Нефтеперерабатывающие заводы реферат

К общезаводскому хозяйству (ОЗХ) современных НПЗ и НХЗ относятся объекты приема и хранения сырья, приготовления из компонентов товарной продукции, хранения и отгрузки товарной продукции; ремонтно-механическая база; складское хозяйство; объекты, предназначенные для снабжения воздухом, водородом, инертным газом, топливом; вспомогательные службы (факельное хозяйство, газоспасательная служба, пожарная охрана, медицинская служба и служба питания). В более широком смысле в ОЗХ включают также объекты энергоснабжения, водоснабжения, канализации, очистных сооружений.

Объекты ОЗХ занимают большую часть территории предприятия, а стоимость их строительства превышает 40% от общей стоимости заводов.

Состав объектов ОЗХ зависит от профиля предприятия, его технологической схемы. Например, на заводах топливно-масляного профиля заметное место принадлежит узлам приготовления товарных масел, приема многочисленных присадок со стороны, хранения и затаривания твердых парафинов и т. д. Эти объекты на заводах топливного профиля отсутствуют.

Сырье поставляется на НПЗ и НХЗ по магистральным трубопроводам, железной дороге и, в незначительной степени, водным (танкеры, баржи) и автомобильным (автоцистерны) транспортом.

Трубопроводный транспорт нефти и нефтехимического сырья. Трубопроводным транспортом в нашей стране перевозится около 80% сырой нефти и 8% нефтепродуктов. Общая протяженность нефтепроводов и нефтепродуктопроводов на конец 1980 г. составила 69,7 тыс. км. Средняя дальность перекачки нефти достигла 1400 км. Все нефтеперерабатывающие заводы Советского Союза связаны трубопроводными магистралями с районами добычи нефти. Нефтепроводы проектируются и эксплуатируются организациями Министерства нефтяной промышленности. Пропускная способность нефтепровода определяется мощностью НПЗ, а диаметр, кроме того, зависит от схемы перекачивания нефти (непрерывная или периодическая). При расширений НПЗ зачастую оказывается необходимо предусмотреть увеличение пропускной способности нефтепровода. Эта задача решается прокладкой параллельных трубопроводов на всей протяженности нефтепровода или на отдельных, наиболее перегруженных участках.

Для организации учета и контроля подачи нефти на НПЗ непосредственно перед предприятием (а иногда и на его территории) размещается приемо-сдаточный пункт. В состав пункта входят: площадка приема шара — специального устройства, которое время от времени прогоняется по нефтепроводу с целью очистки трубы от парафинистых отложений и грязи; фильтры-грязеуловители счетчики. Показания счетчиков служат для контроля количества «Поступающей на НПЗ нефти. Они передаются на головную станцию нефтепровода и на центральный диспетчерский пункт НПЗ. Перед фильтрами приемо-сдаточного пункта устанавливаются предохранительные клапаны для. защиты последних участков нефтепровода от разрыва. Причиной разрыва может быть недопустимо высокое давление, возникающее вследствие закрытия задвижки перед приемо-сдаточным пунктом. Сброс от предохранительных клапанов направляют в резервуары сырьевой базы НПЗ. С приемо-сдаточного пункта нефть подается в резервуары сырьевой базы НПЗ. Участок трубопровода от пункта до резервуаров является собственностью НПЗ. Этот трубопровод, как правило, прокладывается в земле и выводится на поверхность перед резервуарами-,

У Нефтехимические предприятия получают по трубопроводам сырье с близлежащих нефте – и газоперерабатывающих заводов. Обычно по трубопроводам подаются на НХЗ бензиновые фракции, сжиженные газы, ароматические углеводороды. Эксплуатируются, также магистральные трубопроводы, по которым сырье подается в НХЗ с предприятий, расположенных на расстоянии 150—200 км и выше.

Нефтехимические заводы часто используют в качестве сырья (например, для установок оксосинтеза) природный газ. Газ поступает на НХЗ из систем магистральных газопроводов через газораспределительные пункты (ГРП). На ГРП происходит снижение давления газа до величины, которая необходима нефтехимическому предприятию, здесь же организуется учет природного газа, Передаваемого на НХЗ. ГРП проектируются и эксплуатируются организациями Министерства газовой промышленности. Трубопровод природного газа, выходящий с ГРП, является собственностью НХЗ.

Транспорт сырья по железной дороге. Нефть на НПЗ подается в железнодорожных цистернах маршрутами, грузоподъемность которых определяется путевым развитием и пропускной способностью сети железных дорог. Для перевозки нефти используются цистерны различных типов — двух-, четырех-, шести – и восьмиосные. Подробная характеристика цистерн приведена в литературе.

Рис. 1.1. Комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов:

1 — наливной стояк; 2 — установка нижнего слива нефти; 3 — коллектор слива нефти; 4 — коллекторы темных нефтепродуктов.

На вновь строящихся НПЗ проектируются для приема нефти двухсторонние сливные эстакады длиной 360 м, вдоль которых устанавливается состав после его расцепки на две части. С целью более полного использования территории и уменьшения капитальных и эксплуатационных затрат практикуется оснащение железнодорожных эстакад устройствами для налива нефтепродуктов — мазута или дизельного топлива. В этом случае эстакада называется сливо-наливной и на ней поочередно осуществляется слив нефти и налив нефтепродукта. На рис. 5.1 изображена комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов.

Цистерны для перевозки нефти оснащены нижними сливными патрубками, к которым подводится и герметично присоединяется установка для нижнего слива (налива), представляющая собой систему шарнирно сочлененных труб. Промышленностью выпускаются установки для нижнего слива по ТОСТ 18194—79. Стандартом предусмотрен выпуск установок без подогрева (УСН), с паровым подогревом (УСНПп), с электроподогревом (УСНПэ). Установки типа УСН имеют диаметр условного прохода 150 и 175 мм, УСНПп — 175 мм, а УСНПэ — 150 мм.

Из сливной установки нефть поступает в сливной трубопровод. Ранее сливным трубопроводом нефть передавалась в резервуары, расположенные ниже отметки рельса («нулевые» резервуары). Вместимость этих резервуаров принималась такой, чтобы обеспечить слив всего маршрута. Из «нулевых» резервуаров нефть забиралась насосами заглубленной насосной и подавалась в резервуары сырьевой базы завода.

Практика показала, что в сооружении «нулевых» резервуаров и заглубленных насосных нет необходимости. Следует предусматривать поступление нефти от сливных приборов к насосам, расположенными на поверхности земли через сливную буфер.

Внимание необходимо уделять расчету гидравлических сопротивлений сливного трубопровода, учитывать всасывающую способ-Юность сырьевого насоса.

При проектировании сливо-наливных железнодорожных эстакад следует учитывать требования по нормативной продолжительности сливных операций, установленные «Правилами перевозок жидких грузов наливом в вагонах — цистернах и бункерных полувагонах», утвержденными МПС 25 мая 1966 г. Эти правила устанавливают следующую продолжительность слива (в ч) в пунктах механизированного (1) и немеханизированного (2) слива.

В зимнее время слив некоторых сортов нефтей и других продуктов, обладающих высокой температурой застывания затруднен, поскольку они поступают на пункты слива загустевшими. Правила перевозки грузов предусматривают увеличение продолжительности слива таких продуктов в период с 15 октября по 15 апреля, а также выделение специального времени на разогрев;

Для разогрева нефти в цистернах предусматривают паровые t гидромеханические подогреватели ПГМП-4 конструкции ВНИИСПТ Нефти, электрогрелки, погруженные змеевиковые подо-греватели, а также системы циркуляционного разогрева, сущность которых заключается в том, что холодный продукт, забираемый из цистерны, подогревается в специальном теплообменнике и в горячем состоянии возвращается в цистерну. Учитывая недостаточную эффективность вышеупомянутых способов непрямого разогрева

Q— .производительность слива; QH — подача основного насоса; Qд —подача дополнительного насоса.

В проектах следует предусматривать также подачу в цистерны острого пара. Сырье нефтехимических предприятий перевозится в цистернах с нижним сливом (и в этих случаях схема сливных операций аналогична описанной выше для нефти), в цистернах с верхним сливом и в специализированных цистернах.

Верхний слив из железнодорожных цистерн менее удобен, чем нижний. При верхнем сливе имеют место значительные потери от испарения, частые срывы работы насосов при сливе продуктов с высоким давлением насыщенных паров. Зачастую не, удается достичь полного удаления продукта из цистерн. Слив может осуществляться самотеком (при благоприятном рельефе местности) или с помощью, насосов.

В тех случаях, когда для верхнего слива применяют центробежные насосы, не обладающие самовсасывающей способностью, необходимо предусматривать установку поршневых насосов для первоначального (перед началом откачки) заполнения трубопроводов продуктом и зачистки цистерн. В летнее время слив продуктов с высоким давлением насыщенных паров сопровождается образованием газовых пробок во всасывающих трубопроводах насосов. Для уменьшения вакуума во всасывающих линиях рекомендуется предусматривать в проектах применение эжекторов. В качестве рабочей жидкости в эжекторах используется сливаемый продукт. При работе с погруженным эжектором не только полностью исключается вакуум во всасывающих линиях, но в отдельных случаях создается избыточное давление (подпор).

Http://www. rc-p. ru/referaty_po_stroitelstvu/referat_osobennosti_proektirovaniya. html

1 апреля1938 г. На Московском крекинг-заводе была введена в эксплуатацию первая крекинг-установка со щелочной очисткой.

1 этап: увеличение объема переработки нефти, организация системы подготовки нефти к переработке, разработка конструкции сферических электродегидраторов.

2 этап: внедрение современных вторичных технологических процессов с одновременным увеличением мощности по переработке нефти, развитие нефтехимических процессов.

3 этап: осваивались и усовершенствовались вторичные процессы, разработка и освоение отечественного производства полипропилена и других пластмасс.

30 мая 1939 г. Была введена в эксплуатацию вторая крекинг-установка.

5 июня 1941 года принят в эксплуатацию специальный цех, который состоял из газофракционирующей установки N 45 и установки полимеризации N 29.

С ноября 1942 года Московский государственный крекинг-завод стал заводом N 91 села Капотня Ухтомского района Московской области.

В 1948 году пущена в эксплуатацию установка по алкилированию бензола пропиленом на фосфорном катализаторе.

В сентябре 1952 года завод N 413 Миннефтехимпрома СССР был переименован в Московский нефтеперерабатывающий завод.

В 1955 году вводят в эксплуатацию новую обессоливающую установку с шаровым электродегидратором.

К 1956 году мощность завода была увеличена на 88%. Внедрялась автоматизация технологических процессов.

В 1957 году первая промышелнная печь беспламенного горения была пострена и пущена в эксплуатацию на АВТ-3.

В 1963 году вступление в строй нефтепровода Ярославль – Москва, ввод которого обеспечивал перекачку нефти до 7 млн. т. Нефти. Мощность предприятия была доведена до 5 млн. т. нефти в год.

В 1968 году на базе собственного полипропилена на заводе создали цех по его переработке в изделия.

В 1967 году внедрен процесс каталитического риформинга и получен неэтилированный бензин АИ-93.

В 1972 году реконструкция завода, в результате которой должно быть достигнуто полное обеспечение светлыми нефтепродуктами, битумом и котельным топливом.

С 1976 года после реконструкции завода введены установки ЭЛОУ-АВТ-6, каталитического крекирования Г-43-107, риформирования бензинов.

В 1997 году ОАО Московский НПЗ вошел в состав Центральной топливной компании (ЦТК).

Московский НПЗ выпускает нефтяного топлива, битумы, нефтехимическую продукцию, включая серу, полипропилен и изделия из полипропилена. Около 80% вырабатываемой продукции реализуется в Москве и области,10-15% экспортируется,5-10% отгружается в другие страны и районы СНГ.

В настоящее время Московский НПЗ обеспечивает на 70% потребности Москвы и области в высокооктановом бензине, удовлетворяет около 40% потребности вреактивном топливе и на 100% в малосернистом дизельном топливе, мазуте и битуме.

В годы Великой отечественной войны, не перебазируя и не приостанавливая производство, работая в условиях прифронтового города, обеспечивал выпуск топлива для нужд фронта. За героический труд во время войны коллективу 14 раз присуждалось переходящее Красное знамя Государственного комитета обороны, переданное впоследствии заводу на вечное хранение, а к 40-летию победы завод был награжден орденом войны 1-ой степени.

Высокий уровень технологии, опыт и квалификация персонала обеспечивают безопасность производства, что подтверждается лицензиями Гостехнадзора России, на право осуществления 5 видов деятельности повышенной опасности:эксплуатация, проектирование и ремонт оборудования, подготовка кадров для взрывоопасных производств.

Московский НПЗ имеет самую высокую в России долю высокооктановых бензинов, при этом не используя свинецсодержащие добавки, единственный в России выпускает все автобензины и до 70% дизельного топлива на уровне европейских норм по экологическим показателям.

За свои 60 лет завод ни разу не останавливался, работая круглосуточно, и переработал более 350 миллионов тонн нефти.

Доля гидрогенизационных процессов очистки бензиновых, средних и вакуумных дистсллятов-55%,деструктивных процессов-25%.

-Доля специалистов с высшим и средним специальным образованием-44% от общего числа работающих

Ассортимент выпускаемой продукции более 190 наименований, в том числе:

_Неэтилированные автомобильные бензины с улучшенными экологическими характеристиками

-Летние и зимние дизельные топлива с улучшенными экологическими характеристиками

-Экологически чистые полипропилен, изделия из полипропилена и полиэтилена 150 наименований.

Комбинированная установка атмосферно – вакуумнойпереработки нефти с пердварительным обессоливанием и вторичной перегонкой бензина предназначена для переработки сырой нефт?/p>

    1 2 3 4 5 6 Далее

Http://geum. ru/doc/work/85196/index. php

Отправимся в воображаемую экскурсию на НПЗ (нефтеперерабатывающий завод) и для простоты будем считать, что он производит лишь бензин, керосин, дизельное и другие топлива, смазочные масла и кокс.

Этого, уверяем вас, для первого раза более чем достаточно. Ведь только в стандартах на бензины не менее десятка обязательных показателей. Их разброс по отдельным компонентам очень широк. Всего же на современном нефтеперерабатывающем заводе выделяют до 15—20 компонентов. И количества их разные—от десятков тысяч до миллионов тонн в год. Да добавьте к этому разную себестоимость компонентов и разные цены на различные марки бензина. В общем, только компьютеры на основе соответствующих экономико-математических моделей позволяют получать оптимальные решения производственных задач, обеспечивают получение всех заданных марок топлива при условии получения максимальной прибыли. Или при минимальных затратах нефти—что выгоднее в данный момент.

Всякий нефтеперерабатывающий завод состоит как бы из двух блоков: блока производства компонентов и блока смешения. В блок производства входят технологические установки; блок смешения—это, главным образом, резервуары и насосы.

Производственный цикл начинается с ЭЛОУ. Это сокращение означает “электрообессоливающая установка”. Для чего она нужна?

Как мы уже знаем в нефти есть минеральные примеси, в том числе и соли: хлориды, сульфаты и другие. В некоторых сортах нефти содержатся и минеральные кислоты. Все эти соединения необходимо выделить из нефти, так как они, во-первых, вызывают коррозию аппаратуры, а, во-вторых, являются каталитическими ядами, то есть ухудшают протекание многих химических процессов последующей переработки нефти. И наконец: в-третьих, соли не в лучшую сторону влияют на качество бензина, дизельного топлива и масел.

Обессоливание начинают с того, что нефть забирают из заводского резервуара, смешивают ее с промывной водой, деэмульгаторами, щелочью (если в сырой нефти есть кислоты). Затем смесь нагревают до 80—120°С и подают в электродегидратор. Здесь под воздействием электрического поля и температуры вода и растворенные в ней неорганические соединения отделяются от нефти.

Требования к процессу обессоливания жесткие—в нефти должно остаться не более 3—4 мг/л солей и около 0,1% воды. Поэтому чаще всего в производстве применяют двухступенчатый процесс, и нефть после первого попадает во второй электродегидратор.

После этого нефть считается пригодной для дальнейшей переработки и поступает на первичную перегонку.

Как мы уже знаем, нефть представляет собой смесь тысяч различных веществ. Даже сегодня, при наличии самых изощренных средств анализа: хроматографии, ядерно-магнитного резонанса, электронных микроскопов—далеко не все эти вещества полностью определены. Что же говорить о делах столетней давности? Конечно, наши предшественники определяли состав нефти с достаточной мерой приближения.

Впрочем, надо отдать должное их практической сметке: довольно скоро они сообразили, что независимо от сложности состава переработку нефти все равно надо начинать с перегонки. Как можно убедится по схеме, первый нефтеперегонный завод в России был очень прост и весь процесс состоял только из прегонки.

