеси различного состава. Наибольшее применение гидродеалкилирование нашло при получении ароматических углеводородов, в первую очередь бензола

Классификация промышленных установок. В настоящее время существует много различных систем и типов установок, на которых осуществляются гидрогенизационные процессы. Системы гидрогенизационных установок по состоянию катализатора можно разделить на две группы: системы, где катализатор в реакторе находится в неподвижном состоянии в одном или нескольких слоях, и системы с движущимся катализатором. Ко второй группе можно отнести следующие установки: где катализатор находится в псевдоожиженном состоянии, в виде пасты, в виде коллоидной суспензии.

Технологически гидрогенизационные процессы могут оформ­ляться в одну и более ступеней. В зависимости от назначения процесса, а также от качества перерабатываемого сырья и конечной цели гидрогенизащюнные процессы имеют 1—3 ступени. Большинство процессов гидрирования и особенно гидроочистки имеет одну ступень. Некоторые системы гидрокрекинга имеют как одну, так и две ступени. Обычно две ступени нужны для тех процессов гидро­крекинга, где в качестве сырья используются более тяжелые нефтяные остатки, или тех процессов, цель которых максимальное получение более легких продуктов. В этом случае на первой ступени проводится очистка сырья от ядов сернистых и особенно азотистых соединений; в качестве катализаторов большей частью служат осерненные окиси вольфрама и никеля; на второй ступени происходят основные процессы гидрокрекинга с деструкцией углеводородов и образованием целевых продуктов.

Процессы гидрогенизации могут быть классифицированы и по принципу основного направления реакций: деструктивная гидрогенизация, гидрокрекинг, недеструктивная гидрогенизация, гидроочистка и деалкилирование.

Катализаторы гидрогенизационных процессов выполняют несколько функций. Обычно различают гидрирующую, расщепляющую (крекирующую) и изомеризующую функции. Первую функцию обеспечивают металлы в основном VIII группы и окислы или сульфиды некоторых металлов VIгруппы периодической системы. Крекирующая функция обеспечивается носителем окисью алюминия, алюмосиликатами, магнийсиликатами или активированной глиной. Обычно носители выполняют также изомеризующую функцию. Если хотят повысить активность крекирующего компонента, прибегают к обработке катализатора галоидами фтором или хлором. Если необходимо усилить гидрирование, увеличивают содержание металла, способствующего гидрированию, или добавляют промо­торы, обычно редкоземельные металлы. Следует подчеркнуть, что добавление галоидов способствует усилению не только крекирующей, но и изомеризующей способности. В некоторых случаях обе функции может выполнить одно соединение, например дисульфид вольфрама.

Иногда сульфиды и окислы металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации и гидрокрекинга, а также в реакциях насыщения кратных связей в углеводородах.

1. Металлы (платина, палладий, никель) в чистом виде или на носителях, применяемые в реакциях насыщения непредельных и ароматических углеводородов. Они позволяют вести процесс при низких температурах, однако в сырье не должно быть катализаторных ядов.

2. Окислы и сульфиды металлов (или их сочетания) на кислотных носителях окись алюминия или магния, кизельгур. Они применяются главным образом в реакциях насыщающего гидрирования в присутствии потенциальных катализаторных ядов.

3. Окислы и сульфиды металлов (или их сочетания) на кислотных носителях алюмосиликате, магнийсиликате, окиси алюминия (кислотной) или активированной глине. Эти катализаторы применяются чаще всего для проведения гидроизомеризации и гидрокрекинга.

Большой вред работе гидрогенизационных установок наносят так называемые каталитические яды. Как правило, элементы V группы (азот, фосфор, мышьяк, сурьма, висмут) и часть элементов VI группы (кислород, сера, селен, теллур) являются ядами для металлов VIII группы (железа, кобальта, никеля, платины, палладия). Яды блокируют активные центры катализатора, так как прочно адсорбируются на них или химически взаимодействуют с ними. При регенерации катализатора в результате окисления ка­тализаторных ядов достигается их нейтрализация, однако лучшим способом борьбы с ядами является установление дополнительного (первого по ходу сырья) реактора, заполненного катализатором, для разложения или связывания отравляющих примесей.

Так как сернистые соединения присутствуют практически во всех видах сырья, следует применять катализаторы, стойкие к сере. Такими катализаторами являются сульфиды металлов. В боль­шинстве современных процессов в качестве катализаторов используют кобальт или никель, смешанные с молибденом на пористом носителе (в основном окись алюминия); иногда применяют сульфидный никельвольфрамовый катализатор. Обычно катализаторы выпускаются в окисной форме; при гидрогенизации сернистого сырья окислы кобальта (или никеля) и молибдена полностью или частично переходят в сульфидную форму. Часто после загрузки катализатор «осерняют» предварительно обрабатывают сероводородом или сернистыми соединениями и водородом.

Молибденовые катализаторы, особенно переведенные в сульфидную форму, весьма активны в реакциях гидрирования, протекающих в результате разрыва связей С—S. То же действие оказывает, например, молибден с кобальтом на окиси алюминия; очень важно, что катализатор обладает высокой теплостойкостью это способствует удлинению срока его службы, С другой стороны, активность катализатора гидрокрекинга в отношении разрыва-связей С—С мала, вследствие чего образование низкскипящих продуктов при условиях, требуемых для удаления серы, незначительно.

Катализаторы гидрогенизационных процессов весьма разнообразны, но их можно классифицировать по назначению так: катализаторы гидроочистки нефтяных дистиллятов; катализаторы гидрокрекинга нефтяного сырья от нефти до мазута; катализаторы деалкилирования.

В качестве примера рассмотрим Использование процессов гидрогенизации для получения масел.

Гибкость и универсальность гидрогенизационных процессов характерны не только при получении с их помощью топлив и сырья для химической промышленности, но и при получении масел. В производстве масел гидрогенизационные процессы могут приме­няться в различных модификациях. При гидроочистке депарафинированного масла в относительно мягких условиях не происходит ни превращения ароматических углеводородов, ни гидрокрекинга, но тем не менее выход и качество очищенного масла значительно превосходит эти показатели очистки смазочных масел глиной. Поэтому гидроочистка масел нашла широкое применение во всех странах мира.

Гидрирование фракций (в особенности полученных при переработке различных сернистых нефтей) в жестких условиях взамен селективной очистки, как показал ряд работ, технически осуществимо, но в настоящее время экономически не оправдано, за исключением получения специальных и высокоиндексных масел. Это объясняется тем, что гидрирование требует больших затрат, чем селективная очистка. Разница в затратах особенно сказывается тогда, когда в исходном сырье содержится много конденсированных ароматических углеводородов и для превращения их в соответствующие нафтены требуется проведение гидрирования именно в жестких условиях: с применением более высокого давления. В более мягком режиме удается получать масла со значительно более низким индексом вязкости, чем в жестком режиме. Поэтому в настоящее время гидрирование как метод получения масел взамен селективной очистки находит ограниченное применение. Однако в этой области ведутся исследования, в основном поиски катализатора, применение которого позволило бы снизить затраты (в том числе и за счет снижения необходимого давления в системе).

Пичугин А. П. Переработка нефти. М., Гостоопттехиздат, 1960. Смидович Е. В. Технология переработки нефти и газа. Часть вторая. М., «Химия», 1968. Суханов В. П. Каталитические процессы в нефтепереработке. М., «Химия», 1973. Орочко Д. И., Сулимов А. Д., Осипов Л. Н. Гидрогенизационные процессы в нефтепереработке. М., «Химия», 1971.