Смысл этого процесса довольно прост. Как и все другие соединения, любой жидкий углеводород нефти имеет свою температуру кипения, то есть температуру, выше которой он испаряется. (Температура кипения возрастает по мере увеличения числа атомов углерода в молекуле. Например, бензол С6Н6 кипит при 80,1 °С, а толуол С7Н8 при 110,6°С). И наоборот, если пары бензола охладить ниже температуры кипения, он снова превратится в жидкость. На этом свойстве и основана перегонка (к слову сказать, даже само название “нефть” происходит от арабского nafatha, что в переводе означает “кипеть”).

Предположим, мы поместили нефть в перегонный куб— огромный чан с крышкой, и начали ее нагревать. Как только температура жидкости перейдет за 80 °С, из нее испарится весь бензол, а с ним и другие углеводороды с близкими температурами кипения. Тем самым мы отделим от нефти фракцию от начала кипения до 80 °С, или н. к.—80 °С, как это принято писать в литературе по нефтепереработке.

Продолжим нагрев и поднимем температуру в кубе еще на 25 °С. При этом от нефти, отделится следующая фракция— углеводороды С7, которые кипят в диапазоне 80—105 °С. И так далее, вплоть до температуры 350 °С. Выше этого предела температуру поднимать нежелательно, так как в остающихся углеводородах содержатся нестабильные соединения, которые при нагреве осмоляют нефть, разлагаются до углерода и способны закоксовать, забить смолой всю аппаратуру.

Введем одно техническое новшество – вместо дробной перегонки в периодически работающих кубах, внедрим ректификационную колонну. Для этого над кубом, в котором нагревают нефть, водрузим высокий цилиндр, перегороженный множеством, ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары нефтепродуктов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают пробулькивать через слой жидкости на каждой тарелке.

Температура в ректификационной колонне снижается от куба к самой последней, верхней тарелке. Если в кубе она, скажем, 380 °С, то на верхней тарелке она должна быть не выше 35-40 °С, чтобы сконденсировать и не потерять все углеводороды C5, без которых товарный бензин не приготовить. Верхом колонны уходят несконденсировавшиеся углеводородные газы С1-С4. Все, что может конденсироваться, остается на тарелках.

Таким образом, достаточно сделать отводы на разной высоте, чтобы получать фракции перегонки нефти, каждая из которых кипит в заданных температурных пределах. Фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов.

С точки зрения затрат, чем грубее перегонка, чем более широкие фракции получаются в итоге, тем она дешевле. Ведь при всякой ректификации происходят достаточно сложные процессы тепло – и массообмена. На каждой тарелке происходят испарение и конденсация. Мы должны нагреть жидкость до температуры кипения, затем добавить еще энергию, чтобы ее испарить (с учетом скрытой теплоты парообразования). Потом, когда пары конденсируются, эта энергия выделяется. Но вот использовать ее удается далеко не полностью – слишком много энергии при таких переходах безвозвратно теряется.

И чем более узкие фракции мы хотим получить, тем выше должны быть колонны. Тем больше в них должно быть тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку, перейти из газовой фазы в жидкую и обратно. Для этого нужна энергия. Ее подводят к кубу колонны в виде пара или топочных газов.

Http://referatzone. com/load/referaty/proizvodstvo/neftepererabotka_skachat_referat/81-1-0-8141

Отправимся в воображаемую экскурсию на НПЗ (нефтеперерабатывающий завод) и для простоты будем считать, что он производит лишь бензин, керосин, дизельное и другие топлива, смазочные масла и кокс.

Этого, уверяем вас, для первого раза более чем достаточно. Ведь только в стандартах на бензины не менее десятка обязательных показателей. Их разброс по отдельным компонентам очень широк. Всего же на современном нефтеперерабатывающем заводе выделяют до 15—20 компонентов. И количества их разные—от десятков тысяч до миллионов тонн в год. Да добавьте к этому разную себестоимость компонентов и разные цены на различные марки бензина. В общем, только компьютеры на основе соответствующих экономико-математических моделей позволяют получать оптимальные решения производственных задач, обеспечивают получение всех заданных марок топлива при условии получения максимальной прибыли. Или при минимальных затратах нефти—что выгоднее в данный момент.

Всякий нефтеперерабатывающий завод состоит как бы из двух блоков: блока производства компонентов и блока смешения. В блок производства входят технологические установки; блок смешения—это, главным образом, резервуары и насосы.

Производственный цикл начинается с ЭЛОУ. Это сокращение означает “электрообессоливающая установка”. Для чего она нужна?

Как мы уже знаем в нефти есть минеральные примеси, в том числе и соли: хлориды, сульфаты и другие. В некоторых сортах нефти содержатся и минеральные кислоты. Все эти соединения необходимо выделить из нефти, так как они, во-первых, вызывают коррозию аппаратуры, а, во-вторых, являются каталитическими ядами, то есть ухудшают протекание многих химических процессов последующей переработки нефти. И наконец: в-третьих, соли не в лучшую сторону влияют на качество бензина, дизельного топлива и масел.

Обессоливание начинают с того, что нефть забирают из заводского резервуара, смешивают ее с промывной водой, деэмульгаторами, щелочью (если в сырой нефти есть кислоты). Затем смесь нагревают до 80—120°С и подают в электродегидратор. Здесь под воздействием электрического поля и температуры вода и растворенные в ней неорганические соединения отделяются от нефти.

Требования к процессу обессоливания жесткие—в нефти должно остаться не более 3—4 мг/л солей и около 0,1% воды. Поэтому чаще всего в производстве применяют двухступенчатый процесс, и нефть после первого попадает во второй электродегидратор.

После этого нефть считается пригодной для дальнейшей переработки и поступает на первичную перегонку.

Как мы уже знаем, нефть представляет собой смесь тысяч различных веществ. Даже сегодня, при наличии самых изощренных средств анализа: хроматографии, ядерно-магнитного резонанса, электронных микроскопов—далеко не все эти вещества полностью определены. Что же говорить о делах столетней давности? Конечно, наши предшественники определяли состав нефти с достаточной мерой приближения.

Впрочем, надо отдать должное их практической сметке: довольно скоро они сообразили, что независимо от сложности состава переработку нефти все равно надо начинать с перегонки. Как можно убедится по схеме, первый нефтеперегонный завод в России был очень прост и весь процесс состоял только из прегонки.

Смысл этого процесса довольно прост. Как и все другие соединения, любой жидкий углеводород нефти имеет свою температуру кипения, то есть температуру, выше которой он испаряется. (Температура кипения возрастает по мере увеличения числа атомов углерода в молекуле. Например, бензол С6Н6 кипит при 80,1 °С, а толуол С7Н8 при 110,6°С). И наоборот, если пары бензола охладить ниже температуры кипения, он снова превратится в жидкость. На этом свойстве и основана перегонка (к слову сказать, даже само название “нефть” происходит от арабского nafatha, что в переводе означает “кипеть”).

Предположим, мы поместили нефть в перегонный куб— огромный чан с крышкой, и начали ее нагревать. Как только температура жидкости перейдет за 80 °С, из нее испарится весь бензол, а с ним и другие углеводороды с близкими температурами кипения. Тем самым мы отделим от нефти фракцию от начала кипения до 80 °С, или н. к.—80 °С, как это принято писать в литературе по нефтепереработке.

Продолжим нагрев и поднимем температуру в кубе еще на 25 °С. При этом от нефти, отделится следующая фракция— углеводороды С7, которые кипят в диапазоне 80—105 °С. И так далее, вплоть до температуры 350 °С. Выше этого предела температуру поднимать нежелательно, так как в остающихся углеводородах содержатся нестабильные соединения, которые при нагреве осмоляют нефть, разлагаются до углерода и способны закоксовать, забить смолой всю аппаратуру.

Введем одно техническое новшество – вместо дробной перегонки в периодически работающих кубах, внедрим ректификационную колонну. Для этого над кубом, в котором нагревают нефть, водрузим высокий цилиндр, перегороженный множеством, ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары нефтепродуктов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают пробулькивать через слой жидкости на каждой тарелке.

Температура в ректификационной колонне снижается от куба к самой последней, верхней тарелке. Если в кубе она, скажем, 380 °С, то на верхней тарелке она должна быть не выше 35-40 °С, чтобы сконденсировать и не потерять все углеводороды C5, без которых товарный бензин не приготовить. Верхом колонны уходят несконденсировавшиеся углеводородные газы С1-С4. Все, что может конденсироваться, остается на тарелках.

Таким образом, достаточно сделать отводы на разной высоте, чтобы получать фракции перегонки нефти, каждая из которых кипит в заданных температурных пределах. Фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов.

С точки зрения затрат, чем грубее перегонка, чем более широкие фракции получаются в итоге, тем она дешевле. Ведь при всякой ректификации происходят достаточно сложные процессы тепло – и массообмена. На каждой тарелке происходят испарение и конденсация. Мы должны нагреть жидкость до температуры кипения, затем добавить еще энергию, чтобы ее испарить (с учетом скрытой теплоты парообразования). Потом, когда пары конденсируются, эта энергия выделяется. Но вот использовать ее удается далеко не полностью – слишком много энергии при таких переходах безвозвратно теряется.

И чем более узкие фракции мы хотим получить, тем выше должны быть колонны. Тем больше в них должно быть тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку, перейти из газовой фазы в жидкую и обратно. Для этого нужна энергия. Ее подводят к кубу колонны в виде пара или топочных газов.

Как везде в технике, в нефтепереработке не любят лишних затрат. Поэтому нефть поначалу перегоняли на широкие фракции. Это прежде всего бензиновая фракция (прямогонный бензин); она кипит от 40-50 °С до 140-150 °С. Далее следует фракция реактивного топлива (140-240 °С), затем дизельная (240-350 °С).

Остатком перегонки нефти был мазут. Поначалу его практически целиком сжигали как котельное топливо. И только с изобретением крекинга, о котором речь дальше, появилась возможность использовать и, его.

В принципе нефть можно перегнать в одной колонне, отбирая фракции с расположенных на разной высоте тарелок. Но мы уже убедились, что это невыгодно как по затратам энергии, так и по затратам на оборудование. Поэтому на практике перегонку (или, как говорят специалисты, разгонку), проводят в нескольких колоннах. Обычно их пять. На первой колонне выделяется легкая бензиновая фракция, которая затем конденсируется в специальном холодильнике-конденсаторе и уже в жидком виде отправляется в стабилизационную колонну.

Зачем нужна стабилизация? Дело в том, что вместе с легкой бензиновой фракцией на первой колонне отгоняются и легкие углеводородные газы С3 – C5. Они легкокипящие, поэтому при обычной комнатной температуре 20-25 °С улетучиваются из жидкой углеводородной массы (содержание их в растворе обратно пропорционально температуре). Между жидкостью и газовой фазой устанавливается термодинамическое равновесие, соответствующее данной температуре.

Это означает, что строго определенное число молекул, например бутана С4Н10, переходит в единицу времени из жидкой фазы в газовую и обратно. Тем самым над поверхностью бензина создается как бы газовая подушка, от которой зависит такой важный показатель качества бензина, как давление насыщенных паров. Понятно, чем больше пропана С3Н8 и бутана С4Н10 осталось растворенными в бензине, тем выше давление паров, то есть тем выше концентрация пропана и бутана также над поверхностью бензина при данной температуре.

Практическое значение данного показателя очень велико. От него зависит испаряемость бензина в карбюраторе, сам процесс карбюрации и последующее сгорание топливно-воздушной смеси в цилиндрах двигателя. Легкие фракции бензина иногда называют пусковыми. Если их мало, то двигатель заводится с трудом, особенно зимой. Именно по этой причине в ГОСТе на бензин оговаривается, что давление насыщенных паров бензина для зимних сортов должно быть 66-92 кПа (500-700 мм рт. ст.), а для летних не более 66,5 кПа.

Почему же летом “не более”? По двум причинам. Во-первых, потому что повышенное содержание легких газов в бензине способно нарушить систему топливоподачи из-за образования локальных газовых пробок, а во-вторых, чтобы сократить потери бензина за счет испарения. Приходилось ли вам открывать в жаркий летний день канистру с бензином? Если да, то вспомните, как из-под крышки, стоит ее лишь приоткрыть, тотчас выплескивается бензин. Точно так же брызжет шампанское из плохо охлажденной бутылки.

А теперь представьте себе путь бензина от нефтеперерабатывающего завода до автомобильного бака. Его многократно перекачивают из резервуара в резервуар, затем в железнодорожные цистерны, лотом в автоцистерны и т. д. Все процессы транспортировки и хранения бензина ведутся под давлением, таковы требования техники безопасности. Но уплотнения оборудования не идеальны. Бензин то и дело непосредственно соприкасается с атмосферой, при этом происходит его испарение, а значит – потери. Они тем выше, чем больше давление насыщенных паров. Поэтому и нужна стабилизационная колонна, где в случае необходимости из бензина специально удаляют бутан, чтобы этот показатель укладывался в предусмотренные ГОСТом пределы.

Но мы несколько отвлеклись. Итак, на первой колонне выделяется только легкий бензин. Оставшаяся нефть поступает на вторую колонну, где с верха отбирают весь остальной, тяжелый бензин, а с боковых отводов – керосиновую и дизельную фракции. Снизу выделяется мазут.

Тяжелый бензин также стабилизуется на специальной колонне. Керосиновую и дизельную фракции на отдельной колонне освобождают дополнительно от примеси бензиновой фракции. Мазут же поступает в печь, нагревается до 400 °С и подается в куб вакуумной колонны. В зависимости от необходимости его здесь разделяют на вакуум-дистиллят (фракция 350 – 500 °С) и на гудрон, кипящий при температуре выше 500 °С. Иногда вакуум-дистиллят называют вакуум-газойлем.

Вакуум-дистиллят используют для получения котельных топлив. Гудрон же используют для производства асфальта, дорожных и строительных битумов.

Агрегаты первичной перегонки нефти получили название атмосферной или атмосферно-вакуумной трубчатки, поскольку они оборудованы трубчатыми печами для нагрева нефти. Иногда на нефтеперерабатывающих заводах, где переработка мазута не предусмотрена, вакуумная часть отсутствует.

И чтобы закончить с первичной перегонкой, несколько слов о том, как выглядят производственные установки. На современных нефтеперерабатывающих заводах обычно работают атмосферные трубчатки или атмосферно-вакуумные трубчатки мощностью 6 – 8 миллионов тонн перерабатываемой нефти в год. Обычно на заводе таких установок не одна, а две-три.

Первая атмосферная колонна представляет собой сооружение диаметром, например, 7 метров в нижней и 5 метров в верхней части. Высота колонны – 51 метр. По существу, это два цилиндра, поставленные один на другой. И это еще не самая большая подобная установка. Другие колонны, холодильники-конденсаторы, печи и теплообменники также выглядят достаточно внушительно и в то же время элегантно. Дизайнеры поработали и здесь.

Кроме обессоливания, обезвоживания и прямой перегонки на многих нефтезаводах есть еще одна операция переработки – вторичная перегонка. Ее еще называют зачастую четкой ректификацией. Задача этой технологии – получить узкие фракции нефти для последующей переработки. Продуктами вторичной, перегонки обычно являются бензиновые фракции, служащие для получения автомобильных и авиационных топлив, а также в качестве сырья для последующего получения ароматических углеводородов – бензола, толуола и других.

Типовые установки вторичной перегонки и по своему виду, и по принципу действия в общем-то очень похожи на агрегаты атмосферной трубчатки, только они гораздо меньше, можно сказать даже миниатюрны.

Вторичная перегонка завершает первую стадию переработки нефти: от обессоливания до получения узких фракций. По современным понятиям, это даже не полпути. Наступает очередь деструктивных процессов.

В отличие от физических по существу процессов перегонки, здесь уже происходят глубокие химические преобразования. Из одной большой молекулы можно получить несколько малых; прямоцепочечные углеводороды будут превращены в циклические или в разветвленные…

Первый патент на промышленную технологию крекинга взял Дж. Юнг в 1866 году. Называлось это техническое решение так:

“Способ получения керосина из тяжелой нефти перегонкой под давлением”. Термин “крекинг” (от английского слова cracking – расщепление) был введен в обиход позднее.

Первые крекинг-аппараты по существу представляли собой периодически работающие кубы, подобные тем, в которых осуществлялась обычная перегонка. Лишь в 1891 году наши соотечественники, известные инженеры – В. Г. Шухов и С. П. Гаврилов, предложили новое устройство для крекинг-процесса. Это был трубчатый реактор непрерывного действия, где по трубам осуществлялась принудительная циркуляция мазута или другого тяжелого нефтяного сырья, а в межтрубное пространство подавались нагретые топочные газы.

Что же происходит при термическом крекинге? Под воздействием высокой температуры длинные молекулы, например алканов С20, разлагаются на более короткие – от С2 до С18. Углеводороды С8 – С10 – это бензиновая фракция, С15 – дизельная. Вообще при термическом крекинге происходят сложные рекомбинации осколков разорванных молекул с образованием более легких углеводородов. При этом одновременно происходит перераспределение процентного содержания углерода и водорода в сырье и продуктах.

Таким образом, если, например, превращать мазут в легкие бензиновые фракции, содержащие повышенные количества водорода, то одновременно должен образоваться и остаток, богатый углеродом. И такой остаток, действительно, образуется. В нем концентрируются смолы, кокс, серосодержащие соединения и минеральная часть нефти, не отмытая на ЭЛОУ. Этот крекинг-остаток затем обычно используют как компонент котельного топлива, смешивая его с мазутом, оставшимся от прямой перегонки нефти.

С изобретением крекинга глубина переработки нефти увеличилась. Выход светлых составляющих, из которых затем можно приготовить бензин, керосин, дизельное топливо (соляр) повысился с 40-45 до 55-60%. Но главное даже не в этом. Новая технология позволила повнимательнее присмотреться к мазуту, использовать его в качестве сырья для производства масел.

Колесная мазь появилась, наверное, чуть позже, чем само колесо, но тоже достаточно давно. Прямой смысл известного афоризма: “Не подмажешь – не поедешь”, – указывает на один из самых древних способов борьбы с трением.

Сначала для этой цели использовали животные жиры. Затем появился деготь-продукт термической перегонки некоторых сортов древесины. Впоследствии этот же деготь стали гнать из каменного угля. Но промышленная революция, быстрое развитие техники выдвигали все новые задачи. Механизмы вращались все быстрее, транспортные средства все наращивали скорость, а значит, все возрастали требования к смазке. Требовались смазочные масла со все большим спектром свойств: сверхвязкие и сверхтекучие, термостойкие и неосмоляющиеся, противозадирные и противоизносные. А главное – их требовалось с каждым годом все больше. И в конце концов смазочные масла стали делать из нефти.

К тому времени химики выяснили, что углеводороды подходящей структуры имеются в тех фракциях нефти, которые выкипают при температуре выше 350 °С. Правда, эти масляные фракции есть не во всякой нефти, но подходящих сортов тоже набирается достаточно. Больше огорчало специалистов другое: углеводороды масляных фракций имеют сложную структуру, соседствуют по температурам кипения с парафинами, так что разделить их не так-то просто. В поисках наилучшей технологии пришли к перегонке мазута под вакуумом.

В основе такой перегонки лежит известный физический закон, согласно которому с понижением давления снижается и температура кипения жидкостей. Все ведь знают, что высоко в горах вода кипит при температуре ниже 100 °С, и сварить яйцо на Эвересте – проблема. Но то, что в обыденной жизни можно отнести к минусам, в нефтехимической технологии превратилось в плюс.

Если в ректификационной колонне создать вакуум, скажем 1 – 1,5 кПа, то мазут начинает испаряться при температуре ниже 350 °С. Значит, с меньшими затратами тепла и с большей точностью из него можно отогнать те узкие фракции, которые затем будут использованы для производства смазочных масел.

Это в теории. На практике же изготовление масел достаточно сложное, многостадийное производство. Сначала применяют серию очисток – в маслах очень нежелательно присутствие серы, ванадия и других минеральных примесей, имеющихся в исходной нефти. Затем надо очистить масляные фракции от парафинов – хорошее будет масло, если оно будет застывать уже при комнатной температуре.

Полученные парафины раньше использовались для производства свеч. В настоящее время их гораздо чаще используют в бумажной, пищевой и химической промышленности. Парафинированная бумага не боится влаги, хорошо воспринимает типографскую краску и потому применяется для производства высококачественных полиграфических изделий. В парафин также “замуровывают” сыр. А химической переработкой парафинов получают синтетические жирные кислоты, которые незаменимы при производстве моющих средств.

Иногда при переработке тяжелых сортов нефти остаток прямой перегонки нельзя использовать в качестве топочного мазута – это уже гудрон. Содержащиеся в нем смолы делают его настолько вязким, что перекачка, транспортировка и сжигание связаны с очень большими трудностями, особенно зимой, в морозы, когда котельное топливо больше всего и нужно. Чтобы слить его из цистерн, их приходится подогревать паром или прибегать к каким-то другим хитростям.

Так вот, чтобы избежать таких трудностей, для приготовления котельного топлива из гудрона используют не обычный термический крекинг, о котором мы только что говорили, а один из его вариантов – висбрекинг. Это название тоже произошло из английского языка и содержит в себе кусочки сразу трех английских слов: viscosity – вязкость, breack – ломать, разрушать и cracking-расщепление. Таким образом, висбрекинг – это крекинг, специально используемый для снижения вязкости. Проводят его при пониженных температурах и давлениях.

Каталитический крекинг был открыт в 30-е годы нашего Века, когда заметили, что контакт с некоторыми природными алюмосиликатами меняет состав продуктов термического крекинга. Дополнительные исследования привели к двум важным результатам. Во-первых, удалось установить подробности каталитических превращений. Во-вторых, созрела убежденность в необходимости специально готовить катализаторы для таких химических превращений, а не искать их в природе, как это делали поначалу.

Каковы же задачи катализаторов крекинга, если формулировать их, исходя из современных представлений о механизме протекающих реакций? В самом общем виде картина следующая. Катализатор отбирает из сырья и сорбирует на себе прежде всего те молекулы, которые способны достаточно легко дегидрироваться, то есть отдавать водород. Образующиеся при этом непредельные углеводороды, обладая повышенной адсорбционной способностью, вступают в связь с активными центрами катализатора. По мере роста непредельности (ненасыщенности связей) происходит полимеризация углеводородов, появляются смолы – предшественницы кокса, а затем и сам кокс. Высвобождающийся водород принимает активное участие в других реакциях, в частности гидрокрекинга, изомеризации и др., в результате чего продукт крекинга обогащается углеводородами не просто легкими, но и высококачественными – изоалканами, аренами, алкиларенами с температурами кипения 80 – 195° С. Это и есть широкая бензиновая фракция, ради которой ведут каталитический крекинга тяжелого сырья. Конечно, образуются и более высококипящие углеводороды фракции дизельного топлива, относящиеся к светлым нефтепродуктам.

Типичные параметры каталитического крекинга при работе на вакуум-дистилляте (фр. 350 – 500 °С): температура 450 – 480 °С и давление 0,14 – 0,18 МПа. В итоге получают углеводородные газы (20%), бензиновую фракцию (50%), дизельную фракцию (20%). Остальное приходится на тяжелый газойль или крекинг-остаток, кокс и потери.

Выход кокса может достигнуть 5%. Это накладывает особые требования на технологию крекинга, потому что по мере закоксовывания активных центров катализатор работает все хуже и в конце концов вообще прекращает выполнять свои функции. Теперь его надо регенерировать. Обычно для этого кокс с катализатора выжигают воздухом при 700 – 730 °С.

Каким требованиям должен отвечать катализатор для подобного процесса? Во-первых, он должен обладать специфическими хемосорбционными свойствами, то есть с разной активностью притягивать и сорбировать на себе различные молекулы нефтяного сырья. Во-вторых, необходима высокая пористость, причем желательно уметь регулировать диаметр и глубину пор. Это позволит упорядочить процесс адсорбции молекул на активных каталитических центрах, осуществить направленные превращения углеводородов, а затем десорбировать с контакта продукты превращения. В-третьих, структура и свойства катализатора должны способствовать организации наиболее эффективного тепло – и массообмена в реакционной зоне – ведь каталитический крекинг процесс термокаталитический, и роль температуры здесь особенно велика. Отсюда требования к механической прочности катализатора.

В целом же роль и задача катализаторов – повышать селективность протекающих химических реакций, увеличивая выход целевого продукта из единицы сырья. Однако применительно к каталитическому крекингу нужно сделать определенные уточнения. Целевым продуктом здесь является не просто бензин, а высокооктановый. Поэтому в самом общем виде селективность каталитического крекинга можно оценить выходом бензиновой фракции с заданным октановым числом.

Первым “рукотворным” катализатором крекинга стал алюмосиликатный формованный катализатор в виде шариков диаметром около 3 мм. В основе его был аморфный алюмосиликат, естественная пористость которого поначалу устраивала нефтепереработчиков. На смену ему пришел микросферический алюмосиликатный катализатор, частицы которого измерялись микронами. Этот пылевидный контакт положил начало использованию в каталитическом крекинге технологии взвешенного (его называют также кипящим или псевдоожиженным) слоя. Технологические усовершенствования позволили за короткий срок реализовать все преимущества, которые могли обеспечить алюмосиликатные катализаторы в части повышения селективности. А дальше дело стало из-за невозможности регулировать и определенньм образом упорядочить структуру алюмосиликата.

Выручили цеолиты. Их еще часто называют молекулярными ситами. Первоначально их применяли для разделения молекул различных углеводородов, используя различия в их пространственной структуре. Цеолиты – это практически те же алюмосиликаты, но при их изготовлении удается регулировать длину пор, их диаметр и количество на единицу объема или поверхности. Кроме того, в кристаллическую решетку алюмосиликатов можно вводить другие элементы (в основном, редкоземельные), которые модифицируют активные центры, находящиеся в определенных точках цеолита. От этого существенно зависят адсорбционные свойства цеолита – какие молекулы и с какой энергией он может адсорбировать в порах или на поверхности и какие деструктивные превращения с ними производить.

Цеолиты – это порядок и регулярность структуры, а значит и свойств. В нефтепереработке быстро оценили новые возможности. Но так как цеолиты значительно дороже алюмосиликатов, то их в чистом виде решили не применять. Это оказалось не только дорого, но и излишне. Достаточно определенным образом нанести цеолит на алюмосиликат, как мы получим нужный эффект в катализе. Так появилось целое семейство цеолитсодержащих катализаторов крекинга, причем в зависимости от назначения, вида сырья, применяемой технологии количество цеолита менялось в широких пределах, но не превышало 15 – 20%.

Вид применяемых катализаторов, способ их регенерации определяет технологию, а значит и аппаратуру каталитического крекинга.

Первые установки работали на таблетированном катализаторе в периодическом режиме. В них и реакция, и регенерация загруженного неподвижного катализатора осуществлялись попеременно в одних и тех же аппаратах. Затем появились более совершенные шариковые катализаторы и установки непрерывного действия. Здесь крекинг и регенерация катализатора осуществляются уже раздельно.

Реактор такой установки представляет собой аппарат колонного типа. Сверху в него через специальное устройство поступает катализатор в виде шариков диаметром 1 – 2 мм. Шарики плотным слоем спускаются вниз, проходя постепенно реакционную зону, зону отделения продуктов крекинга и зону отпарки. Отпарка необходима для удаления углеводородов, прилипших к катализатору. Обработку паром надо делать обязательно, так как затем катализатор поступает в другой аппарат – регенератор, где с него выжигается кокс. Неудаленные углеводороды при этом простони сгорели бы, выход полезных продуктов снизился.

После выжига катализатор ссыпается в загрузочное устройство пневмоподъемника и поднимается по специальному транспортеру в бункер-сепаратор. Дело в том, что при многочисленных перемещениях, выжигах, отпарках часть шариков повреждается, образуются крошка, пыль, и их надо удалить, иначе будут нарушены условия гидродинамики, тепло – и массообмена в реакторе. Это и делают в сепараторе. К регенерированному и отсеянному катализатору добавляют для восполнения потерь свежие шарики и весь цикл повторяется.

Следующий шаг совершенствования технологии – внедрение крекинга в кипящем слое пылевидного катализатора. Его применение стало возможньм благодаря появлению принципиально новых, микросферических катализаторов на основе специально синтезированных цеолитов. Эти катализаторы хороши не только высокой активностью и селективностью. Их отличают также хорошая регенерируемость и высокая механическая прочность.

Технология кипящего или псевдоожиженного слоя основана на физических законах витания микрочастицы в восходящем поток жидкости или газа.

Сырье нагревается в теплообменнике и в специальной печи затем в него добавляют водяной пар, и эту смесь подают катализаторопровод, туда же поступает регенерированный катали затор. Затем смесь попадает в реактор, где над распределительной решеткой образуется кипящий слой катализатора. Крекинг начинается еще в катализаторопроводе, поскольку там поддерживается достаточная температура, и заканчивается в нижней зоне реактора. Затем вся масса за счет давления газов поднимается вверх и попадает в отпарную зону.

В верхней части отпарной зоны имеется перелив для удаления катализатора из реактора, а над нею – отстойная зона. Она снабжена специальными циклонами для дополнительного отделения частиц катализатора.

Закоксованный катализатор тем временем подается на регенерацию. Регенератор представляет собой аппарат, также работающий в режиме кипящего слоя. Правда, здесь псевдоожижение производится воздухом, с помощью которого и происходит выжиг кокса. Основная забота здесь – уберечь катализатор от выноса иначе он попадет вместе с дымовыми газами в атмосферу.

Применение крекинга в кипящем слое позволило резко интенсифицировать процесс, сделать установки более компактными, увеличить их мощность. Так, стандартньми в России являются каталитические комплексы по переработке 2 миллионов тонн сырья в год. Существуют и более мощные установки – до 5 миллионов тонн вакуум-газойля в год, причем реактор такой установки не так уж велик: его диаметр составляет 18 метров.

Впервые гидрокрекинг появился в 50-х годах нашего века. Ему сразу предрекали широкое распространение. Однако с этим вышла задержка, поскольку при производстве бензина выгоднее оказался каталитический крекинг. И лишь с усилением дизелизации, с ростом пассажирской и грузовой реактивной авиации преимущества гидрокрекинга стали проявляться в полной мере.

Сырьем для гидрокрекинга могут быть тяжелые бензины, газойли, тяжелые нефтяные остатки.

Есть страны, полностью лишенные запасов природного газа. А когда возникает нужда в пропане и бутане, то выгоднее оказывается ввозить не их, а тяжелый бензин. И уже на месте его подвергают гидрокрекингу, получая сжиженный газ.

Если нужен бензин и по какой-либо причине нет возможности получить его при помощи каталитического крекинга, используют гидрокрекинг атмосферного газойля. Для этого достаточно одной стадии переработки при давлении 5 МПа и температуре 400 – 410 °С.

Если же переработке подвергается вакуум-дистиллят или другие тяжелые остатки, приходится применять двухступенчатый гидрокрекинг. На первой стадии используют сероустойчивый катализатор, удаляющий вредные примеси, в том числе и соли металлов. Затем уже, во второй ступени, используют активный крекирующий катализатор. А чтобы уберечь катализатор от закоксовывания, в системе циркулирует водород под давлением 15 МПа; благодаря этому смолы – предшественницы кокса переводятся в углеводородные газы.

С точки зрения детонационной стойкости прямогонные бензины тем хуже, чем больше в них линейных и малоразветвленных алканов.

Для получения более разветвленных углеводородов использовали процесс термического риформинга. По сути дела это тот же термический крекинг, только сырьем служат не мазут, а тяжелая фракция прямогонного бензина и температура процесса выше. В результате термической деструкции углеводородов бензин обогащается более высокооктановыми легкими компонентами. Кроме того, значительная часть алканов переходит в алкены, которые, как известно, отличаются неплохими детонационными свойствами.

Однако были у термического риформинга и недостатки. Много исходного сырья превращалось в газ, а продукт все равно имел не такое уж высокое октановое число (70—75 МОЧ). Кроме полезных алкенов в нем оказывалось и достаточное количество нестабильных диенов. Поэтому приходилось применять специальные антиокислители и стабилизаторы, иначе бензин при хранении мутнел, осмолялся.

В общем, термический риформинг не оправдал возлагавшихся на него надежд и был вытеснен каталитическим риформингом.

Реакции ароматизации, лежащие в его основе, были открыты еще в середине 30-х годов.

Эти каталитические превращения позволяют дегидрировать нафтеновые углеводороды в ароматические. Одновременно происходит дегидрирование алканов в соответствующие алкены, эти последние циклизуются тут же в циклоалканы, и с еще большей скоростью происходит дегидрирование циклоалканов в арены. Так, в процессе ароматизации типичное превращение следующее:

Одновременно с этими происходят и другие реакции, например, изомеризации. Это тоже полезное превращение, так как изосоединения повышают октановое число катализата. Побочной, вредной здесь считается реакция гидрокрекинга, когда исходные алканы крекируются в газ.

Перед второй мировой войной были построены и первые установки каталитической ароматизации бензинов. Они работали по принципу гидроформинга, осуществлявшегося с циркулирующим водородным газом под давлением. Вы спросите, что это такое. Вообще говоря, при ароматизации водород образуется постоянно, и его надо отводить. Но при низком давлении водорода катализатор быстро закоксовывается, теряет стабильность, активность и селективность. Бороться с этими неприятными явлениями легче всего, повысив давление водорода в реакционной зоне. Поэтому на первых установках гидроформинга применяли давление порядка 4,5—5 МПа, жертвуя глубиной ароматизации и, соответственно, октановым числом бензина.

Однако в начале 50-х годов было сделано очень важное открытие. Выяснилось, что платина, осажденная на оксид алюминия, является великолепным катализатором риформинга. Применение новых катализаторов позволило снизить рабочее давление повысить температуру, углубить процессы ароматизации и в итоге получить бензин с октановым числом выше 90 ИОЧ.

Первые установки модернизированного процесса, названного платформинг, работали при давлении 2—3 МПа. Затем начался процесс непрерывного совершенствования катализаторов и технологии риформирования прямогонных бензинов. В результате появились полиметаллические катализаторы. В них к платине добавляют рений, кадмий, галлий. Октановое число получающегося бензина приблизилось уже к 100. А кроме того, высокая селективность новых вариантов риформинга обеспечивает и очень высокий выход топлива.