[1] Иногда газовый блок является частью самой установки каталитического крекинга.

Http://www. ronl. ru/doklady/himiya/227459/

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

«СУРГУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХАНТЫ-МАНСИЙСКОГО АВТОНОМНОГО ОКРУГА – ЮГРЫ»

На Тему: «Важнейшие химические процессы переработки нефтяного сырья»

Нефть представляет собой сложную смесь углеводородов с содержанием небольшого количества других химических веществ, таких как соединения серы, азота и кислорода. Для того чтобы можно было использовать различные компоненты смеси, их необходимо отделить друг от друга. Процесс разделения называется нефтепереработкой или нефтеперегонкой.

Нефть, добытая в разных частях света, и даже с разных глубин одного и того же месторождения, различается по составу углеводородов и других компонентов. Именно поэтому типы нефти заметно отличаются друг от друга по внешнему виду и характеристикам – от светлых летучих жидкостей до густых темных масел, настолько вязких, что их с трудом удается выкачивать из пласта.

По цвету, нефть бывает красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть; имеет специфический запах, распространена в осадочных породах Земли. Сегодня нефть является одним из важнейших для человечества полезных ископаемых.

– фракция, собираемая от 40 0 до 200 0 С, – Газолиновая Фракция Бензинов – содержит углеводороды от С5Н12 до С11Н24. При дальнейшей перегонке выделенной фракции получают: Газолин (от 40 0 до 70 0 С), Бензин (от 70 0 до 120 0 С) – Авиационный, Автомобильный И Т. д.;

ЛиГроиновая Фракция, собираемая в пределах от 150 0 до 250 0 С, содержит углеводороды от С8Н18 до С14Н30. Лигроин применяется как горючее для тракторов;

КЕросиновая Фракция включает углеводороды от С12Н26 до С18Н38 с температурой кипения от 180 0 до 300 0 С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет;

Мазут – остаток от перегонки. Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции:

Б) Смазочные Масла (авиатракторные, авиационные, индустриальные и др.),

Даже отходы переработки нефти имеют практическую ценность. Из отходов перегонки нефти производится кокс. Его используют в производстве электродов и в металлургии. А сера, которую извлекают из нефти в процессе переработки, идет на производство серной кислоты.

Целью Настоящей Работы Является: изучение важнейших химических процессов переработки нефтяного сырья.

В составе нефти выделяют углеводородную, асфальтосмолистую и зольную составные части, а также порфирины и серу. Углеводороды, содержащиеся в нефти, подразделяют на три основные группы: метановые, нафтеновые и ароматические. Метановые (парафиновые) Углеводороды химически наиболее устойчивы, а ароматические – наименее устойчивы (в них минимальное содержание водорода).

Метановые Углеводороды представлены в нефти как нормальными, так и разветвленными структурами, причем относительное содержание обеих форм зависит от типа нефти. Соотношение содержания разветвленных парафиновых углеводородов и углеводородов нормального строения в различных фракциях различно. Изо-парафины в нефтях представлены слаборазветвленными структурами, особенно в высших фракциях.

Нафтеновые Углеводороды. Предельные углеводороды, в которых углеродные атомы образуют кольца, известны под названием циклоалканов или нафтеновых углеводородов. В нефти преобладают кольца, содержащие по пяти или шести углеродных атомов в кольце. В области соединений более высоких молекулярных весов могут быть углеводороды, содержащие два или несколько колец в молекуле; эти кольца могут быть либо самостоятельными, либо связанными в структуры одними и теми же атомами.

Углеводороды Ароматические – органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра – группировки из 6 атомов углерода. Простейший и самый важный представитель ароматического углеводорода – бензол. Основным источником получения ароматических углеводородов служат продукты коксования каменного угля. Ароматические углеводороды представляют собой исходные продукты для получения кетонов, альдегидов и кислот ароматического ряда, а также многих других веществ.

В зависимости от месторождения нефть имеет различный качественный и количественный состав.

Представляя собой жидкость, более легкую, чем вода, нефть разных мест, иногда даже и соседних, различна по многим свойствам: цвету, плотности, летучести, температуры кипения. Однако любая нефть это жидкость почти нерастворимая в воде и по элементарному составу содержащая преимущественно углеводороды с подмесью небольшого количества кислородных, сернистых, азотистых и минеральных соединений, что видно не только по элементарному составу, но и по всем свойствам углеводородов.

Углеводный Состав Нефтей – является наиболее важным показателем их качества, определяющим выбор метода переработки, ассортимент и эксплуатационные свойства получаемых нефтепродуктовтов. В исходных нефтях содержатся в различных соотношениях все классы углеводов, кроме алкенов: алканы, цикланы, арены, а также гетероатомные соединения.

Алканы (СnН2n+2) – парафиновые углеводы – составляют значительную часть групповых компонентов нефтей, газо конденсатов и природных газов. Общее содержание их в нефтях составляет 25-75% маc. И только в некоторых парафинистых нефтях типа Мангышлакской достигает 40-50%. С повышением молярной фракций нефти содержание в них алканов уменьшается.

Циклоалканы (ц. СnН2n) – нафтеновые углеводы – входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80% мас.

Цикланы являются наиболее высококачественной составной частью моторного топлива и смазочных масел. Моноциклические цикланы придают моторному топливу высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического реформинга. В составе смазочных масел они обеспечивают малое изменение вязкости от температуры (т. Е. высокий индекс). При одинаковом числе углеродных атомов цикланы по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания.

Арены (ароматические углеводороды) с эмпирической формулой СnНn+2-2Ка (где Ка – число ареновых колец) – содержатся в нефтях обычно в меньшем количестве (15-50%), чем алканы и цикланы, и представлены гомологами бензола в бензиновых фракциях. Распределение их по фракцмям различно и зависит от степени ароматизированности нефти, выражающейся в ее плотность. В легких нефтях содержание аренов с повышением температуры кипения фракции, как правило, снижается. Нефти средней плотности цикланового типа характеризуются почти равномерным распределением аренов по фракциям. В тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций.

Как известно, нефть – сложная многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химичского строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов.

По химическому составу нефти различных месторождений весьма разнообразны. Эти различия обусловливаются:

В этой связи речь можно вести лишь о составе, молекулярном строении и свойствах «средне-статистической» нефти. Менее всего колеблется элементный состав нефтей: 82-87% углерода, 12-16,2% водорода; 0,04-0,35%, редко до 0,7% кислорода, до 0,6% азота и до 5 и редко до 10% серы. Кроме названных, в нефтях обнаружены в небольших количествах очень многие элементы, в т. ч. металлы (Са, Mg, Fe, Al, Si, V, Ni, Na и др.).

Поскольку нефть представляет собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности температурой кипения при данном давлении Принято разделять нефть и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты называют фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постоянно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения и конца кипения.

В отличие от твердых горючих ископаемых нефть легко поддается разделению на фракции по их температурам кипения.