Сырьем каталитического риформинга являются фракции бензина 85—180 °С. Более легкая часть “отрезается”, так как в условиях риформинга она не ароматизуется и в лучшем случае является балластом. Но в ней присутстствуют низкооктановые н-пентан С5Н12 и н-гексан С6Н14.

В наше время много машин используют дизельное топливо. Требуется все большее и большее количество дизельного топлива. Происходит широкое вовлечение в переработку средних (дизельных) фракций нефти. А это, в свою очередь, невозможно, без дальнейшего совершенствования процессов гидроочистки и гидрокрекинга.

Эти процессы имеют особую важность для России. Ведь мы вынуждены иметь дело преимущественно с сернистыми и высокосернистыми тяжелыми сортами нефти.

Известно, что все сераорганические соединения не выдерживают обработки под давлением водорода на катализаторах. Они распадаются с образованием углеводородов и сероводорода Н2S. Сероводород в обычных условиях находится в газообразном состоянии и при нагревании нефтепродукта выделяется из него. Его поглощают водой в колоннах орошения и затем превращают либо в элементарную серу, либо в концентрированную серную кислоту.

Такой процесс осуществляют на гидрирующих катализаторах с использованием алюминиевых, кобальтовых и молибденовых соединений. При давлении 4 – 5 МПа и температуре 380 – 420 °C содержание серы, особенно в светлых нефтепродуктах, можно таким образом свести до тысячных долей.

Могут спросить, кому это нужно? Зачем доводить содержание примесей в бензине до такой жесткой нормы? Все дело в последующем использовании. Известно, например, что чем жестче режим каталитического риформинга, тем выше выход высокооктанового бензина при данном октановом числе или выше октановое число при данном выходе катализата. В результате увеличивается выход октан-тонн – так называется произведение количества катализата риформинга или любого другого компонента на его октановое число. Вот об увеличении октан-тонн продукта по сравнению с сырьем и заботятся нефтепереработчики в первую очередь. В этом смысле повышение жесткости любого вторичного процесса есть благо. В риформинге жесткость определяется снижением давления и повышением температуры. При этом полнее и быстрее идут реакции ароматизации. Но повышение жесткости лимитируется стабильностью катализатора и его активностью. Сера, будучи каталитическим ядом, отравляет катализатор по мере ее накопления на нем. Отсюда понятно: чем меньше ее в сырье, тем дольше катализатор будет активным при повышении жесткости. Как в правиле рычага: проиграешь на стадии очистки – выиграешь на стадии риформинга.

Обычно гидроочистке подвергают не всю, скажем, дизельную фракцию, а только ее часть. Ведь этот процесс не так уж дешев. Кроме того, у него есть еще один недостаток: эта операция практически не изменяет углеводородный состав фракций.

Как только в нефтепереработке появились термические процессы, возникла проблема кокса. Он выделялся в объеме реакторов, оседал на стенках оборудования, покрывал поверхности нагревательных печей и теплообменников. Долгое время его использовали в лучшем случае в качестве топлива.

Но вот настало время электрохимических и электротермических процессов. Для электролитных ванн алюминиевых заводов, для различных электрометаллургических печей потребовались электроды. Их делали, да и сейчас зачастую делают из графита. Но всех потребностей природным графитом не удовлетворить, а иногда графитовые электроды не вполне соответствуют требованиям технологии производства металлов. В связи с этим появились электроды из нефтяного кокса. Они быстро завоевали большую популярность, особенно в цветной металлургии.

Первые установки коксования представляли собой большие металлические кубы с внешним обогревом от специальной печи. В куб загружали сырье (тяжелые нефтяные остатки типа тяжелого крегинг-газойля), температуру поднимали до 500 °С, и в течение определенного времени происходило превращение нефтяного сырья в кокс, естественно, без доступа воздуха. Длительность операции определялась выделением летучих. Затем кокс из куба выгружали.

Есть и другие конструкции. Так называемые полупериодические установки замедленного коксования в необогреваемых камерах оборудованы двумя камерами. В одну подают нагретое примерно до 5000 °С сырье, которое выдерживают в течение 24 часов без доступа воздуха и без дополнительного подогрева. Кокс образуется из нагретого сырья, формируется в виде аморфной массы, и после “созревания” его выгружают. В это время начинают заполнять вторую камеру.

Нефтяной кокс, по какой бы технологии он ни был получен, нуждается в прокаливании, так как содержание летучих в нем строго лимитируется. Если их больше нормы, то при высоких рабочих температурах электроды начинают вспучиваться и растрескиваться. До последнего времени прокалка кокса осуществлялась на электродных заводах, но сейчас эту операцию взяли на себя нефтепеработчики. Они теперь отвечают за содержание не только летучих, но и влаги, серы, золы, а также за механическую прочность и гранулометрический состав выпускаемого кокса: с размером кусков свыше 25 мм, 6-25 мм и 0 – 6 мм, с учетом нужд различных потребителей.

Надо сказать, что при переработке нефти образуется достаточно много углеводородных газов от метана СH4 до бутанов С3Н8 включительно. Источник номер один – прямая перегонка. Выход газов здесь зависит исключительно от степени стабилизации нефти на промыслах или при транспорте. И еще подчеркнем, что в газах атмосферно-вакуумной трубчатки почти нет метана, мало, этана и на 80 – 85% они состоят из пропана и бутанов.

Совсем другую картину представляют газы вторичных процессов: крекинга, риформинга, гидроочистки, изомеризации. Во всех этих процессах молекулы углеводородов претерпевают термическую, каталитическую или термокаталитическую деструкцию. Поэтому в газах этих процессов неизбежно присутствует метан. Далее, если термокаталитические процессы проводятся не под давлением водорода, то в газах обязательно присутствуют алкены, а иногда и алкины С2 – С4. Именно поэтому на НПЗ непредельные газы термического и каталитического крекинга, термического риформинга, висбрекинга собирают и перерабатывают отдельно от газов каталитического риформинга, гидроочистки, изомеризации, гидрокрекинга. В этих последних кроме углеводеродов в большом количестве содержится водород.

Разделение газов значительно отличается от разделения нефти. Сначала весь газовый поток сжимают и охлаждают. В первом контуре охлаждения используют воздух и воду. Здесь при давлении 0,5 МПа и температуре 35 °С происходит конденсация части газов С3 – С4. Получившуюся газожидкостную смесь прокачивают через колонну с бензином. Сконденсировавшиеся молекулы пропана и бутана растворяются в нем (абсорбируются).

Насыщенный газом бензин из абсорбера затем поступает на десорбцию, то есть из него при соответствующих давлениях и температурах выделяют растворенные газы.

Оставшуюся же часть исходной газовой смеси продолжают сжимать и охлаждать. Сначала это делают в аммиачном или фреоновом цикле (температура до -40 °С), далее в этановом или этиленовом (-80 °С), а при необходимости идут и еще дальше, применяя метановый холодильный цикл с температурой ниже -100 °С и давлением порядка 4 МПа.

Так поступают с газами нефтепереработки. Подобные же циклы газофракционирования используют и для переработки попутного газа, выделяемого на промыслах. Не случайно первые газоперерабатывающие заводы очень часто назывались газобензиновыми. Они и в самом деле разделяли сырье на сухой газ (смесь метана и этана), сжиженные газы С3 – С4 и газовый бензин.

Такие маломощные заводики с простейшим оборудованием как ни странно, сохранились и поныне. Они давно сосуществую с мощными нефтеперерабатывающими заводами примерно так же, как сосуществуют крупные плавбазы и маленькие сейнера. Иногда газобензиновые заводы даже монтируют на большегрузных прицепах и баржах, и они по мере надобности кочуют с промысла на промысел.

Дело в том, что попутный газ кончается на месторождении, как правило, гораздо раньше, чем нефть. Так что его надо использовать сразу, пока он есть. И тут мобильные газобензиновые заводики как нельзя более кстати. А нефть уж можно перерабатывать на современном нефтеперерабатывающем предприятии, которое и строится и работает потом достаточно долго.

Ну, а как быть с чисто газовыми месторождениями? Для их использования тоже созданы специализированные предприятия. Чаще всего природный газ – это метан с незначительными добавками этана. Иногда природа делает подарки, добавляя в метан ценнейший гелий, так нужный многим отраслям техники. Но гораздо чаще встречаются неприятные сюрпризы – в виде примесей диоксида углерода и сероводорода.

Понятно, что такие кислые газы надо тотчас отделять от основного сырья. Иначе трубопроводы не спасут никакие антикоррозийные мероприятия. В многоступенчатой системе такой газ подвергается сорбционной отмывке водой, щелочью, специальными растворителями. Потом на основе выделенного сероводорода получают серную кислоту или чистую серу.

Иногда бывает, что в залежи находится не газ, а газожидкостная смесь метана и высших углеводородов, предшественников нефти. Иногда в качестве таковых присутствуют даже алканы, циклоалканы и арены. Представляете, дизельное топливо равномерно распределено в метановой залежи на глубине нескольких километров при давлении в десятки мегапаскалей и температуре в сотни градусов!

Но добыть это топливо не так уж просто. Газоконденсатные месторождения различаются содержанием и фракционным составом жидкой части. Когда пласт протыкают скважинами, давление в нем начинает падать. Физико-химические свойства смеси при этом меняются, она расслаивается, и жидкость скапливается на дне линзы. Если из залежи просто откачивать газ, то скорость расслаивания быстро возрастает, и жидкие углеводороды из смеси быстро растекаются, навсегда оставаясь в недрах. При сегодняшнем развитии техники поднять на поверхность их не удается.

Чтобы таких потерь не было, поступают следующим образом. Газ из конденсатных месторождений поступает в абсорберы. Из него под давлением вымывают тяжелые углеводороды. А затем часть сухого газа под давлением подают обратно в залежь. Этим путем давление в пласте регулируется так, чтобы предотвратить расслоение смеси.

Конечно, все это требует дополнительных расходов, но затраты окупаются сторицей. Месторождение одновременно дает и газ, и дизельное топливо.

Каким образом в дальнейшем используют природный газ, вы, наверное, уже знаете. Прежде всего это прекрасное топливо для промышленных котельных и обычных газовых плит. Кроме того, выделяемый из природного газа этан – прекрасное химическое сырье. Из него делают этилен, а из того, в свою очередь, сотни разнообразных вещей, нужных народному хозяйству.

. Вот так перерабатывают нефтезаводские, попутные и природные газы. Ресурсы их велики, однако используются до сих пор они не полностью. В целом из газов извлекается для дальнейшего использования около 65% бутанов, 35 – 40% пропана и менее 8% этана. Так что резервы тут есть, и немалые!

Для подготовки данной работы были использованы материалы с сайта http://chemistry. r2.ru/

Нефтеперерабатывающий завод Отправимся в воображаемую экскурсию на НПЗ (нефтеперерабатывающий завод) и для простоты будем считать, что он производит лишь бензин, керосин, дизельное и другие топлива, смазочные масла и кокс. Этого, уверяем в

Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Http://stud-baza. ru/neftepererabotka-referat-promyishlennost-proizvodstvo

При Проектировании Нефтеперерабатывающего Завода автоматизацией занимаются специальные компании.

Товарного производства – Уфимский Нефтеперерабатывающий Завод ОАО "Башнефтехим" 1998 – 2001 – заместитель начальника, начальник Товарного производства, начальник планового.

В процессе Проектирования Комплекса Нефтеперерабатывающих и нефтехимических Заводов предусмотрены природоохранные мероприятия, позволяющие ограничить воздействие эксплуатируемого.

Зоны, для обслуживания которых необходим железнодорожный транспорт (складская, сырьевых и Товарных Парков), следует размещать ближе к периферии Завода с тем, чтобы сократить число.

Свыше 90% всего Товарного бензина выпускается на Нефтеперерабатывающих Заводах (НПЗ), коих в России насчитывается 25.

В соответствии с утвержденным заданием на Проектирование комплекса очистных сооружений сточных вод Нефтеперерабатывающего Завода разработан проект реконструкции сооружений.

При Проектировании мероприятий по технике безопасности и санитарии следует учитывать, что резервуарные Парки с нефтепродуктами должны быть расположены с подветренной стороны по.

ВУПП 88 Ведомственные указания по противопожарному Проектированию предприятий, зданий и сооружений Нефтеперерабатывающей и нефтехимической промышленности

В конце лета 1941 года, когда под угрозой оккупации оказались Нефтеперерабатывающие Заводы в Одессе и Херсоне, правительство приняло решение об их эвакуации в Сызрань и ускоренном.

В процессе Проектирования Комплекса Нефтеперерабатывающих и нефтехимических Заводов предусмотрены природоохранные мероприятия, позволяющие ограничить воздействие эксплуатируемого.

Особенностью предприятий Нефтеперерабатывающей промышленности является то, что сточные воды образуются, как правило, не от изолированных производственных процессов или агрегатов, а.

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии Нефтеперерабатывающего Завода и.

В ходе курсового Проектирования были рассмотрены Особенности технологического процесса станкостроительного Завода; определены электрические нагрузки по цехам и предприятию в целом.

Конечный пункт нефтепровода – либо сырьевой Парк Нефтеперерабатывающего Завода, либо перевалочная нефтебаза, обычно морская, откуда нефть танкерами перевозится к.

Нефтеперерабатывающие Заводы, которые не имеют углубляющих процессов, являются убыточными.

В связи со строительством нового Завода возникает необходимость в обеспечении его энергией и мощностью, для чего предложим два варианта подключения к району электроснабжения новой.

Http://refeteka. ru/l-183330.html

Государственное образовательное учреждение высшего профессионального образования

По специальности 280101 «Безопасность жизнедеятельности в техносфере»

НЕФТЕПЕРЕРАБАТЫВАЮЩИЙ ЗАВОД «УФАНЕФТЕХИМ» КАК ИСТОЧНИК ЗАГРЯЗНЕНИЯ СРЕДЫ ОБИТАНИЯ

АТМОСФЕРА, НЕФТЬ, НЕФТЕХИМИЯ, НЕФТЕПЕРЕРАБОТКА, ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ, НЕФТЕЛОВУШКИ, АБСОРБЕРЫ, АЭРОТЕНКИ, СТОЧНЫЕ ВОДЫ, ЗАГРЯЗНЕНИЕ, ПРЕДЕЛЬНО ДОПУСТИМАЯ КОНЦЕНТРАЦИЯ, ПРЕДЕЛЬНО ДОПУСТИМЫЕ СБРОСЫ, ОТХОДЫ, фенол, диоксид серы, оксиды азота, оксид углерода.

Объектом исследований является нефтеперерабатывающее предприятие ОАО «Уфанефтехим»

Цель данного дипломного проекта – анализ нефтехимической промышленности, как источник загрязнения окружающей среды.

В дипломном проекте произведен анализ нефтеперерабатывающей промышленности как источник загрязнения атмосферы, водного бассейна, литосферы, рассмотрено влияние на человека, рассчитаны выбросы загрязняющих веществ в атмосферу и сбросы сточных в водные объекты, рассчитана плата за выбросы и сбросы загрязняющих веществ, так же определены класс опасности предприятия и санитарно-защитная зона.

Пояснительная записка к дипломному проекту содержит 68 стр., таблиц 23, рисунков 2, библиограф 32

1.1 Выбросы в атмосферу на различных этапах технологического процесса

/>1.2 Основные источники выбросов предприятия в атмосферный воздух

1.3 Состав соединений, выбрасываемых в атмосферный воздух и их влияние на живые организмы

1.6 Нефти и нефтепродукты, сбрасываемые со сточными водами и их влияние на водные объекты

II. Эколого-социально-экономические расчеты воздействия загрязнения на окружающую среду и человека

2.1 Расчет массы образующихся выбросов (инвентаризация) на предприятии ОАО «Уфанефтехим» в цехе 1 газотопливного производства

2.4 Определение экологической опасности и санитарно-защитной зоны предприятия ОАО «Уфанефтехим»

Экологические проблемы, имеющие в настоящее время глобальный социальный характер, наиболее ярко проявились в нефтеперерабатывающей отрасли, где огромная энергонасыщенность предприятий, образование и выбросы вредных веществ создают не только техногенную нагрузку на окружающую среду, но и общественно-политическую напряженность в обществе. Постоянно интенсифицируются технологии, вследствие чего такие параметры как температура, давление, содержание опасных веществ, достигают критических величин. Растут единичные мощности аппаратов, количество находящихся в них опасных веществ. Многие виды продукции нефтеперерабатывающих заводов с передовой технологией, обеспечивающей комплексную переработку сырья и состоящей из сотен позиций взрывоопасны и пожароопасны или токсичны. Перечисленные особенности современных объектов нефтепереработки обусловливают их потенциальную экологическую опасность. Экономическая целесообразность расположения нефтеперерабатывающих предприятий приводит к повсеместному созданию индустриальных комплексов в местах проживания населения.

Ущерб промышленных технологий НПЗ для окружающей среды можно охарактеризовать риском, характер и масштабы которого зависят от типа и объемов потребляемых нефти и топлива, способов их использования, уровня технологии системы безопасности и эффективности проведения работ по уменьшению загрязнений. Гигиеническая значимость этих производств очень высока потому, что сама нефть и процесс ее переработки включают сотни химических веществ, присутствующих одновременно в различных комбинациях между собой, сочетаниях с другими неблагоприятными факторами; нефть и нефтепродукты обладают комплексным воздействием на организм, т. е. поступают в организм через все входные ворота; и, наконец, нефть и все ее производные, способны проникать и поражать все аспекты окружающей среды, всю среду обитания: воздух, воду, почву, трансформируются во все живые и неживые объекты в природе. Все это создает полное экологическое неблагополучие, ухудшение стандартов жизни, всех санитарно-гигиенических норм, что не может не отразиться на состоянии здоровья рабочих этих предприятий и населения регионов, где размещены объекты перерабатывающей промышленности. Состояние здоровья людей должно быть главным показателем социальной эффективности, а создание здоровой среды обитания, обеспечивающей социальное, физическое и психическое благополучие человека, должно стать главной концепцией дальнейшего развития общества.

Поэтому одной из важнейших проблем нефтедобывающей и нефтеперерабатывающей отраслей промышленности является проблема охраны производственной и окружающей среды. Нефтеперерабатывающуюпромышленность в настоящее время вполне справедливо относят к тем отраслям народного хозяйства, которые в наибольшей степени ответственны за здоровье населения.

В связи с этим важными являются анализ влияния на среду обитания предприятий нефтеперерабатывающего комплекса. Таким образом, тема дипломного проекта является актуальной.

Целью данного дипломного проекта является анализ влияния на среду обитания нефтеперерабатывающих предприятий на примере ОАО «Уфанефтехим».

Выполнить эколого-экономические расчеты воздействия загрязнения на окружающую среду и человека.

ОАО «Уфанефтехим» расположена в северной промышленной зоне города Уфы республики Башкортостан. Завод введен в эксплуатацию в 1957 году и является топливным с долей нефтехимических процессов. Рельеф окружающей местности средне холмистый. Преобладающее направление ветра в течение года но району — южное и юго-западное.

Основными источниками загрязнения атмосферы являются организованные источники (дымовые трубы) и неорганизованные источники (выбросы с установок за счет не герметичности аппаратов, оборудования, от резервуарных парков, очистных сооружений).

Загрязнение атмосферного воздуха происходит на всех этапах технологического процесса переработки нефти и ее компонентов.

Сточные воды образуются, как правило, не от изолированных производственных процессов или агрегатов, а являются совокупностью потоков, собираемых от предприятия в целом [30].

1.1 Выбросы в атмосферу на различных этапах технологического процесса

Установки ЭЛОУ.Сырая нагретая нефть в смеси с деэмульгатором и водой под действием переменного электромагнитного поля обезвоживается и обессоливается.

Основными источниками выбросов вредных примесей в атмосферу являются неорганизованные источники (за счет не герметичности аппаратов, оборудования) и организованные — вентвыбросы из помещений насосных[30].

На данном этапе технологического процесса в атмосферу выделяются вредные примеси испарений легких фракций нефти (бензин нефтяной и сероводород)[1].

Обезвоженная и обессоленная нефть нагревается и разделяется на фракции в ректификационных колоннах, как при повышенном давлении, так и при вакууме.

Источниками выбросов являются дымовые трубы технологических печей, не герметичность технологического оборудования (неорганизованные источники) и производственные помещения насосных.

Перечень вредных веществ дополнительно включает дымовые газы: (метан, ангидрид сернистый, углерода оксид, азота оксид и диоксид, зола мазутная в пересчете на ванадий, бенз(а)пирен, сероводород.

Печи АВТ-1, АВТ-2, АВТ-3, АВТ-4 оборудованы форсунками для сжигания газов разложения, содержащих сероводород. После эжекторов с вакуумных колонн К-5 данное устройство снижает содержание сероводорода в выбросах, переводя его в ангидрид сернистый.

— Висбрекинг. Осуществляется технологический крекинг тяжелых остатков нефти при умеренной температуре, при которой распадаются преимущественно тяжелые углеводороды. С уменьшением вязкости гудронов — выработка компонента мазута.

Источниками выделения вредных примесей являются технологические печи и неплотности технологического оборудования, поэтому перечень вредных веществ не изменяется [6].

— Установка деасфальтизации. Деасфальтизацию проводят в экстракционных колоннах. В противотоке жидкий пропан растворяет в себе масляную часть гудрона. В экстрактном растворе получают деасфальтизированное масло, в рафинатном — асфальт. Сырье — гудрон. Продукт — деасфальтизат и асфальтосмолистые вещества.

Источниками выбросов являются насосные, которые пронормированы по бутану и бензину и дымовые трубы технологических печей.

— Установка УСРПГ. Сбор, компремирование «жирных газов» установки АВТ с последующей ректификацией образовавшегося газового конденсата с получением «сухого» газа и деэтанизированной головки.

— Установка производства нефтяных битумов. Установка предназначена для получения нефтяных дорожных вязких битумов, а также различных связующих нефтяных (брикетин-1, брикетин-3, НБС-1). В состав установки входят блок окисления и блок налива готовой продукции. Газы окисления, отработанный воздух и не сконденсированная часть отгона подаются в печь дожига газов окисления, топливо — экстракт фенольной очистки. В перечень вредных веществ добавляются меркаптаны, которые пронормированы по «н-пропантиолу», и фенол.

— Установка депарафинизации масел. Удаление из дистиллятных и остаточных рафинатов фенольной очистки высокоплавких парафиновых и церезиновых углеводородов путем кристаллизации их из растворов в смеси ацетона, метилэтилкетона и толуола при низких температурах с целью снижения температуры застывания. Продукты — депарафинированные дистиллятные и остаточные масла, газ и петролатум. Проводится глубокая депарафинизация масел. В перечне вредных примесей добавляются ацетон, метилэтилкетон и толуол.

— Установка получения многофункциональных алкилфенольных присадок.

В атмосферу выбрасывается уксусная кислота, ортофосфорная кислота, аммиак, кальция гидроксид [30].

— Установка каталитического крекинга 1-А. Осуществляется каталитический крекинг вакуумного газойля в кипящем слое катализатора с последующей ректификацией продуктов реакции. Источниками выделения вредных примесей являются технологические печи, регенератор катализатора, производственные помещения насосных и компрессорных. Выбросы катализаторной пыли из регенератора очищаются на электрофильтрах. В перечень вредных веществ добавляется пыль катализаторная, которая пронормирована как «взвешенные вещества».

— Газофракционирующая установка ГФУ. Разделение сжиженных углеводородов газов на фракции происходит в процессе ректификации под давлением с получением пропановой фракции, изобутановой фракции и газового бензина.

— Абсорбционно-газофракционирующая установка АГФУ. Абсорбцией и ректификацией разделяют смесь легких углеводородов на «сухой газ» и бутановую фракцию, которая затем подвергается обработке каустической содой с целью очистки их от сероводорода.

Перечень вредных примесей на данном этапе производства включает пропан и пропилен.

— Установка полимеризации бутан-бутиленовой фракции. Процесс полимеризации бутан-бутилена происходит в реакторах в присутствии катализатора под повышенным давлением с последующим фракционированием продуктов реакции[30].

Сырье — фракция бутан-бутиленовая, продукт — легкий и тяжелый полимердистиллят, отработанная бутан-бутиленовая фракция[5].

— Установка УСКФГ. Установка сбора и компремирования факельных газов высокого и низкого давления. Сырье — факельные газы с долей сероводорода не более 8%. Продукт — сухой газ с содержанием сероводорода 3%-5%, газовый конденсат.

Факельное хозяйство оборудовано схемой сбора и возврата газового конденсата в топливную систему завода.

-Гидрокрекинг. Процесс гидрокрекинга вакуумных дистиллятов проводят на стационарном слое катализатора под высоким парциальным давлением водорода. Процесс гидрокрекинга позволяет перерабатывать тяжелые нефтяные фракции при длительном цикле работы катализатора.

Установка регенерации катализатора оборудована скрубберами. Скруббер 2-913 производит очистку газов от катализаторной пыли и предельных углеводородов. На скруббере 2-913 предусмотрена очистка от оксида углерода и сернистого ангидрида.

В составе гидрокрекинга находится установка производства водорода. Процесс получения водорода основан на методе паровой конверсии углеводородов.

— Установка предварительной гидроочистки бензина. Превращение и удаление сернистых, азотистых, кислородсодержащих соединений из сырья гидрированием под высоким парциальным давлением водорода на стационарном слое катализатора с последующей стабилизацией гидрогенизата. Сырье — бензин. Продукт — стабильный гидрогенизат — сырье установок 35-5, 35-6.

— Установка изомеризации 35-5. На установке изомеризации гидроочищенных фракций прямогонного бензина получают высооктановый автобензин [30].

Сырье — бензин прямой гонки, узкие фракции с КПА, продукт – автобензин.

— Установка каталитического риформинга 35-11/300. Установка каталитического риформинга прямогонных бензинов и бензиновых фракций вторичного происхождения на алюмоплатиновом катализаторе с целью их ароматизации с предварительной гидроочисткой и отпаркой сырья и последующей стабилизацией продуктов реакции предназначена для переработки прямогонных бензинов с установок АВТ, гидрокрекинга, фракций КПА в высокооктановые компоненты автобензина или ароматизированный стабильный катализат для получения растворителей.

— Установка по производству элементарной серы. Установка перерабатывает сероводородсодержащий газ в элементарную серу.

Сера в жидком состоянии с установки поступает на склад, затвердевает на открытом воздухе, после чего бульдозером разбивается на комки и загружается в железнодорожные вагоны [4].

— Комбинированная установка получения ортоксилола, параксилола и бензола.

Широкую прямогонную фракцию бензина подвергают вторичной перегонке с целью получения узких фракций. Фр. 85-140°С подвергается гидроочистке, а затем подвергается каталитическому риформингу с целью обогащения их ароматическими углеводородами, из полученного риформинга выделяют индивидуальные ароматические углеводороды. Сырье — бензин, продукт — параксилол, ортоксилол, бензол, толуол.

— Биологические очистные сооружения. Очистка и доочистка нефтесодержащих стоков от НУНПЗ, УНПЗ, УЗСС, ТЭЦ-4 и прочие.

Стоки, пройдя механическую очистку, поступают в смеситель, перемешиваются. Затем они поступают в аэротенки — сооружение для биохимического окисления загрязненных сточных вод при помощи микроорганизмов и кислородом воздуха. Пройдя двухступенчатую очистку в аэротенках стоки поступают в распределительные камеры отстойников и по радиальным отстойникам для отстоя очищенных стоков от активного ила. Затем осветленные стоки поступают на флотацию, пруд доочистки, откуда через рассеивающий выпуск сбрасывается в р. Белая.

— Механические очистные сооружения. Очистка сточных вод путем отстаивания, сепарации, турбофлотации и центрифугирования.

— Химическая водоочистка. Очистка воды основана на процессе коагуляции и известкования воды и умягчения на катионитовых фильтрах[30].

Резервуарный парк предназначен для обеспечения приема и хранения нефти и получаемых нефтепродуктов.

В товарном производстве некоторые резервуары объемом по 5000м3 оборудованы понтонами или плавающими крышами. Резервуары по комплексу «Ароматика» оснащены понтонами и азотным «дыханием».

Северная и южная эстакады налива оборудованы системой герметичного налива нефтепродуктов. Южная наливная эстакада оснащена блоком улова и утилизации паров бензина[4].

/>1.2 Основные источники выбросов предприятия в атмосферный воздух

Среди загрязнений воздушной среды выбросами НПЗ, в том числе и ОАО «Уфанефтехим» (сероводород, сернистый газ, оксиды азота, оксид углерода, углеводороды, и другие токсичные вещества) основными являются углеводороды и сернистый газ. Степень загрязнения воздушной среды зависит от применяемой техники и технологии, а также от масштабов переработки нефти[1].

По содержанию серы нефти условно классифицируют на малосернистые (до 0,5%), сернистые (до 2,0%) и высокосернистые (свыше 2,0%). Нефти, добываемые на территории республики Башкортостан относят к высокосернистым [17].

Рост добычи и поступление в переработку сернистых и высокосернистых нефтей ухудшают качественные показатели нефтепродуктов, ведут к повышенной коррозии и преждевременному износу трубопроводов, арматуры, оборудования и аппаратуры, к сверхнормативным простоям установок, к сокращению межремонтных циклов, к значительным затратам на текущий и капитальный ремонты, увеличению загрязненности, образованию накипи в теплообменных аппаратах и прогоранию печных труб. При переработке высокосернистых нефтей и получении из них нефтепродуктов с малым содержанием серы усложняются технологические схемы заводов и уменьшается выход светлых нефтепродуктов, требуется более глубокая их очистка и облагораживание. По данным, безвозвратные потери нефти из нефтепродуктов по различным источникам на заводах топливного и топливно-масляного профиля (по группе НПЗ в Башкортостане), перерабатывающих сернистые и высокосернистые нефти, составляют (в % на переработанную нефть) [4]:

Из резервуаров и емкостей для хранения нефти и нефтепродуктов (открытого типа с шатровой крышей) — 40

С поверхности сточной жидкости в нефтеловушках и различных прудах, с сооружений биологической очистки сточных вод, включая испарение из канализационных колодцев и открытых градирен — 19

При наливе в цистерны и при других товарных операциях (на эстакадах открытого типа — 1,3

Прочие источники испарения, утечки через неплотности, пропуски через клапаны и воздушники на аппаратах, не подключенных к факельной линии и др — 2,7

Потери на факелах (при отсутствии газгольдеров для улавливания факельного газа) — 17

Потери при сжигании кокса с катализаторов, от разливов и утечек в грунт, с газами разложения на АВТ и битумных установках со шламами, глинами и т. д — 19

Потери со сточными водами (до биологической очистки при содержании в них 75 мг/л нефтепродуктов) — 1

Самым крупным источником загрязнения атмосферного воздуха являются заводские резервуары для хранения нефти и нефтепродуктов при обычном атмосферном давлении. Выброс осуществляется через специальные дыхательные клапаны при небольшом избыточном давлении паров нефтепродукта или при вакууме в резервуаре, а также через открытые люки и возможные неплотности в кровле резервуара. Особенно увеличивается выброс при заполнении резервуара нефтью или нефтепродуктом, врезультате чего из газового пространства вытесняются в атмосферу, как правило, пары легких нефтепродуктов.

Дополнительная загазованность атмосферы происходит при нарушении герметичности резервуаров за счет коррозии крыши, если переработке подвергаются сернистые нефти. При негерметичной крыше резервуара происходит «выветривание» газового пространства: более тяжелые пары продукта выходят снизу, а воздух в таком же объеме входит сверху. При наличии ветра потери от вентиляции газового пространства увеличиваются во много раз [7].

При обследовании НПЗ ОАО «Уфанефтехим» в Башкортостане потери углеводородов по отдельным резервуарам были [30]:

Из промежуточных и товарных резервуаров и емкостей с бензиновыми компонентами и светлыми продуктами — 48

Из резервуаров с компонентами бензина от первичных и вторичных процессов — 27,2

Открытые поверхности очистных сооружений — песколовок, нефтеловушек, пруды дополнительного отстоя, кварцевые фильтры, аэротенки I и II ступени, вторичные и третичные отстойники после аэротенков, пруды накопители — являются источниками загрязнения атмосферного воздуха и окружающей территории продуктами нефтепереработки. Средние концентрации газов в воздушных потоках от отдельных элементов очистных сооружений, а также валовые газовыделения с открытой поверхности этих объектов представлены в табл. 1.2.2[9].

У работающих фильтров концентрации сероводорода и паров углеводородов в воздушных потоках с поверхности испарения были выше, чем у фильтров, остановленных на промывку, так как промывная вода менее насыщена продуктом.

Нефтепродукты, поступающие с оборотной водой, в основном испаряются в воздух; например в градирнях НПЗ удаляется с воздухом через вентиляторы 286 кг/ч, или 2500 т/год углеводородов. Сточные воды, отходящие от барометрических конденсаторов, сбросы охлаждающей воды из конденсаторов смешения паров, образующихся при охлаждении кокса на установках замедленного коксования и другие, являются источником загрязнения атмосферы сероводородом [9].

Выброс углеводородов и сероводорода происходит на атмосферно-вакуумных и вакуумных установках НПЗ, на последней ступени паро-эжекторного агрегата неконденсированных газов. При наличии на НПЗ установок каталитического крекинга вакуумного газойля, потери нефти и нефтепродуктов с выжигаемым коксом при регенерации катализатора составляют 5,0—6,5% от перерабатываемого сырья. При мощности завода 12 млн. т/год и выходе вакуумного газойля 10% на нефть они составляют 0,6% от переработанной нефти.

Технологические конденсаты после атмосферных и атмосферно-вакуумных установок и установок каталитического крекинга являются источником загрязнения атмосферного воздуха сероводородом [3].