Под фракционным составом нефти понимают количественное содержание в ней веществ, выкипающих в определенных температурных границах. В результате прямой перегонки при атмосферном давлении из нефти выделяются следующие светлые фракции:

Количество и соотношение фракций, содержащихся в разных сортах сырой нефти, различно. Как правило, содержание светлых фракций достигает 30-50% (масс.), хотя известны легкие светлые нефти, состоящие, в основном, из бензино-керосиновых фракций. Как следует из приведенных температурных интервалов выкипания, фракции перекрываются по температурам кипения и по входящим в них углеводородным компонентам.

Это означает, что знание фракционного состава нефти недостаточно для ее характеристики и установления классов, входящих в нее компонентов и, соответственно, перспектив переработки. Для решения этой задачи изучают структурно-групповой состав нефти. Под групповым составом понимают результаты анализа по классам углеводородов: при этом определяют содержание аренов, циклоалканов и алканов. Структурно-групповой анализ – это выражение состава гибридных углеводородов, входящих в средние и тяжелые фракции, по содержанию структурных групп среднестатистической молекулы образца. Для расчета структурно-группового состава используют эмпирические формулы взаимосвязей между распределением углерода в различных структурных фрагментах молекулы для углеводородов или их смесей.

Нефти различных месторождений значительно различаются по фракционному составу и, следовательно, по потенциальному содержанию дистиллятов моторного топлива и смазочных масел. Большинство нефтей содержит 10-30% бензиновых фракций, выкипающих до 200% и 40-65% керосино-газойлевых фракций, перегоняющихся до 350 °С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, Самотлорская нефть содержит 58% светлых, а газо конденсаты большинства месторождений почти полностью (85-90%) состоят из светлых. Добываются также очень тяжелые нефти, состоящие в основном из высококипящих фракций (например, нефть Ярегского месторождения, добываемая шахтным способом).

Химическая Классификация – за ее основу принято преимущественно содержание в нефти одного или нескольких классов углеводов. Различают 6 типов нефти: парафиновые, парафино-циклановые, циклановые, парафино-нафтено-ароматические, нафтено-ароматические и ароматические. В парафиновой нефти все фракции содержат значительное количество алканов: бензиновые – не менее 50%, а масляные – 20% и более. Количество асфальтенов и смол исключительно мало.

В парафино-циклановой нефти и их фракциях преобладают алканы и циклоалканы, содержание аренов и САВ мало. К ним относят большинство нефтей Урало-Поволжья и Западной Сибири. Для циклановой нефти характерно высокое (до 60% и более) содержание циклоалканов во всех фракциях. Они содержат количество твердых парафинов, смол и асфальтенов. К циклановым относят нефти, добываемые в Баку (балаханская и сураханская) и на Эмбе (доссорская и макатская) и др.

В парафино-нафтено-ароматических нефтях содержатся примерно в равных количествах углеводы всех трех классов, твердых парафинов не более 1,5%. Количество смол и асфальтенов достигает 10%. Нафтено-ароматические нефти характеризуются преобладающим содержанием цикланов и аренов, особенно в тяжелых фракциях. Ароматические нефти характеризуются преобладанием аренов во всех фракциях и высокой плотностью. К ним относят прорвинскую в Казахстане и бугурусланскую в Татарстане.

– 3 типа по потенциальному содержанию фракций, перегоняющихся до 350 °С (T1-T3);

– 4 подгруппы по качеству базовых масел, оцениваемому индексом вязкости (И1-И4);

Техническая Классификация. По ГОСТ России Р 51858-2002 нефть подразделяют:

Классификация Процессов Переработки Нефти: технологические процессы нефтеперерабатывающего завода принято классифицировать на следующие две группы: физические и химические.

Физическими (массообменными) процессами достигается разделение нефти на составляющие. Физические процессы по типу массообмена можно подразделить на типы:

– гравитационные (электрообессоливающая утановка), ректификационные (атмосферная трубчатка (перегонка);

– атмосферно-вакуумная трубчатка, газофракционирующая установка и др.);

– экстракционные (деасфальтизация, селективная очистка, депарафинизация кристаллизацией);

– абсорбционные (абсорбционно-газофракционирующая установка, очистка от H2S, CO2).

В химических процессах переработка нефтяного сырья осуществляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных нефтеперерабатывающих заводах, по способу активации химические реакции подразделяют на:

– термические (термолитические) – термодеструктивные и термоокислительные;

– каталитические – гетеролитические, гомолитические и гидрокаталитические.

В термодеструктивных процессах протекают преимущественно реакции распада (крекинга) молекул сырья на низкомолекулярные, а также реакции конденсации с образованием высокомолекулярных продуктов, например кокса, пека и др.

Целью переработки нефти является производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки. Существуют первичная и вторичная переработки нефти. Первичными являются процессы разделения нефти на фракции перегонкой, вторичные процессы – это деструктивная (химическая) переработка нефти и очистка нефтепродуктов.

Первичная Переработка Нефти – первый технологический процесс разделения нефти на фракции, которые отличаются по температурам кипения как между собой, так и с исходной смесью. При перегонке нефть нагревается до кипения и частично испаряется; получают дистиллят и остаток, которые по составу отличаются от исходной смеси. На современных установках перегонка нефти проводится с применением однократного испарения. При однократном испарении низкокипящие фракции, перейдя в пары, остаются в аппарате и снижают парциальное давление испаряющихся высококипящих фракций, что дает возможность вести перегонку при более низких температурах.

Первичные процессы переработки нефти заключаются в разделении ее на отдельные фракции (дистилляты), каждая из которых представляет смесь углеводородов. Первичная переработка является физическим процессом и не затрагивает химической природы и строения содержащихся в нефти соединений. На сегодняшний день, известен тот факт, что Первичная Переработка Нефти ежегодно снижается, как и добыча нефти.

Вторичные процессы переработка нефти. Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д.

Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.

Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.

Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

– дегидрирование нафтенов и их превращение в соответствующие ароматические соединения;

– превращение линейных парафиновых углеводородов в их разветвленные изомеры;

– гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;

– образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.

Гидроочистка осуществляется действием водорода на прямогонные нефтяные фракции и вторичные продукты их термокаталитической переработки в присутствии катализатора. Применяется с целью получения малосернистых бензинов, реактивных, дизельных и печных топлив, а также подготовки сырья для каталитического крекинга и риформинга, гидрокрекинга. Основные реакции, происходящие при гидроочистке: гидрогенолиз связей углерод – гетероатом с практически полным превращение серо-, азот – и кислородсодержащих органических соединений в предельные углеводороды с одновременным образованием легко удаляемых H2S, NH3 и водяных паров; гидрирование непредельных углеводородов. При гидроочистке происходит также разрушение металлоорганических соединений.

Гидроочистку проводят при 250-415 °С, 1-10 МПа, объемной скорости подачи сырья 1-15 ч -1 , соотношении водородсодержащий газ: сырье, равном (50-1000):1. Катализаторы обычно алюмокобальтмолибденовый (9-15% МоО3, 2-4% СоО) или алюмоникельмолибденовый (до 12% NiO, до 4% СоО), носитель-А12О3, иногда с добавками цеолитов, алюмосиликатов и др. Содержание водорода в водородсодержащем газе до 90% по объему, расход водорода 0,1-1,0% от массы сырья. Выход жидких продуктов обычно достигает 96-99%, суммарный выход углеводородных газов, бензина, H2S, NH3 ипаров Н2О – 1-4%.