Пары нефтепродуктов выделяются в атмосферный воздух через неплотности оборудования, арматуры и фланцевых соединений, через сальниковые устройства насосов и компрессоров. Число насосов и компрессоров на НПЗ средней производительности составляет более 1000. Каждая задвижка, фланцевое соединение, предохранительный клапан и сальник насоса — потенциальные источники загрязнения атмосферного воздуха. При нормальной работе от одного насоса выделяется в час 1 кг газов и паров, а от одного компрессора —3 кг. Фактические выделения часто превышают эти цифры в 2—3 раза; для насосной при 20 насосах они могут составлять 20—60 кг/ч, для компрессорной при 5 компрессорах— от 15 до 45 кг/ч.

Выбросы углеводородов в атмосферу на НПЗ через предохранительные клапаны достаточно велики. Например, на НПЗ мощностью 12 млн. т/год через предохранительные клапаны выбрасывается в сутки около 100 т углеводородов. Кроме того, необходимо учитывать выбросы в результате недостаточной герметизации оборудования и арматуры.

Дымовые газы трубчатых печей технологических установок являются источниками выброса в атмосферный воздух сернистого ангидрида, оксидов углерода и азота [6].

/>Проблема выбросов оксида углерода на установках каталитического крекинга с псевдоожиженным слоем в настоящее время приобрела особое значение. Это связано со значительной коррозией оборудования, (вызванной повышенными температурами в циклонах или в линии отходящих газов в результате дожигания оксида углерода до диоксида в разбавленной фазе катализатора, использованием цеолитных катализаторов, требующих высокой степени выжига кокса повышения температуры регенерации с 620 до 700 °С.

Сернокислотная очистка парафина и масел, сульфирование при получении поверхностно-активных веществ и многие другие процессы в нефтеперерабатывающей промышленности связаны с выбросом сернистых газов в атмосферу [9].

Основным процессом производства битумов является окисление остатков нефтепереработки кислородом воздуха при 240—300°С. Газы, выходящие из окислительного аппарата, состоят из азота, кислорода, диоксида углерода, смеси углеводородов и их кислородных производных, а также водяных паров, образующихся в ходе реакции окисления углеводородного сырья, и за счет воды и водяного пара, подаваемых иногда в газовое пространство окислительного аппарата. Эти выбросы являются одним из основных источников загрязнения воздушного бассейна, связанных с работой НПЗ. Дополнительным и часто значительным источником загрязнения воздушного бассейна могут быть пары органических соединений, выделяющиеся при наливе горячего битума в железнодорожные бункеры и автобитумовозы или розливе его в мелкую тару (бумажные мешки, бочки) для охлаждения.

Состав газов, выделяющихся при обычных режимах окисления в колонне при использовании в качестве сырья гудрона (на примере западно-сибирской нефти) даны в таблице 1.2.4 [2].

Кроме того, в газах, выходящих из окислительного аппарата, в небольших количествах присутствует оксид углерода (до 0,5% масс); концентрация же сероводорода невелика—не более 0,01% (масс.)—даже при использовании высокосерниcтого сырья; содержание сернистого ангидрида еще ниже. Концентрация 3,4-бенз-пирена в газах достигает 5 мкг/м3 (при ПДК его в воздухе производственных помещений 0,15, мкг/м3). В случае подачи В окислительную колонну воды для съема тепла реакции или водяного пара для снижения концентрации кислорода до взрывобезопасной (.ниже 5% об.) необходимо учитывать соответствующее разбавление газов окисления[2].

Факельные системы являются значительными источниками загрязнения атмосферного воздуха сернистым ангидридом, оксидом углерода и другими вредными газами. На факельные установки направляют горючие и горюче-токсические газы и пары (из технологического оборудования и коммуникаций, а также «сдувки» из предохранительных клапанов и других предохранительных устройств, если эти сбросы невозможно использовать в качестве топлива в специальных печах или котельных установках. Кроме того, на факел направляют горючие и горюче-токсические газы и пары в аварийных случаях, в период пуска оборудования, при остановке оборудования на ремонт и наладке технологического режима (периодические сбросы).

На НПЗ в качестве топлива используют не только поступающий со стороны естественный газ, но и получаемый непосредственно при переработке нефти — высококалорийный, так называемый нефтезаводской сухой газ. Преимущества его по сравнению с жидким топливом заключаются в удобстве обращения и транспортирования, в легком смешении с воздухом и возможности сжигания с малым избытком воздуха.

Несмотря на то, что значительная доля нефтезаводского газа потребляется в качестве топлива, на заводах все еще сжигается на факеле сухой газ, поступающий с технологических установок и резервуаров, на которых недостаточен контроль работы – предохранительных клапанов и другой запорной арматуры.

Сжигаемый на факеле газ загрязняет атмосферу дымом и копотью. Особенно много сажи выделяется при сжигании сбросных газов, содержащих тяжелые непредельные углеводороды [8].

1.3 Состав соединений, выбрасываемых в атмосферный воздух и их влияние на живые организмы

Углеводороды.Токсичность нефтепродуктов и выделяющихся газов определяется сочетанием углеводородов, входящих в их состав. От преобладания углеводородов того или иного ряда зависят токсические свойства нефтепродуктов. Так, тяжелые бензины являются более токсичными по сравнению с легкими. Токсичность смеси углеводородов в составе нефтепродуктов, выше токсичности отдельных компонентов смеси. Значительно возрастает токсичность нефтепродуктов при переработке сернистых и многосернистых нефтей. Основной вредностью при переработке нефтей, содержащих сернистые соединения, является комбинация углеводородов и сероводорода. Комбинированное действие углеводородов и сероводорода проявляется быстрее, чем при изолированном действии углеводородов.

Действие на организм углеводородных компонентов в сочетании с сероводородом многообразно. Прежде всего страдает центральная нервная система. При углеводородных отравлениях поражается промежуточный мозг как высший центр вегетативной нервной системы. Углеводороды влияют на сердечно-сосудистую систему, а также на гематологические показатели (снижение содержания гемоглобина и эритроцитов).

Специальные экспериментальные исследования указывают на возможность поражения печени, нарушения различных ее функций при хроническом воздействии нефтепродуктов. Углеводороды влияют и на эндокринный аппарат организма. При хроническом воздействии углеводородов выявляются изменения в щитовидной железе, коре надпочечников, яичниках белых крыс. У животных более интенсивно нарастала масса тела по сравнению с интактными, было выявлено влияние на половую систему [1].

Бензин. Сравнение токсического действия бензинов показало, что бензины из высокосернистых нефтей более токсичны, чем бензины из нефтей малосернистых. Бензин поражает центральную нервную систему. Экспериментальные данные свидетельствуют о действии бензина на сердечно-сосудистую систему и о влиянии на процессы обмена.

При хроническом воздействии бензина в концентрации 2500 — 3000 мг/м3 (пребывание животных в течение года в камере) наблюдалось повышение липоидов в крови, снижение резервной щелочности, изменение содержания калия в сыворотке крови. Хроническая затравка животных парами бензина, полученной из сернистой нефти (концентрации углеводородов 3000—6000 мг/м3) привела к угнетению окислительно-восстановительных процессов, резкому уменьшению глютатиона в печени, росту количества недоокисленных продуктов. В противоположность этим данным сероводородсодержащий бензин вызывает при аналогичных условиях повышение окислительно-восстановительных процессов, увеличение восстановительного и общего глютатиона, снижение количества недоокисленных продуктов. Под влиянием бензина происходит изменение иммунобиологической активности организма.

Все виды бензина обладают более или менее выраженным запахом. Интенсивность запаха бензина зависит от его химического состава. Особенно неприятным и резким запахом отличается бензин, содержащий много непредельных углеводородов и сернистых соединений. Порог обонятельного ощущения бензина «калоша» для наиболее чувствительных лиц находится на уровне 10 мг/м3, а максимальная неощутимая концентрация для тех же лиц равна 8 мг/м3. Порог обонятельного ощущения автомобильного бензина марки А-72 и авиационного бензина марки Б-70, определенный у 12 наблюдаемых, наиболее чувствительных лиц, равен соответственно 6,5 и 7,5 мг/м3, а максимальная неощутимая концентрация равна 5,2 и 7,1 мг/м3 [30].

Диоксид серы.Порог раздражающего действия диоксида серы лежит на уровне 20 мг/м3. Острое токсическое действие оказывают более высокие концентрации; хроническое отравление, несомненно, имеет место также при концентрациях, лежащих выше порога раздражения.

Исследования на подопытных животных (белых крысах) методом условных рефлексов показали, что концентрация диоксида серы, равная 20 мг/м3, вызывает изменения в высшей нервной деятельности при затравке по 3,5 ч в день в течение 1,5 месяцев; концентрация 5 мг/м3 также оказывает заметное действие, а при концентрации 2,5 мг/м3 изменений не происходит.

Порог рефлекторного действия газа на функциональное состояние коры головного мозга лежит на уровне 0,6 мг/м3, т. е. значительно ниже, чем полученный в работе порог резорбтивного действия его на высшую нервную деятельность крыс. На основании последних исследований была предложена максимальная разовая ПДК в атмосферном воздухе, равная 0,5 мг/м3, т. е. ниже установленного порога.

По данным, порог рефлекторного действия диоксида серы на процесс образования «электрокортикального условного рефлекса» (0,6 мг/м3) также лежит выше разовой ПДК. Среднесуточная концентрация принята на уровне 0,05 мг/м3.

Вдыхание диоксида серы в низких концентрациях от 2,7 до 21,6 мг/м3 вызывает заметные изменения в дыхании, которое становится более поверхностным и быстрым, и сердечном ритме [1].

Оксид углерода. Токсичность оксида углерода для человека связана с высокой способностью этого газа вступать в реакцию с гемоглобином, образуя «карбокси-гемоглобин, не способный транспортировать кислород из легких кпотребляющим тканям. Вследствие этого наступает аноксемия, отражающаяся прежде всего на центральной нервной системе. Под влиянием вдыхания оксида углерода усиливается атеросклеротический процесс.

Оксид углерода в средней концентрации 2,65 мг/м3 при круглосуточной хронической затравке в течение 2,5 месяцев вызывает некоторое изменение порфиринового обмена, а при средней концентрации 1,13мг/м3 при тех же условиях не вызывает у подопытных животных изменения моторной хронаксии и порфиринового обмена ине влияет на функцию кроветворной системы. Среднесуточная ПДК оксида углерода в атмосферном воздухе равна 1 мг/м3.

Оксиды азотаОказывают раздражающее действие на органы дыхания, особенно на легкие, и в больших концентрациях вызывают отек легких. Опасной при кратковременном дыхании является концентрация 200—300 мг/л. При концентрации 15 мг/м3 ощущается явный запах оксида азота и слабое раздражение глаз; при концентрации 10 мг/м3 запах едва заметен; при концентрации 3 мг/м3 запаха не обнаруживается.

Трехмесячная круглосуточная динамическая затравка белых крыс диоксидом азота в концентрации 0,15 мг/м3 не вызвала у животных ни функциональных, ни органических изменений. Учитывая высокую токсичность диоксида азота, в качестве среднесуточной ПДК в атмосферном воздухе рекомендовали концентрацию 0,085 мг/м3, т. е. на уровне максимальной разовой величины [9].

3,4-Бензпирен.Химические канцерогенные вещества являются одной из причин возникновения раковых заболеваний. Наиболее распространенными из них являются канцерогонные вещества группы полициклических ароматических углеводородов, которые образуются при горении и сухой перегонке топлива, т. е. в условиях пиролитических реакций.

Основные типы опухолей легких, особенно часто встречающихся и в патологии человека, — плоскоклеточный рак, недифференцированный рак типа мелкоклеточного, аденокарцинома и комбинированные опухоли, а также саркомы.

Допустимая концентрация 3,4-бензпирена в воздухе не должна превышать 0,1 мкг/100м3. Такие концентрации обнаруживаются в атмосферном воздухе сельских населенных мест и городских районов, характеризующихся малой интенсивностью движения автотранспорта: и значительно удаленных от промышленных предприятий.

Количество вышеперечисленных веществ, образующихся на предприятии ОАО «Уфанефтехим» и выбрасываемых в атмосферу приведены в таблице 1.3 [30, 29].

Таблица 1.3 – Выбросы основных загрязняющих веществ в атмосферу за 2004 год

Особенностью предприятий нефтеперерабатывающей промышленности является то, что сточные воды образуются, как правило, не от изолированных производственных процессов или агрегатов, а являются совокупностью потоков, собираемых от предприятия в целом [10].

Современные НПЗ делятся на: топливные и топливно-масляные, топливные и топливно-масляные с нефтехимическим производством. Технология переработки нефти и имеющиеся в ней различия в зависимости от профиля производства, глубины переработки нефти и ассортимента конечных продуктов определяют и отходы заводов. Основные технологические процессы переработки нефти включают: подготовку нефти, ее обезвоживание и обессоливание; атмосферную и вакуумную перегонку; деструктивную переработку (крекинг, гидрогенизацию, изомеризацию); очистку светлых продуктов; получение и очистку масел [22].

Расход воды для производственных целей и объем сточных вод возрастает с глубиной переработки нефти. Содержание же различных загрязняющих веществ в сточных водах определяется качеством перерабатываемой нефти, технологией ее переработки и качеством конечных продуктов производства. Наибольший расход воды отмечается на стадии подготовки нефти, в процессе ее обезвоживания и обессоливания.

Электрообессоливание и обезвоживание нефти. Нефти, поступающие с нефтепромыслов, содержат до 2% воды и до 0,5% солей. Однако для переработки пригодна нефть, в которой не более 0,0005% солей и 0,1% воды. Поэтому нефть, поступающая на НПЗ, вначале подвергается обезвоживанию и обесеоливанию на специальных электрообессоливающих установках ЭЛОУ. В сырую нефть добавляют воду, затем разделяют образовавшуюся эмульсию в две ступени: первая — термическое отстаивание при 75—80°С; вторая—разрушение эмульсий и обезвоживание в электродегидротаторах. Для разрушения стойкой эмульсии в процессе обезвоживания и обессоливания нефти используют деэмульгаторы: ОП-7, ОП-10, диосольван, ОЖК и др.

Вода, отделившаяся на установках ЭЛОУ, отводится в специальную сеть канализации. В ней содержатся соли, нефть, сернистые соединения и другие вещества, находящиеся в сырой нефти в виде примесей [1].

Атмосферная И Вакуумная переработка нефти.Первичным технологическим процессом переработки нефти является прямая перегонка на атмосферно-вакуумных трубчатках (АВТ) с получением светлых дистиллятов и масляных фракций. Нефть после ЭЛОУ проходит теплообменники, затем подогревается в печи атмосферной части установки АВТ и подается в атмосферную ректификационную колонну, гдепроисходит разделение нефти с получением легких продуктов. Светлые продукты атмосферной колонны — бензин, керосин и дизельное топливо — охлаждаются, конденсируются в теплообменниках и конденсаторах. Остаток нефтепродуктов с атмосферной колонны поступает через трубчатую печь вакуумной части в вакуумную колонну, где в результате перегонки в вакууме получаются масляные дистилляты и кубовый остаток. При первичной перегонке нефти имеет, место разложение сернистых соединений. Часть из них переходит в светлые дистилляты, загрязняя последние, а часть — в газы и остаток нефтепродуктов.

Вакуум в барометрических конденсаторах смешения вакуумных колонн АВТ создается за счет непосредственного соприкосновения воды с парами нефтепродуктов и газами. В результате отработанная вода загрязняется парами нефтепродуктов и сероводородом. В настоящее время на небольшом числе установок АВТво избежание образования загрязненных сточных вод барометрические конденсаторы смешения заменяют на конденсаторы поверхностного типа, где соприкосновения воды с нефтепродуктами нет.

При прямой перегонке нефти образуются продукты двух типов: дистиллятные (бензин, керосин, лигроины, дизельное топливо, соляровые масла) и остаточные (мазуты, гудроны, газойль). Мазуты частично используются как топливо [30].

/>Из-за агрессивности сернистых соединений к технологическому оборудованию из металла их присутствие в товарных нефтепродуктах не допускается. Очищают нефтепродукты от соединений серы промывкой водным раствором щелочи (едкий натр). При этом из нефтепродуктов в щелочной раствор переходят сероводород, меркаптаны и другие сернистые соединения, а также фенолы. После многократного, использования щелочной раствор, содержащий большое количество сернистых соединений, атакже другие загрязняющие вещества, сбрасывается в специальную сеть — сеть сернисто-щелочной канализации [17].

Таким образом, на стадии атмосферно-вакуумной переработки нефти образуются сточные воды двух видов: сернисто-щелочные при очистке нефтепродуктов от сернистых соединений и сточные воды после барометрических конденсаторов смешения. И в тех, и в других содержатся нефть, нефтепродукты и соединения серы [1].

Деструктивная переработка нефти. При глубокой переработке нефти остатки прямой перегонки подвергаются крекингу и пиролизу. Известны различные виды крекинга: каталитический крекинг, — протекающий в присутствии катализаторов (хлористый алюминий, алюмосиликаты); гидрогенизационный крекинг в атмосфере водорода (гидрогенизация), где в качестве сорбента используется глина; дегидрогенизационный крекинг, сопровождающийся массивным выделением водорода; окислительный крекинг в атмосфере кислорода или воздуха. Основное развитие на современных НПЗ получает гидрогенизационный крекинг.

На установках каталитического крекинга продукты прямой перегонки нефти после АВТ подвергаются прямому расщеплению молекул тяжелых углеводородов с целью получения высокооктановых (бензинов и индивидуальных ароматических углеводородов. Процесс ведется при высоких температурах и давлениях. Очистка жидких продуктов проводится также щелочью. Охлаждение и конденсация готовых продуктов ведется с помощью воды в поверхностных конденсаторах и холодильниках. Вода при этом нагревается до 70—80°С. Загрязнение нефтепродуктами охлаждающей воды возможно лишь при неисправности и не герметичности аппаратов.

При глубокой переработке нефти с применением процессов крекинга образуются:

— газообразные углеводороды с высоким содержанием нейтральных углеводородов, которые направляются в качестве сырья на нефтехимические производства НПЗ для последующего синтеза в спирты, гликоли, производные гликолей и пр.;

— жидкие дистилляты—крекинг-бензин, ароматические углеводороды (например, бензол, толуол); из жидких продуктов, получаемых при пиролизе нефти, на нефтехимических предприятиях получают ряд других Соединений (изопрен, сырье для синтетического волокна и др.);

Кроме воды, используемой для охлаждения готовых продуктов при их конденсации, в канализацию сбрасывается и вода из водоотделителей. Последняя образуется главным образом, в результате конденсации водяного пара, поступающего в аппараты установки, так называемые технологические конденсаты. Из-за непосредственного контакта с нефтепродуктами в технологическом конденсате могут содержаться значительные концентрации углеводородов, а при переработке сернистых и высокосернистых нефтей также сульфиды аммония и фенолы [17].

Очистка нефтепродуктов. Для очистки нефтепродуктов применяют кислотную и щелочную очистку и промывку. При кислотной очистке (периодической и непрерывной) легкие фракции нефти обрабатываются в специальных аппаратах с мешалками. Затем их нейтрализуют, промывают водой и подвергают щелочной обработке. В результате очистки получается много отходов— кислых гудронов, щелочных сточных вод, обезвреживание и утилизация которых затруднительны. Однако в настоящее время решение этой проблемы чрезвычайно важно для защиты окружающей среды от загрязнения.

Кроме общих методов очистки нефтепродуктов применяют специальные методы, например обессеривающие методы, из которых наиболее перспективным считают каталитической гидрогенизации, очистка с помощью селективных растворителей и другие [22].

Получение и очистка масел.Сырьем для производства масел служат масляные погоны, полученные с установок АВТ. Для удаления из масляных фракций минеральных примесей (сернистые, азотистые, асфальто-смолистые вещества и другие нежелательные для масла компоненты) их подвергают очистке с помощью растворителей на специальных установках. К ним относятся установки: деасфальтизации масел пропаном, депарафинизации масел в среде ацетон — бензол — толуол, гидроочистки масел и контактной очистки отбеливающими глинами.

На установке деасфальтизации жидкий пропан растворяет асфальто-смолистые вещества, содержащиеся в масляных погонах АВТ. Эти вещества оседают в осадок и отделяются. На этой установке нефтепродукты могут попадать в канализацию через неплотности сальников насосов или в результате других неисправностей, при мытье полов.

На установках селективной очистки масел и деасфальтизата от смолистых веществ и других примесей фенолом загрязнение сточных вод возможно только за счет сброса в канализацию смывов с полов насосной станции, а также через неплотности в аппаратуре.

На установке депарафинизации при нормальной работе технологического оборудования загрязнения незначительны. Однако при авариях и пропусках через неплотности возможно попадание в канализацию нефтепродуктов с высокой температурой застывания, а также растворителей и др.

При правильной эксплуатации установок гидроочистки масел попадание нефтепродуктов в сточные воды исключено. Сброс в канализацию масляных компонентов возможен лишь при авариях и через неплотности соединений трубопроводов.

Значительное количество загрязнений поступает в сточные воды НПЗ из резервуарных парков и при ремонте оборудовании.

Дополнительным источником загрязнения канализации нефтепродуктами и механическими примесями являются дождевые и талые воды [6].

Для очистки образующихся сточных на предприятии ОАО «Уфанефтехим» имеется механическая, физико–химическая и биологическая очистные сооружения. ООО «Уфанефтехим» имеет мощные биологические очистные сооружения (БОС) и способно принимать на очистку сточные воды и других организаций. Данные о сбросах сточных вод на БОС ОАО «Уфанефтехим» приведены в таблице 1.4 [29,30].

Таблица 1.4 – Сброс сточных вод на БОС ОАО «Уфанефтехим» в 2004 году.

Сточные воды предприятия ОАО «Уфанефтехим» очищаются в очистных сооружениях из которых часть идет в возврат для нового использования, а часть в итоге сбрасывается в реку Белая [30].

Таким образом, производственные сточные воды на НПЗ образуются практически на всех технологических установках. В зависимости от источников образования их подразделяют на следующие:

1. Нейтральные нефтесодержащие сточные воды. Они составляют основную часть воды первой системы промышленно-ливневой канализаций. К ним относятся сточные воды, получающиеся при конденсации, охлаждении и водной промывке нефтепродуктов (кроме вод барометрических конденсаторов АВТ), после очистки аппаратуры, смыва полов производственных помещений, от охлаждения втулок сальников насосов, дренажные воды из лотков технологических аппаратов (кроме вод от узлов управления при сырьевых парках), фундаментальных приямков аппаратов и насосов, а также ливневые воды с площадок технологических установок. В этих водах присутствует преимущественно нефть в виде эмульсии. Ее концентрация достигает 5—8 г/л, а общее содержание солей 700—1500 мг/л. Сравнительно невысокое содержание солей позволяет использовать сточные воды после соответствующей очистки для пополнения систем оборотного водоснабжения.

2. Солесодержащие сточные воды (стоки ЭЛОУ) с высоким содержанием эмульгированной нефти и большой концентрацией растворенных солей (в основном хлористого натрия). Они поступают от электрообеосоливающих установок и сырьевых парков. К ним также относятся дождевые воды с территории указанных объектов. Предельно допустимое содержание нефтепродуктов в них без учета аварийных сбросов не должно превышать 10 г/л. Исследования стоков с установок ЭЛОУ показывают, что содержание нефти в отдельных пробах может доходить до 30 г/л, что связано с негерметичностью технологического оборудования и дефектами в эксплуатации. Содержание солей в водах этой группы зависит главным образом от качества нефтей, поступающих на завод.

3. Сернисто-щелочные сточные воды получаются от защелачивания светлых нефтепродуктов и сжиженных газов. В процессе щелочной очистки из нефтепродуктов удаляются главным образом сероводород, меркаптан, фенолы и нафтеновые кислоты.

В соответствии с технологическими требованиями состав сернисто-щелочных сточных вод должен быть следующим: ХПК—до 85000 мгО2/л, БПКполн — до 75000 мгО2/л, сульфиды (в пересчете на H2S) до 26000 мг/л, серы общей до 35000 мг/л, фенолы летучие до 5000 мг/л, нефтепродукты до 3000 мг/л, общая щелочность (в пересчете на. NaOH) — 10000 мг/л, рН —14.

Однако состав этой категории сточных вод может значительно отличаться от установленных нормативов. Периодичность сброса отработанных щелочей в сернисто-щелочную канализацию на различных заводах колеблется от 2 до 45 дней в зависимости от типа технологических установок и их. мощности, принятого режима переработки нефти, качества получаемого исходного сырья, схемы защелачивания, гидравлической нагрузки на щелочные отстойники и ряда других факторов. Среднесуточный сброс этих вод (без учета промывных вод) колеблется от 0,0009 до 0,0019 м3 на 1 т перерабатываемой нефти.

4. Кислые сточные воды от цеха регенерации серной кислоты образуются в результате неплотностей соединений в аппаратуре, потерь кислоты из-за коррозии аппаратуры и содержат в своем составе до 1 г/л серной кислоты.

5. Сероводородсодержащие сточные воды поступают в основном от барометрических конденсаторов смешения. При замене барометрических конденсаторов смешения на поверхностные объем их сокращается в 40— 50 раз.

/>Кроме барометрических вод, сероводород содержится и в так называемых технологических конденсатах установок АВТ, каталитического крекинга, замедленного коксования, гидроочистки и гидрокрекинга, но в этих сточных водах, кроме сероводорода, присутствуют фенолы и аммиак [1].

При объединении НПЗ и нефтехимических производств появляются сточные воды, загрязненные продуктами нефтехимического синтеза. Состав их обусловлен видом получаемой продукции. Так, сточные воды производств БВК из жидких нефтяных парафинов имеют БПКполн. до 1000 мг О2/л, ХПК—2200 мг О2/л, рН 4,8—5,6.

Из других источников образования сточных вод следует отметить сточные воды от этилосмесительных установок и эстакад по наливу этилированных бензинов, в которых содержатся до 10 мг/л нефтепродуктов и тетраэтилсвинец, а также кислые сточные воды от цехов синтетических жирных кислот.

Таким образом, в сточные воды НПЗ попадает большое количество органических веществ, из которых наиболее значимы конечные и промежуточные продукты перегонки нефти: нефть, нафтеновые кислоты и их соли, дезмульгаторы, смолы, фенолы, бензол, толуол. В сточных водах содержится также песок, частицы глины, кислоты и их соли, щелочи.

Приведенные данные показывают, что содержание отдельных соединений в сточных водах колеблется в широких пределах, например, содержание фенолов и нефти в сернисто-щелочных сточных водах. Наиболее опасными для биологических очистных сооружений и водоемов являются сульфиды и сульфогидраты, присутствие которых в воде водоемов хозяйственно-питьевого, рыбохозяйственного и культурно-бытового водопользования не допускается.

Нефть и нефтепродукты в производственных сточных водах содержатся в растворенном, коллоидном и эмульгированном состояниях. Большинство растворенных в воде органических веществ как правило, определяются суммарно через биохимическое потребление кислорода или химическое (бихроматное) потребление кислорода пробой воды [5].

1.6 Нефти и нефтепродукты, сбрасываемые со сточными водами и их влияние на водные объекты

Отходы НПЗ, попадая в водные объекты, отрицательно влияют на качество воды и санитарные условия жизни и водопользования населения, нанося этим и экономический ущерб народному хозяйству. Это связано с особенностями поведения веществ, сбрасываемых со сточными водами НПЗ в водоемы, и, прежде всего нефти.

Исследования по гигиеническому нормированию вредных веществ сточных вод НПЗ было показано, что нефть и нефтепродукты, поступающие в водоем со сточными водами, неблагоприятно влияют на условия водопользования населения вследствие появления запахов в воде [9].

Ниже дана характеристика вредных веществ, сбрасываемых со сточными водами НПЗ.

Нефти — сложные смеси органических соединений; они содержат метановые, метано-нафтеновые, нафтеновые, нафтено-ароматические и ароматические углеводороды. Присутствие кислородных, азотистых и сернистых соединений в нефти различных месторождений колеблется в широких пределах. Различают нефти и по содержанию в них легких фракций, парафинов и смолистых веществ. Сырая нефть — вязкая маслянистая жидкость, обычно темно-коричневого цвета.

Растворимость нефти в воде без предварительного взбалтывания составляет 1,5 мг/л; стойкие эмульсии содержат 30—40 мг/л нефти.

Нефть и нефтепродукты окисляются в воде, причем интенсивность их окисления зависит от присутствия в воде кислорода и специфической микрофлоры. Так, на окисление 1 мг нефти за 8 суток в чистой воде расходуется 0,24—0,27мг кислорода, а при добавлении культуры, микрофлоры, выращенной на нефтяной пленке, 0,4—0,5 мг кислорода [3].

При спуске сточных вод НПЗ в водоем можно выделить следующие, важные в санитарном отношении формы состояния нефти в водной среде: всплывающую, растворенную и эмульгированную. Продукты высших погонов, практически почти нерастворимые в воде, образуют нефтяные пленки разной толщины (от микронов у мест спуска сточных вод до долей микронов в более отдаленных точках). Нефтяные пленки длительное время держатся на поверхности воды, оказывая отрицательное действие на кислородный режим водоема. Под влиянием ветров и волнений нефтяная пленка прибивается к берегам, загрязняя их и прибрежную растительность. Запахи нефти в воде ощущаются уже в небольших концентрациях: пороговые концентрации для большинства нефтей и нефтепродуктов составляют 0,1 — 0,3 мг/л.

Нефть после очистных сооружений в основном находится в растворенном и эмульгированном состоянии, хорошо смешивается с водой и может распространяться в водоеме на большие расстояния, загрязняя всю толщу водяного слоя. Тяжелые продукты переработки нефти опускаются уже у места спуска сточных вод на дно, образуя сравнительно стабильные очаги вторичного загрязнения водоема. Нефть обладает значительной стабильностью в воде: при температуре воды не выше 5°С загрязнение воды нефтью за 30 дней уменьшается только на 15%, при средних температурах до 20 °С — на 40—50% [31].

Углеводороды нефти в процессе биохимической очистки претерпевают существенные изменения. Около 50% их превращается в вещества, не растворяющиеся в эфире и, следовательно, не учитывающиеся при определении содержания нефтепродуктов. К ним относятся прежде всего кислородсодержащие соединения — многоатомные спирты, фенолы, многоосновные кислоты. Из веществ, растворяющихся в эфире, лишь 10% представляют собой углеводороды нефти, остальная масса — продукты неполного окисления нефти. В связи с этим качество очищенных нефтесодержащих сточных вод должно характеризоваться не только содержанием остаточных количеств нефтепродуктов, но и определением ВПК и ХПК, характеризующих остаточное содержание недоокисленных органических веществ в целом.

В качестве лимитирующего показателя вредности был определен органолептический — запах. Оказалось, что при пороговых концентрациях нефти по запаху не наблюдается образования нефтяных пленок на воде; нет также торможения процесса самоочищения воды в водоеме и, что особенно важно, пороговые концентрации по запаху в сотни раз меньше доз и концентраций, которые могут оказаться вредными для здоровья человека [16].

Мазуты, как и нефть, имеют сложный химический состав. Они представляют собой вязкую жидкость от светло-коричневого до темно-коричневого цвета. Мазут легче эмульгируется, в стойких эмульсиях содержится до 170 мг/л мазута. Лимитируется содержание мазута в воде водных объектов по влиянию на запах (ПДК 0,3 мг/л).

Нефтяные бензиныПолучаются из легких фракций нефти; их различают по содержанию групп углеводородов в зависимости от месторождения нефти. Бензин в хронических опытах на животных при поступлении его в смеси с водой внутри организма в течение 2—6 мес. поражает нервно-регуляторный аппарат сердца и миокарда, вызывает истощение организма животных, кровоизлияние во внутренних органах, дистрофические и некробиотические изменения в них.

Концентрации бензина, как и нефти, и нефтепродуктов лимитируют в воде по органолептическому показателю вредности (ПДК — 0,1 мг/л) [13].

КеросинПолучают из средних фракций нефти. Действие его на организм человека сходно с действием бензина. В воде растворяется слабо. Концентрацию керосина лимитируют также по органолептическому признаку вредности (ПДК—0,1 мг/л).

В воде водоемов рыбохозяйственного значения нефть и все нефтепродукты в растворенном и эмульгированном состоянии нормируют по органолептическому признаку вредного действия; ПДК для этих веществ установлено на уровне 0,05 мг/л. При содержании в воде водоемов нефти выше допустимого уровня рыба приобретает отчетливый запах нефтепродуктов.

/>Бензол — бесцветная жидкость. Встречается как примесь в составе некоторых нефтяных бензинов, а также получается при перегонке нефти; хорошо растворяется в воде (до 0,19 г/л). Бензол — нервный и кровяной яд. При хроническом воздействии низких концентраций бензола на животных и рыб обнаруживаются изменения в первую очередь со стороны крови (лейкопения, анайлозия костного мозга). Хронические отравления бензолом оказались смертельными для подопытных животных и рыб. Более высокая токсичность бензола отмечалась при совместном воздействии на организм с толуолом иксилолом. Бензол лимитируют по санитарно-токсикологическому признаку (ПДК в воде водоема —0,5 мг/л). Он оказывает действие на органолептические свойства воды в водоеме в концентрации 25 мг/л.

Толуол и ксилол получаются при тех же технологических операциях, что и бензол [16].

Толуол— бесцветная жидкость с характерным запахом. Летучесть в два раза меньше, чем у бензола. Коэффициент растворимости паров в воде составляет 2,5 при 36—38 °С. В хронических опытах на животных толуол вызывает аналогичные изменения со стороны крови, но несколько слабее, чем бензол. Содержание толуола в водоеме хозяйственно-питьевого и рыбохозяйственного водопользования лимитируют по органолептическому показателю вредности (ПДК—0,5 мг/л). На санитарный режим водоема он оказывает влияние при концентрации 25 мг/л, пороговая концентрация по санитарно-токсикологическому признаку составляет лишь 200 мг/л.