Принципиальная технологическая схема гидроочистки: смешение сырья с водородсодержащим газом и предварит. подогрев смеси в теплообменнике; нагрев смеси в трубчатой печи; собственно гидроочистка в одно – или многосекционном реакторе – стальном цилиндрическом аппарате (поскольку процесс экзотермичный, в различные зоны реактора вводят холодный водородсодержащий газ); охлаждение полученного гидрогенизата; отделение его от водородсодержащего, а затем от углеводородных газов соотв. в сепараторах высокого и низкого давления с послед. ректификацией на целевые продукты; очистка газов от H2S, NH3 и водяных паров.

В зависимости от назначения процесса и состава сырья схемы установок гидроочистки могут несколько различаться. Так, для облагораживания бензинов, содержащих значит. кол-во непредельных углеводородов, применяют т. наз. селективную гидроочистку, при к-рой в сравнительно мягких условиях (250-325 °С) гидрированию подвергаются главным образом диены.

В результате гидроочистки может быть снижено содержание (% по массе): серы в бензинах – с 0,03-0,6 до 10 -5 , в дизельных топливах с 0,6-2,5 до 0,01-0,2, в вакуумных газойлях с 1,5-3,5 до 0,15-0,4; азота в бензинах с 0,01-0,03 до 10 -4 , в вакуумных газойлях с 0,05-0,2 до 0,02-0,15; непредельных углеводородов в бензинах с 3-120 до 0,2-0,5, в дизельных топливах с 3-100 до 0,5-6,0; металлов (Ni + V) в вакуумных газойлях с 5*10 -5 -3*10 -4 до 2*10 -5 -5*10 -5 . Кроме того, в нефтяных фракциях уменьшается содержание смолистых в-в, улучшаются их запах и цвет, повышается устойчивость к окислению.

Механизм каталитического крекинга – карбоний-ионный. Согласно этому механизму, часть молекул парафинов подвергается термическому расщеплению, а образующиеся олефины присоединяют протоны, находящиеся на катализаторе, и превращаются в карбоний-ионы. Карбоний-ионы являются агентами распространения цепной реакции. В результате целого ряда превращений образуются парафиновые углеводороды меньшего молекулярного веса, чем исходные, и новые большие карбоний-ионы, которые затем расщепляются. Реакции дегидрогенизации при крекинге высокомолекулярных парафинов играют незначительную роль. Однако процесс дегидрогенизации низкомолекулярных парафинов, особенно газообразных, имеет практическое значение для превращения малоценных газообразных продуктов в ценные – олефины.

Крекинг сложных углеводородов может затрагивать какую-либо часть молекулы независимо от других ее частей. Например, длинные парафиновые цепи нафтеновых и ароматических углеводородов расщепляются так же, как если бы они были парафиновыми углеводородами с тем же числом атомов углерода в молекуле. Кольца нафтеновых или ароматических углеводородов не изменяются в том процессе деалкилирования или расщепления парафиновых боковых цепей. Дегидрогенизация нафтеновых колец обычно происходит после частичного деалкилирования.

Термический крекинг проводят при высокой температуре, обычно 450-600°С, и повышенном давлении 2- 7 МПа. Впервые в России процесс термического крекинга разработал русский инженер В. Г. Шухов в 1891 году. Его научные идеи были осуществлены на производстве значительно позднее, в XX веке. Именно процесс термического крекинга позволил увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки. Это происходит за счет разложения тяжелых фракций нефти во время кипения под высокими температурами. Благодаря этому образуется более широкий спектр продуктов по сравнению с составом сырой первоначальной нефти.

Гидрокрекинг – один из видов крекинга, переработка высоко кипящих нефтяных фракций, мазута, вакуумного газойля или деасфальтизата для получения бензина, дизельного и реактивного топлива, смазочных масел, сырья для каталитического крекинга и др. Проводят под действием водорода при 330-450 °С и давлении 5-30 МПа в присутствии никель-молибденовых катализаторов.

Жесткий Гидрокрекинг – процесс, проходящий при давлении 10 МПа и температуре 380-400°С и избытке водорода в нескольких реакторах (стадиях), который направлен на получение дизельного топлива, керосиновых и бензиновых фракций.

Гидрокрекинг – один из самых опасных процессов нефтепереработки, при выходе температурного режима из-под контроля, происходит резкий рост температуры, приводящий к взрыву реакторного блока.

В отличие от ранее описанных процессов, коксование является термическим процессом, не использующим катализатор.

Существуют различные технологические решения для данного процесса. На российских НПЗ используются установки Замедленного Коксования.

Замедленное коксование – полунепрерывный процесс, осуществляемый при температуре около 500°С и давлении, близком к атмосферному. Сырьё поступает в змеевики технологических печей, в которых идёт процесс термического разложения, после чего поступает в камеры, в которых происходит образование кокса. На установках сооружается 4 коксовые камеры, работающие попеременно. Камера в течении суток работает в режиме реакции, заполняясь коксом, после чего в течение суток осуществляются технологические операции по выгрузке кокса и подготовке к следующему циклу.

Кокс из камеры удаляется при помощи гидрорезака, представляющего собой бур с расположенными на конце соплами, через которые под давлением 150 атм подаётся вода, которая раздробляет кокс.

Раздробленный кокс сортируется на фракции, в зависимости от размера частиц.

Сверху коксовых камер уходят пары продуктов и поступают на ректификацию. Светлые фракции, полученные при коксовании, характеризуются низким качеством из-за большого содержания олефинов и поэтому желательно их дальнейшее облагораживание.

Выход кокса составляет порядка 25% при коксовании гудрона, выход светлых фракций – около 35%.

Изомеризация переработка нефти. Процесс получения изоуглевородов (изопентан, изогексан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изопрен из изопентана) и высокооктановых компонентов автомобильных бензинов.

Механизм реакции алкилирования довольно сложен. В процессе алкилирования изобутан вступает в реакцию с лёгкими олефинами в присутствии катализатора – серной кислоты с образованием карбокатиона. Основная стадия реакции заключается в протонировании лёгкого олефина. При алкилировании олефинов из карбокатиона С4 образуется карбокатион С8. За счет гидридного переноса от другой молекулы изобутана образуется парафиновый продукт С8 и ещё один карбокатион С4, который обеспечивает дальнейший ход реакции. Так как помимо основной реакции, проходит множество побочных, то образуется целый «букет» углеводородов разного строения. Наиболее желательным является триметилпентан с высоким октановым числом.

Для получения хорошего качества товарного алкилата особую важность имеет высокое соотношение «изобутан/олефины», оптимальная продолжительность контакта, температура, и соотношение «катализатор/олефины».

Реакция алкилирования протекает с выделением тепла. Поэтому в составе установки есть секция охлаждения, предназначенная для получения циркулирующего хладоагента – изобутана, путем компремирования его на компрессоре и подачи его в реакционную зону.

В изобутановой и бутан-бутиленовой фракциях приходящих на установку, содержится небольшое количество пропана и бутана. Так как эти алканы не участвуют в реакции, то для исключения их накопления в системе имеются ректификационные колонны.

Получаемый алкилат имеет высокие октановые характеристики, низкую упругость паров и не содержит олефиновых и ароматических углеводородов.

Алкилат является идеальным компонентом для приготовления высокооктановых бензинов, благодаря своему высокому октановому числу, низкому давлению насыщенных паров, низкому содержанию серы и уникальным свойствам не окисляться кислородом воздуха (т. е. высоким индукционным периодом). В связи с тем, что в настоящее время усиливаются экологические требования к моторным топливам, возросло значение алкилата, как высококачественного компонента смешения.