Ксилол — бесцветная жидкость, в воде растворяется слабо (0,13 мг/л). На организм человека оказывает прежде всего наркотическое действие. При длительном воздействии в малых концентрациях вызывает раздражение кроветворных органов; действие его сходно с действием бензола и толуола. В воде водоемов, используемых для питьевых и культурно-бытовых целей, содержание ксилола лимитируют по органолептическому признаку вредности (ПДК—0,05 кг/л). Очень важно подчеркнуть, что его подпороговая концентрация по токсическому действию близка к установленной для него ПДК (0,1 мг/л), что делает ксилол особо потенциально опасным для здоровья человека. Его пороговая концентрация по влиянию на санитарный режим водоема также невысока — 1 мг/л.

В водоемах, используемых для рыбохозяйственных целей, содержание ксилола лимитируют по органолептическому признаку; его ПДК составляет 0,5 мг/л [14].

Нафтеновые кислотыСодержатся главным образом в нефтях кожных месторождений. В сточных водах они присутствуют в виде солей, образующихся при щелочной очистке нефтепродуктов. Неочищенные нафтеновые кислоты представляют собой бурую маслянистую жидкость с резким, неприятным запахом. Окисление нафтеновых кислот в водной среде идет крайне медленно, что делает их опасными загрязнителями водоемов. Пороговые концентрации нафтеновых кислот по влиянию на запах воды близки к пороговым концентрациям нефти (0,2— 0,3 мг/л). Влияние кислот на санитарный режим водоема не выражено.

Этилен — бесцветный газ, способный растворяться в воде: его растворимость при 0°С составляет 0,32 мг/л. Этилен используется как исходный продукт при синтезе спиртов, полиэтилена, оксида этилена, этиленгликоля, дихлорэтана и др. По характеру токсического действия этилен — сильный наркотик. При длительном введении водных растворов этилена имеет место поражение печени, сдвиги со стороны крови. Порог токсического действия в экспериментах на животных установлен при концентрации 1,5 мг/л; в концентрациях выше 0,5 мг/л этилен придает воде посторонний запах, и в концентрациях больше 10 мг/л нарушает процессы самоочищения водоема от органических веществ хозяйственно-бытовых сточных вод. ПДК этилена в водных объектах хозяйственно-питьевого назначения установлена по органолептическому признаку действия на уровне 0,5 мг/л.

Пропилен — бесцветный газ; растворимость пропилена в воде составляет 0,835 мг/л при 20°С. В хронических опытах на животных пропилен вызывает аналогичную этилену картину интоксикации. ПДК установлена по влиянию на запах воды на уровне 0,5.мг/л [14].

Как уже указывалось, в процессе переработки и очистки нефти в сточные воды наряду с основными нефтепродуктами попадает много соединений, присутствующих в нефти в виде примесей. Из них наибольшее гигиеническое значение имеют сернистые соединения и фенол. Сернистые соединения содержатся в больших концентрациях в отработанных сточных водах, образующихся в результате щелочной очистки бензинов, керосинов и сжиженных газов. Важнейшими из них являются сульфиды и меркаптаны.

Сернистые соединения попадают в водоемы со сточными водами НПЗ в виде свободного и связанного сероводорода (сульфиды) и продуктов их окисления. Сульфиды при поступлении в водоем диссоциируют с образованием гидросульфидных ионов HSˉ, которые носят название связанного сероводорода. Связанный и свободный сероводород в водоеме окисляются с образованием сульфат-ионов; промежуточными продуктами при этом являются сульфитные и тиосульфатные ионы. Кроме того, могут образовываться коллоидная сера, оксиды серы, тритионовые и политионовые кислоты.

Процесс окисления сернистых соединений в воде начинается с первых же минут. В присутствии избытка кислорода сероводород (свободный и связанный) окисляется полностью в течение первых суток. Промежуточные продукты окисляются значительно медленнее, так как их окисление обусловлено биохимическими процессами, протекающими в воде [17].

Установлена зависимость интенсивности окисления в водной среде сернистых соединений от концентрации растворенного кислорода, рН и температуры, а также от процессов перемешивания и наличия тионовых бактерий. Расчетная величина необходимых затрат кислорода на полное окисление сероводорода до сульфатов полностью совпадает с величиной, полученной в прямом опыте. Так, 1 мг кислорода расходуется на окисление 0,53 мг сероводорода до сульфатов или на окисление 1,09 мг сероводорода до тиосульфатов.

Особенность поведения сульфидов в водной среде обусловливает выраженное вредное влияние их на санитарный режим водоема — быстрое связывание кислорода, растворенного в воде. Сульфиды должны полностью отсутствовать в воде, а следовательно, и в сточных водах, чтобы сохранить надлежащий кислородный режим в воде водоемов. Сульфиды вредно влияют и на органолептические свойства воды, придавая ей в концентрациях 0,1—0,3 мг/л запах интенсивностью 1—2 балла.

Меркаптаны— простейшие сернистые соединения, представляют собой летучие бесцветные жидкости плотностью ниже единицы с очень резким отталкивающим запахом. Меркаптаны легко растворяются в щелочах, образуя соединения, в которых водород замещен металлом (меркаптиды); в воде растворяются плохо. Под действием слабых окислителей или воздуха меркаптаны постепенно окисляются в дисульфиды.

Применение метода определения меркаптанов в воде чувствительностью 0,001—0,002 мг/л позволило установить концентрацию меркаптана 0,001 мг/л в качестве предельной по ее влиянию на запах воды. Эта концентрация меркаптана не влияет на санитарный режим водоема и не вызывает отрицательного токсического действия на организм [17].

ФенолыВ чистом виде представляют собой бесцветные кристаллические вещества. Одноатомные фенолы (оксибензол, крезолы) хорошо растворяются в воде, придавая ей резкий запах и привкус. Порог восприятия запаха фенола составляет 0,025—1,0 мг/л. При обработке воды хлором фенолы резко усиливают запах за счет образования хлорфенольных соединений. Запах хлорфенола стабилен, не обладает привыкаемостью. Эта способность фенолов и положена в основу его гигиенического нормирования в воде водоемов, используемых для хозяйственно-питьевых целей. Минимальная концентрация фенола, образующая при хлорировании запах интенсивностью 1 балл, составляет 0,001 мг/л [16].

Наряду с влиянием на органолептические свойства воды одноатомные фенолы, воздействуют и на санитарный режим водоема, потребляя на окисление кислород, растворенный вводе. Было установлено, что при длительном введении с водой одноатомных фенолов в концентрации около 800 мг/л в организме животных развивается хроническая интоксикация, проявляющаяся в дистрофическом поражении почек, печени, изменениях со стороны сердечно-сосудистой системы, центральной нервной системы и др. Эффект совместного действия двух — трех фенолов близок к сумме эффектов действия отдельных веществ.

Для водоемов рыбохозяйственного значения ПДК фенолов установлена на уровне 0,001 мг/л по влиянию на качество мяса рыбы (рыбохозяйственный признак).

/>При оценке возможного загрязнения окружающей среды отходами НПЗ нельзя забывать их роли как источников канцерогенов особенно в водных объектах. Содержание их в сточных водах зависит от температуры, при которых происходит возгонка сырья. Как известно, среди большой группы полициклических ароматических соединений в качестве индикатора канцерогенной загрязненности окружающей среды принимается бенз[а]пирен (3,4-бензпирен). Хотя в сточных водах НПЗ сравнительно меньше 3,4-бензпирена, чем в сточных водах других предприятий по термической переработке твердого и жидкого топлива, однако и в них обнаруживалось до 0,292 мг/л 3,4-бензпирена. Как показали исследования, 3,4-бензпирен обладает значительной стабильностью и растворимостью в водной среде, что делает возможным распространение его (и других канцерогенных углеводородов) на большие расстояния вниз по течению от источника загрязнения. 3,4-Бензпирен накапливается в донных отложениях в планктоне, водорослях, рыбных организмах [1].

Как известно, основным источником загрязнения сточных вод НПЗ является процесс обезвоживания и обессоливания нефти. Решающее значение при этом имеет качество применяемых деэмульгаторов, представляющих собой поверхностно-активные вещества (ПАВ).

ПАВ — это вещества, адсорбирующиеся на поверхности раздела соприкасающихся тел и образующие на этой поверхности адсорбционный молекулярный слой. Даже очень малые добавки ПАВ могут резко изменить условия молекулярного взаимодействия на поверхности раздела, скорости фазовых превращений и перехода из одной фазы в другую. В химическом отношении ПАВ могут быть разделены на ионогенные и неионогенные; первые в свою очередь делятся на анионоактивные и катионоакивные.

Анионоактивные ионогенные ПАВ при растворении в воде диссоциируют на положительно заряженный катион и отрицательно заряженный анион. Носителем поверхностно-активных свойств у анионоактивных ПАВ является анион. Представителями анионоактивных ПАВ является алкилбензосульфонат и алкилсульфаты. К ним относятся применяемые ранее на НПЗ сульфонат (соли сульфонафтеновых кислот) и деэмульгатор НЧК (нейтрализованный черный контакт).

Катионоактивные ПАВ также диссоциируют на катионы и анионы, но поверхностно-активными свойствами обладают катионы, представляющие собой положительно заряженную группу. Отрицательными свойствами анионоактивных ПАВ (в частности, НЧК и сульфоната) является их способность реагировать с находящимися в воде солями кальция и магния и образовывать осадки, способствующие шламообразованию при деэмульгации нефти. При этом образуются стойкие эмульсии нефти, не поддающиеся ни отстаиванию, ни всплыванию. Обессоливание высокосмолистых нефтей требует больших расходов НЧК (до 3 кг на 1 т нефти). При переработке такой нефти получающиеся сточные воды не поддаются очистке на нефтеловушках и кварцевых фильтрах.

НЧК плохо окисляется на биологических очистных сооружениях и в большой степени определяет характер загрязнения биологически очищенных сточных вод НПЗ (в настоящее время НЧК в процессе подготовки нефти не используется).

На смену малоэффективных и плохо разрушающихся на очистных сооружениях ионогенных деэмульгаторов в нефтеперерабатывающей промышленности стали применять неионогенные ПАВ. Неионогенные ПАВ не диссоциируют в водных растворах; их молекула проявляет поверхностную активность как целая электролитная единица. Их расход значительно ниже, они хорошо растворяются в воде, не образуют стойких нефтяных эмульсий и соединений с солями и кислотами, содержащимися в воде и нефти. Так, расход ОП-10 составляет лишь 40—50 г на 1 т нефти, причем производительность установок обезвоживания и обессоливания повышается на 40—50% по сравнению с применением НЧК.

С санитарно-гигиенической точки зрения очень важным преимуществом неионогенных деэмульгаторов является то, что они не образуют стойких нефтяных эмульсий, не поддающихся разрушению и очистке [3].

В настоящее время количество промышленных выбросов, поступающих в биосферу, превышает в десятки и сотни раз уровень некоторых веществ, естественно циркулирующих в ней. В силу наличия органной адсорбционной поверхности, почва служит резервуаром, в котором загрязнения могут накапливаться в большом количестве. Загрязнение почвенного покрова происходит в результате адсорбции атмосферных выбросов, складирования и захоронения отходов производств.

Образующиеся в процессе переработки нефти углеводороды, особенно ароматические, обладают большей токсичностью, чем природная нефть. При этом содержание ароматических углеводородов в количестве 10—25 мг/кг почвы может привести к угнетению некоторых микробиологических процессов, происходящих в ней. Прежде всего, нарушается процесс нитрификации, ацетиленовой азотфиксации и угнетаются актиномицеты [30].

Изучение загрязнения почвы выбросами нефтехимических предприятий и накопление специфических ингредиентов нефтепереработки в сельскохозяйственных культурах было начато в институте гигиены и профзаболеваний в 1976 г. Контроль за содержанием специфических компонентов в почвенном покрове и сельскохозяйственных растениях осуществлялся в основном в гг. Уфа, Салават и Стерлитамак [29].

Общеизвестно, что такие компоненты выбросов НХЗ, как сероводород и окислы в процессе круговорота серы в пригороде с осадками попадают в почву, где адсорбируются почвенным поглощающим комплексом. Все сернистые соединения нефти проходят стадию образованию сульфатов.

Поэтому повышенное содержание сульфатов в почве, по-видимому, свидетельствует о загрязнении почвы выбросами НХЗ [7].

Для климатических условий Башкирии, где продолжительность снежного периода составляет 5—6 месяцев, снег является хорошим индикатором загрязнения окружающей среды. В нем накапливаются такие выбросы НХЗ, как углеводороды, нефти оксиды азота, серы, фенол, аммиак, а также тяжелые металлы, вымываемые снегом из атмосферы в районе расположения тепловых электростанций. С гигиенических позиций качественный состав снежного покрова имеет большое значение, т. к. во время снеготаяния может формировать загрязнение поверхностных вод. Кроме того, по степени загрязненности снеговых проб можно в определенной степени судить о санитарном состоянии атмосферного воздуха [2].

Таким образом, исследования почвы в районах размещения предприятий нефтепереработки и нефтехимии показали, что она загрязняется нефтепродуктами и выбросами этих предприятий в радиусе до 3-х км и глубиной до 60—80 см. В километровой зоне концентрации загрязняющих почву химических веществ значительно выше фоновых и предельно допустимых уровней по отдельным ингредиентам достигающих десятки и сотни ПДК. Исходя из этого, в 3-х километровой санитарно-защитной зоне

Предприятий недопустимо размещение баз отдыха и лечения, Размещение коллективных садов и сельхозугодий. Эти территории должны быть использованы для выращивания древесных и кустарниковых насаждений с высокой газоустойчивостью для создания светофильтров — зеленой защиты от химических загрязнений.

Таким образом, нефтеперерабатывающие и нефтехимические предприятия оказывают неблагоприятное воздействие на все объекты окружающей среды — атмосферный воздух, водные объекты, почву загрязняя их отходами своего производства [12].

Загрязнение почвенного покрова вокруг НХЗ происходит за счет адсорбции атмосферных выбросов и фильтрации химических веществ из загрязненных сточными водами водных объектов, а также в результате складирования и захороненияотходов производств. Промышленные отходы состоят, в основном, из шлаков, кислого гудрона, растворов щелочей, отработанных катализаторов и др. Основными загрязнителями почвенного покрова являются нефтепродукты, сульфаты, ароматические углеводороды (бензол, толуол, стирол, альфаметилстирол, ортоксилол, этилбензол, изопропилбензол, бензин), бензапипрен, азот аммонийный. В радиусе 1 км от НХЗ загрязнители обнаруживаются на глубине 60—80 см от поверхности почвы [20].

Имеются многочисленные научные данные, свидетельствующие о связи легочной, онкологической, кожной и другой паталогии с характером и уровнем загрязнения воздуха. Многократно подтверждена, например, зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом, характеризуемая следующими данными:

При концентрации сернистого газа 0,13 мг/м3 процент обострения хронического бронхита (в человеко-днях) 13,0, при концентрации 0,78 мг/м3 — 26,5.

Статистически установлена связь детской заболеваемости (в первую очередь органов дыхания) с уровнем загрязнения атмосферного воздуха сернистым газом. Обстоятельное изучение большой группы детей (3866 человек) с момента их рождения и до 15-летнего возраста показало, что частота острых респираторных заболеваний среди них значительно увеличилось в те дни, когдауровни среднегодовых концентраций сернистого газа и дыма в атмосферном воздухе превышали 0,13 мг/м3. Аналогичная связь частоты обострений с опасным загрязнением атмосферы установлена для бронхиальной астмы.

Загрязнение воздуха сернистым газом при концентрации до 0,049 мг/м3 увеличивает показатель общей заболеваемости (в человеко-днях, США) до 8,1%: при концентрации от 0,150 до 0,349 и выше 0,350 мг/м3 — соответственно до 12 и 43,8%. Частота заболевания бронхиальной астмой пропорциональна концентрации сернистого газа в воздухе (Япония). Все возрастающее количество раковых заболеваний пропорционально числу труб, выбрасывающих загрязняющие вещества в атмосферу (Великобритания) и т. д. [31].

Канцерогенные вещества при контакте с клеткой организма человека оставляют на ней «клеймо». Последующее воздействие канцерогенов суммируется даже в том случае, если оно разделено значительным интервалом времени. Вероятность возникновения злокачественного образования повышается, хотя видимого воздействия на организм и качественной перестройки клетки не отмечено. Последняя отчетливо фиксируется при пороговой концентрации. Для многих вредных веществ биологических видов и экосистем эта концентрация в настоящее время не определена [16].

Опасное воздействие на человека оказывает окись углерода. Вдыхание воздуха, содержащего даже небольшие количества СО, вызывает глубокое отравление. Причина отравления в том, что окись углерода быстрее и легче, чем кислород, связывается с гемоглобином крови и образует довольно стойкое соединение, названное карбоксигемоглобин (НЬ — СО). Химическое сродство НЬ с СО в 200 раз больше