Технология Переработки Нефти И Газа, Производство Ароматических Углеводородов. Традиционным сырьем для получения индивидуальных ароматических угле-водородов (бензол, толуол, параксилол, метаксилол, ортоксилол и этилбен-зол) является катализат процесса риформинга (риформат). Обычно для полу-чения бензола и толуола риформингу подвергается узкая бензиновая фрак-ция, выкипающая в пределах 70-105оС, а при производстве ксилолов и этил-бензола – 105-140 о С.

При этом в состав установки риформинга, как правило, входят специальные блоки: догидриро вания продуктов (с целью удалени я алкенов) и экстракции ароматических углеводородов.

Технологические процессы нефтеперерабатывающего завода принято классифицировать на следующие две группы: физические и химические.

Физическими (массообменными) процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений и удаление (извлечение) из фракций нефти, нефтяных остатков, масляных фракций, газоконденсата и газов нежелательных компонентов (полициклических аренов, асфальтенов, тугоплавких парафинов), неуглеводных соединений.

Гравитационные (электрообессоливающая утановка), ректификационные (атмосферная трубчатка (перегонка);

Атмосферно-вакуумная Трубчатка, газофракционирующая установка и др.);

Экстракционные (деасфальтизация, селективная очистка, депарафинизация кристаллизацией);

Абсорбционные (абсорбционно-газофракционирующая установка, очистка от H2S, CO2).

В химических процессах переработка нефтяного сырья осуществляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных нефтеперерабатывающих заводах, по способу активации химические реакции подразделяют на:

Термические (термолитические) – термодеструктивные и термоокислительные;

Каталитические – гетеролитические, гомолитические и гидрокаталитические.

В термодеструктивных процессах протекают преимущественно реакции распада (крекинга) молекул сырья на низкомолекулярные, а также реакции конденсации с образованием высокомолекулярных продуктов, например кокса, пека и др.

1. Вержичинская С. В., Дигуров Н. Г., Синицин С. А. «Химия и технология нефти и газа». Учебное пособие. – М.: ФОРУМ: ИНФРА-М, 2007. – 400 с.

2. Дерябина Г. И., Нечаева О. Н., Потапова И. А. «Практикум по органической химии. Часть II. Реакции органических соединений» 2007 г.

3. Суханов В. П., «Каталитические процессы в нефтепереработке», 3 изд., М., 1979 г.

4. «Технология переработки нефти». В 2-х частях. Часть первая. / Под ред. О. Ф. Глаголевой и В. М. Капустина. – М.: Химия, КолосС, 2007. – 400 с.

5. Наметкин С. С. «Химия нефти» 2-е изд., испр. и доп. ГОНТИ. М. – Л. 1939. 797 с.

6. Магарил Р. 1, «Теоретические основы химических процессов переработки нефти», М., 1976.

7. Пархоменко В. Е. «Технология переработки нефти и газа», Москва-Ленинград: Гостоптехиздат, 1953. – 460 с.

8. Ахметов С. А. «Технологии глубокой переработки нефти и газа», Учебное пособие для вузов. Уфа: Гилем, 2002. – 672 с.

Http://otherreferats. allbest. ru/chemistry/00199725_0.html

Основную часть кислородных соединений составляют органические кислоты, главным образом нафтеновые, и смолисто-асфальтовые вещества. В состав этих веществ могут входить и сера и азот. Смолисто-асфальтовые вещества делят на смолы, асфальтогеновые кислоты, асфальтены, карбены и карбоиды.

Сырая нефть представляет собой маслянистую жидкость от светло-коричневого до чёрного цвета, иногда буро-зелёного, в зависимости от месторождения. У разных нефтей различен не только цвет, но и запах, вязкость. Плотность нефти изменяется в пределах 700…900 кг/м 3 .

До 99 % в нефтях содержатся углеводороды разнообразного строения: парафиновые, циклопарафиновые (нафтеновые), ароматические. Низшие газообразные парафины сопутствуют нефти (попутный нефтяной газ), частично растворены в ней. В жидких углеводородах растворены также высшие твёрдые углеводороды.

Нефти, содержащие большое количество парафиновых углеводородов, называют парафиновыми (грозненская, среднеазиатская, пенсильванская). Нефти богатые циклопарафинами называют нафтеновыми (бакинская). Есть нефти богатые ароматическими углеводородами (уральская, украинская, румынская). Нефти, дающие при переработке значительное количество гудрона, называют асфальтовыми.

Кроме углеводородов в состав нефти в малом количестве входят соединения, содержащие кислород (нафтеновые кислоты, фенол), серу (тиофен и его производные), азот (гетероциклические соединения).

Использование нефти в качестве топлива связано с её высокой теплотворной способностью: при сгорании 1 кг нефти выделяется 41700 – 46000 кДж; 1 кг угля – 33300 кДж; 1 кг древесины – 19500 кДж. И хотя Д. И. Менделеев и говорил: «Нефть не топливо – топить можно и ассигнациями», нефть нас прежде всего интересует как источник топлива и смазочных материалов. Топливо – источник энергии двигателей и машин, а смазочные материалы – средство снижения трения и износа механизмов, а, следовательно, снижения потерь и увеличения долговечности и безотказности машин.

Принято различать элементарный, групповой и фракционный составы нефти.

Элементарный состав определяет, какие химические элементы и в каком соотношении содержатся в нефти. Основные элементы это углерод (84…87 %), водород (12…15 %). Остальное – сера, азот, кислород и некоторые другие элементы, в том числе и металлы.

Групповой состав определяется группами входящих в нефть углеводородов. Основные: метановые (насыщенные, парафиновые, предельные, алканы) с общей структурной формулой СnН2n+2); нафтеновые (полиметиленовые, цикланы) с общей структурной формулой Сn Н2n и ароматические (бензольные, арены) с общей структурной формулой СnН2n-6.

Углеводороды, содержащие от 1 до 4 атомов углерода, при нормальных условиях являются газами и могут находиться в нефтях и нефтепродуктах в растворённом виде. Жидкие углеводороды, содержащие в молекуле от 5 до 20 атомов углерода, входят в состав топлив. В состав масел входят углеводороды с числом атомов углерода в молекуле от 20 до 70. Углеводороды парафинового ряда нормального строения с 17 и более атомами углерода – твёрдые вещества и находятся в нефтях в растворенном состоянии.

Фракционный состав нефти определяется при её разделении по температурам кипения входящих соединений. Фракцией называют часть жидкости, выкипающей в определённом диапазоне температур. Большое разнообразие углеводородов в нефти приводит к тому, что нефть не имеет постоянной температуры кипения и при нагревании выкипает в широких температурных пределах. Наиболее лёгкие углеводороды начинают испаряться и выкипать при слабом нагревании до 30…40 0 С. При одной и той же температуре могут выкипать углеводороды, обладающие различным групповым составом, следовательно, в одну и ту же фракцию входят углеводороды разных групп.

Примеси к нефти. Среди примесей наибольшее влияние на качество топливо-смазочных материалов оказывают сернистые и кислородные соединения. Эти соединения оказывают многостороннее влияние на эксплуатационные характеристики двигателей и механизмов и прежде всего на их коррозионный износ.

Сернистые соединения разделяют на Активные и неактивные. К активным относят элементарную серу S, сероводород H2S и меркаптаны RSH, к неактивным – сульфиды RSR, дисульфиды RS2R, полисульфиды RSnR и т. д.

Смолы – высокомолекулярные кислородосодержащие вещества, в состав которых могут входить сера, азот и некоторые металлы.

Асфальтогеновые кислоты (полинафтеновые) – смолистые вещества, входящие в состав высокомолекулярных частей нефти.

Асфальтены – высокомолекулярные твёрдые и мазеобразные вещества. При нагревании свыше 330 0 С разлагаются с образованием газа и кокса.

Карбоиды – комплекс высокомолекулярных соединений, образующихся при окислении и термическом разложении нефти и нефтепродуктов. Карбены и карбоиды – твёрдые вещества черного цвета, нерастворимые в органических и минеральных растворителях.

Задача создания высококачественных двигателей и машин связана с изучением свойств топливо-смазочных материалов, физико-химических процессов, происходящих в двигателе и механизме. В результате на стыке таких наук, как физика, органическая, физическая и коллоидная химия, теплотехника, экология появилось новое научное направление – Химмотология.

А) определение оптимальных требований к топливо-смазочным материалам;

Д) разработка методов оценки эксплуатационных свойств, испытаний и контроля качества;

Е) изучение процессов, происходящих с топливо-смазочными материалами в двигателях, при хранении и транспортировке;

Ж) установление влияния свойств топливо-смазочных материалов на надёжность, долговечность и экономичность двигателей и машин;

Химмотология разделяет свойства топливо-смазочных материалов на три группы:

К Физико-химическим относят свойства, определяемые в лабораториях, например: плотность, вязкость, испаряемость, теплота сгорания и т. д. К Эксплуатационным – свойства, проявляющиеся непосредственно в двигателе, например: детонационные свойства, склонность к образованию отложений, противоизносные, антикоррозионные свойства и др. К Экологическим – свойства, оказывающие влияния на окружающую среду, например: загрязнение воздуха продуктами, выделяющимися при работе двигателя, пожаро – и взрывоопасность и др.

Отдельные свойства топливо-смазочных материалов и их комплекс используют для характеристики качества продукта по Показателям качества, например: октановое число топлива, температура застывания, температура вспышки и т. д. С помощью специальных испытаний можно произвести оценку качества, т. е. количественно определить качество топливо-смазочного материала. Качество топливо-смазочных материалов оценивают лабораторными (физико-химическими) и специальными методами.

Лабораторные методы используют при определении физико-химических показателей и для косвенной оценки отдельных функциональных свойств. Основным достоинством этих методов является то, что с их помощью можно выполнить дифференцированную оценку отдельных свойств топливо-смазочных материалов. Однако вследствие большой сложности и взаимосвязи процессов, происходящих в двигателе, лабораторные методы не дают возможности получить достаточно полное представление о работе топливо-смазочных материалов в реальных условиях.

Специальные методы предназначены для прямой оценки эксплуатационных свойств топливо-смазочных материалов. К ним относят Эксплуатационные испытания и Квалификационные методы испытаний.

Эксплуатационные испытания проводят на натурных объектах в условиях, максимально приближённых к реальным условиям эксплуатации. Основной недостаток – большая длительность (до нескольких лет). Проводят при допуске новых сортов, при подборе к конкретным двигателям и машинам, при подборе к конкретным условиям эксплуатации, при разработке новых двигателей и машин.

Квалификационные методы испытаний проводят на стендах с использованием модельных установок, натурных агрегатов, одноцилиндровых установок, полноразмерных двигателей. Эти методы по сравнению с лабораторными позволяют более точно и полно оценить эксплуатационные свойства топливо-смазочных материалов, а по сравнению с эксплуатационными методами – упростить условия и значительно сократить длительность испытаний. Кроме того, по сравнению с эксплуатационными квалификационные методы позволяют уменьшить, а иногда и устранить, влияние посторонних факторов на исследуемый показатель, следовательно, повысить точность и объективность испытаний. Используют для установления связей между показателями качества топливо-смазочных материалов и конструкцией двигателя, разработки требований к качеству топливо-смазочных материалов и т. д. Однако окончательное решение принимают на основании эксплуатационных испытаний.

Однако повышение величины показателя ведет к увеличению производственных затрат. Поэтому повышение качества необходимо рассматривать в связи с повышением стоимости производства продукта и экономией, при его использовании. Использование топливо-смазочных материалов с необоснованным запасом качества приводит к нерациональным расходам в нефтеперерабатывающей промышленности, а потребление топливо-смазочных материалов, не отвечающих требованиям эксплуатации, – к снижению надёжности двигателей, машин и механизмов.

Не менее важным, а иногда и основным, является условие устранения отрицательного экологического воздействия продуктов переработки топливо-смазочных материалов в двигателе.

Процесс разделения углеводородов нефти по температурам их кипения называется Прямой перегонкой или Дистилляцией. Полученные в результате перегонки отдельные фракции нефти называют Дистиллятами. Прямая перегонка нефти при атмосферном давлении является обязательным первичным процессом переработки нефти.

Установки по первичной переработки нефти являются обязательными для всех заводов. Наличие других установок определяется свойствами перерабатываемой нефти, профилем продукции, вырабатываемой на заводе и другими факторами.

Современная установка по переработке нефти работает по непрерывному циклу. Установка состоит из атмосферной и вакуумной ректификационных колонн (рис. 12), в которых создаются условия, обеспечивающие достаточно полное испарение, вводимого в неё сырья. Этими условиями являются температура и давление. Нефть под давлением подают насосами в печь, где её нагревают до температуры 330…350 0 С. Горячая нефть, вместе с парами попадает в среднюю часть атмосферной ректификационной колонны, где она вследствие снижения давления дополнительно испаряется и, испарившиеся углеводороды, отделяются от жидкой части нефти – мазута. Пары углеводородов поднимаются вверх, а жидкий остаток стекает вниз. По пути движения паров углеводородов устанавливаются ректификационные тарелки, на которых конденсируется часть паров углеводородов. Температура по высоте колонны уменьшается от максимальной в зоне ввода продукта до минимальной вверху. Таким образом, в ректификационной колонне по её высоте углеводороды нефти разделяют на фракции в зависимости от температуры кипения. Вверху колонны бензиновые фракции с температурой кипения от 30 до 180…205 0 С, ниже легроиновый дистиллят (120…240 0 С), далее керосиновый дистиллят (150…315 0 С), дизельный дистиллят (150…360 0 С), газойлевый (230…360 0 С).

Мазут в зависимости от его состава можно использовать или в виде топлива, или подвергают дальнейшему разделению в вакуумной ректификационной колонне, или в качестве сырья используют на установке крекинга.

Перед поступлением в вакуумную ректификационную колонну мазут нагревают до 420…430 0 С. Давление в вакуумной колонне 5300-7300 Па. Температура кипения в вакууме у углеводородов снижается, что позволяет испарить тяжелые углеводороды без разложения. При нагревании нефти выше 430 0 С может начаться термическое разложение углеводородов. В вакуумной колонне вверху отбирают соляровый дистиллят (300…400 0 С), ниже масляные фракции и далее полугудрон или гудрон, из которых путём глубокой очистки делают высоковязкие остаточные масла.

Сначала веретённый дистиллят, затем машинный или автоловый, и, последний, цилиндровый. В отличии от дистиллятных остаточные масла характеризуются большой малярной массой, а, следовательно, более высокой температурой кипения, плотностью и вязкостью. Большинство сложных кислородо-серосодержащих соединений также обладают большой малярной массой и остаётся в гудроне. Поэтому остаточные масла содержат эти соединения в большем количестве, чем дистиллятные.

Нефтепродукты первичной переработки нефти называют прямогонными.

Появление двигателей внутреннего сгорание привело к революции в нефтепереработке, т. к. потребовалось большое количество бензина.

Прямой перегонкой нефти можно получить только небольшое количество бензиновой фракции, которая непосредственно находится в нефти. Необходимо было повысить выход бензина из нефти за счёт превращения тяжёлых углеводородов с большим числом углеродных атомов молекуле в более лёгкие, с температурой кипения в пределах бензиновой фракции.

Процесс расщепления молекул тяжёлых углеводородов называют Крекингом. Крекинг осуществляют путём нагрева обрабатываемого сырья до определённой температуры без доступа воздуха, без катализатора (Термический крекинг) или в присутствии катализатора (Каталитический крекинг). Крекинг позволил увеличить выход бензиновых фракций из нефти до 50. 60 % против 20. 25 %, получаемых прямой перегонкой.

Термический крекинг проходит при температура 470. 540 0 С и давлении 2. 5 МПа. Вместе с расщеплением углеводородов при термическом крекинге протекают процессы синтеза и в результате создаются высокомолекулярные соединения. А также появляются отсутствующие в природной нефти химически неустойчивые непредельные углеводороды. Эти два фактора являются основным недостатком термического крекинга и причиной замены его другими процессами переработки нефти.

К таким процессам относится Каталитический крекинг, который протекает при тех же температурах, что и термический крекинг, но при давлении близком к атмосферному и в присутствии катализатора. В качестве катализатора наибольшее распространение получили твёрдые алюмосиликатные катализаторы, в состав которых входят окись кремния и окись алюминия. Основной реакцией каталитического крекинга так же является расщепление сложных и больших молекул на более лёгкие с меньшим числом атомов углерода. Скорость расщепления значительно выше. Схема установки каталитического крегинга представлена на рис. 13.

Рис. 13. Схема установки каталитического крекинга с подвижными шариками

В условиях каталитического крекинга большое значения имеют вторичные превращения образующихся углеводородов, например, атомы водорода отщепляются с образованием ароматических углеводородов – Реакция ароматизации; водород, выделяющийся в процессе ароматизации может вступать в реакцию с углеводородами олефинового ряда с насыщением двойных связей – Реакция гидрогенизации; углеводороды с прямой цепочкой углеродных атомов могут изменять взаимное расположение атомов внутри молекул без изменения общего числа атомов – Реакция изомеризации.

Каталитический крекинг осуществляют по различным схемам: с неподвижным слоем катализатора, подвижным сферическим катализатором и с пылевидным или микросферическим катализатором.

Гидрокрекинг (Деструктивная гидрогенизация) – разновидность каталитического крекинга, проводимого в атмосфере водорода при давлении 20. 30 МПа и температуре 470. 500 0 С. В этом процессе образующиеся непредельные углеводороды гидрируются и превращаются в предельные. Кроме того, имеющиеся в сырье сернистые и кислородные соединения, расщепляясь, реагируют с водородом с образованием сероводорода и воды. Сероводород отмывается слабощелочной водой. В результате можно получать высококачественное топливо из нефтяных остатков, углеводородных смол и др. веществ.

В промышленных условиях используют и некоторые другие термические процессы переработки. Например, при нагревании нефтяных остатков до 550 0 С при атмосферном давлении происходит образование кокса и образуются жидкие углеводороды, которые можно использовать в качестве топлив. Далее, нагревание нефти до температуры 670. 800 С 0 (Пиролиз) ведёт к значительному образованию газообразных углеводородов (этилен, пропилен и др.), из которых путём нефтехимического синтеза получают полиэтилен, полипропилен и т. д. В процесс пиролиза получают и жидкие углеводороды в основном ароматические.

Все процессы вторичной переработки нефти вместе с улучшением качества бензиновых фракций дают и увеличение выхода бензина.

Однако высокие требования к качеству бензина заставляют использовать специальные процессы, не дающие выхода бензина из нефти. В таких процессах сырье бензин и готовая продукция также бензин, но с лучшими эксплуатационными качествами.

Термический риформинг не нашёл широкого применения, т. к. при этом не удаётся резко улучшить эксплуатационные свойства бензина.

Наиболее перспективным является Каталитический риформинг. Сущность его заключается в ароматизации бензиновых фракций в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Нафтеновые углеводороды теряют атом водорода и превращаются в ароматические (реакция ароматизации), парафиновые – в результате реакции изомеризации (циклизации) также образуют ароматические углеводороды, отщепляя водород. При этом также тяжелые углеводороды расщепляются на более мелкие, образующиеся непредельные углеводороды гидруются.

Основным катализатором является алюмоплатина – платины 0,1. 1,0 %. Этот катализатор позволяет осуществлять риформирование при температуре 460. 510 0 С и давлении 4 МПа без регенерации в течение нескольких месяцев. Процесс называется – ПлатформинГ. Сырьё для платформинга обессеривают, т. к. платиновый катализатор «отравляется» сернистыми соединениями, содержащимися в бензинах прямой перегонки. Обессеривание производят гидроочисткой, используя водород, выделенный при риформировании бензина. Этот процесс выгоден и тем, что обеспечивает водородом процессы гидроочистки топлив и масел.

Сырьё (бензиновая фракция прямой перегонки) нагревается в теплообменниках и нагревательной печи 1 до 380. 420 0 С и поступает в реактор, где под давлением 3,5 МПа и при воздействии алюмокобальтомолибденового катализатора подвергается гидроочистке. Очищенное сырье после освобождения от сероводорода, углеводородных газов и воды нагревается в печи 1 до 500. 520 0 С и поступает в реакторы, где под давлением свыше 4,0 МПа происходит его реформирование. Полученный катализат после отделения водосодержащего газа и стабилизации может применяться для получения товарных бензинов. Режимы проведения риформинга, а также состав и свойства катализатора различаются. При проведении процесса в мягких условиях получают бензин с меньшей детонационной стойкостью, чем при жестком режиме платформинга.

В промышленных условиях сырье для изомеризации служат легкие бензиновые фракции прямой перегонки нефти, в составе которых преобладают углеводороды с пятью-шестью атомами углерода в молекуле нормального строения. Изомеризацию проводят в присутствии хлористого алюминия, платины, палладия и т. д. Продукт является высококачественным компонентом товарных бензинов.

В процессе переработки нефти всегда образуются углеводородные газы, которые стараются максимально использовать, например, перерабатывая в жидкие топлива и их компоненты.

Для этого чаще всего применяют процесс алкилирования, который сводится к присоединению олефинового углеводорода к парафиновому или ароматическому с образованием насыщенной молекулы более высокого молекулярного веса. В результате получают широкую бензиновую фракцию – Алкилат (алкилирование изобутана в основном бутиленами), которая является высококачественным компонентом товарных бензинов. Катализатором является серная кислота и фтористый водород (при алкилировании парафиновых углеводородов).

Кроме алкилирования, при переработке газов используют реакцию полимеризации.

Полимеризацией называют химическую реакцию соединения двух и большего числа одинаковых молекул в одну более крупную. При этом отщепления каких-либо атомов от молекул, вступающих в реакцию, не происходит.

В этих реакциях способны участвовать лишь непредельные углеводороды, поэтому сырье для полимеризации служат газы, богатые олефиновыми углеводородами. Наиболее распространенный катализатор – фосфорная кислота.

Все продукты переработки нефти, прежде чем пойти на приготовление товарных топлив и масел, проходят специальную очистку.

Для удаления примесей полуфабрикаты топлив и масел подвергают очистке. При этом выбор метода очистки зависит от исходного качества очищаемого продукта и от требований к эксплуатационным свойствам готовых товарных продуктов, которые необходимо получить. Глубина и способ очистки являются важным условием обеспечения высоких эксплуатационных качеств топливо-смазочных материалов.

Щелочная очистка (Очистка натриевой щелочью). Применяется для удаления из нефтяных дистиллятов (рис. 15) кислородных соединений (нефтяных кислот, фенолов), сернистых соединений (сероводорода, меркаптанов, серы), и для нейтрализации серной кислоты и продуктов её взаимодействия с углеводородами (сульфокислот, эфиров серной кислоты) остающихся в нефтепродукте после его сернокислотной очистки

RCOOH + NaOH RCOONa + H2O

Http://studopedia. su/14_45875_pererabotka-nefti. html

Сырая нефть, которой практически всегда сопутствует природный газ, имеет самый разнообразный состав, меняющийся не только от месторождения к месторождению, но и от скважины к скважине. Главными компонентами нефти являются парафины (алканы), нафтены (циклоалканы) и ароматические углеводороды, в основном гомологи бензола. Соответственно, с химической точки зрения нефти можно классифицировать на парафиновые, нафтеновые и ароматические в соответствии с природой преобладающих в их составе углеводородов. По технической классификации нефти подразделяются на парафиновые, нафтеновые, ароматические и асфальтовые. Последние состоят из тяжелых фракций и характеризуются низким содержанием водорода. Помимо углеводородов сырая нефть содержит небольшие количества органических соединений серы, азота и кислорода, главным образом гетероциклических.

Первичная перегонка сырой нефти приводит к ее первичному разделению на жидкие фракции, кипящие в широком температурном интервале. Приблизительный фракционный состав приведен в таблице 2.1 [Бензин (Нафту) не следует путать с Бензином, используемым в качестве топлива для автомобилей].

Полученные фракции подвергают дальнейшей переработке либо путем фракционной перегонки, либо с помощью химических превращений. С помощью различных физико-химических и химических методов (обработка серной кислотой, олеумом) из высококипящих нефтяных фракций выделяют важные продукты, используемые в качестве базовых инертных компонентов в мазях, кремах и других аналогичных косметических и лекарственных средствах. Такими продуктами являются:

Вазелин –Мазеобразная масса, получаемая загущением нефтяных масел петролатумом, парафином и церизином. В Российской Федерации для медицинского использования выпускается "Вазелин медицинский" (Medical Vaseline), на который распространяется ГОСТ 3582-84 и ФС 42-2456-97. В качестве вспомогательного вещества, используемого при изготовлении лекарственных средств, используется также "Вазелин белый". В Британской фармакопее аналогичные продукты имеют названия “Yellow Soft Paraffin” и "White Soft Paraffin", соответственно. Эти продукты используются в качестве мазевых основ.

Вазелиновое масло медицинское(Medical petrolatum) – бесцветная маслянистая прозрачная нефлуоресцирующая жидкость без запаха и вкуса, растворяется в эфире и хлороформе, плотность при 20 о С 0.870-0.890 г/см 3 , вязкость 28.0-38.5 мм 2 /с при 50 о С, т. исп. Ê 185 о С. На данный продукт действует ГОСТ 3164-78. В Британской Фармакопее описаны следующие аналогичные продукты:

Liquid Paraffin”; Фармацевтическое действие – умягчитель кала, лекарственные формы – эмульсия жидкого парафина для наружного применения, эмульсия жидкого парафина и гидроксида магния для наружного применения

Парафин – смесь алканов С18-С35, в основном нормального строения, т. пл. 40-65 о С, не растворяется в воде и спирте, растворяется в минеральных маслах и органических растворителях. На парафины действует ГОСТ 23683-89. В Британской Фармакопее описана субстанция под названием “Hard Paraffin”.

Церезин– смесь алканов С26-С55, в основном разветвленных, воскообразное вещество от белого до коричневого цвета, т. пл. 65-88 о С, не растворяется в воде и спирте, ограниченно растворим в минеральных маслах, растворим в бензоле. В Российской Федерации на данный продукт действует ГОСТ 2848-79. Согласно этому ГОСТу церезин не может использоваться в пищевой промышленности.

Масло парфюмерное(Perfume oil) –высокоочищенное нефтяное масло, представляющее собой бесцветную маслянистую прозрачную нефлуоресцирующую жидкость без запаха и вкуса; вязкость 16.5-23.0 мм 2 /с при 50 о С, кислотное число 0.01 мг КОН на 1 г масла, т. заст. –8 о С, т. исп. Ê 175 о С. В Российской Федерации на данный продукт действует ГОСТ 4225-76.

Очень важным процессом является выделение н-алканов из средних дистиллятов (керосин, газойль), поскольку алканы С12-С18 служат исходным сырьем для получения поверхностно-активных веществ и пластификаторов.

Наиболее важными химическими методами первичной переработки нефти являются следующие: крекинг, риформинг, алкилирование и изомеризация. Коротко рассмотрим эти процессы.

Крекинг представляет собой процесс высокотемпературной переработки нефти. Этот процесс может протекать как в отсутствии, так и в присутствии катализаторов. В процессе крекинга происходит разрыв связей С-С и С-Н в углеводородной цепи с образованием радикалов, которые затем превращаются в алканы и a-алкены с меньшей молекулярной массой, чем у исходного алкана:

С практической точки зрения крекинг важен как метод получения этилена, пропилена и α-алкенов.

В процессе Риформинга происходят изменения молекулярной структуры углеводородов:

Дегидрирование нафтеновых углеводородов (циклоалканов) в ароматические:

В настоящее время это один из основных способов промышленного получения толуола.

Изомеризация циклических углеводородов с последующей ароматизацией (алкилциклопентаны → алкилгексаны → алкилбензолы):

В настоящее время это один из основных промышленных методов получения бензола.

Аналогичным образом из н-гексана может быть получен бензол, а из н-гептана – толуол. Данный процесс также является основным при промышленном получении указанных ароматических углеводородов.

Изомеризация– это перегруппировка н-алканов в изоалканы. Очевидно, что с химической точки зрения изомеризация является частным случаем риформинга. В качестве исходного сырья используют бутан, пентан, гексан, гептан и октан; в качестве катализаторов – хлористый алюминий или платиновые катализаторы. Процесс ведут при 300-400 о С (в случае платиновых катализаторов):

Алкилирование представляет собой реакцию между алкеном и алканом в присутствии кислого катализатора (AlCl3, H2SO4), приводящую к образованию более тяжелых алканов с разветвленной структурой. Алкан берут в избытке, чтобы подавить полимеризацию алкена.

Http://mylektsii. ru/5-75805.html

Поделиться ссылкой: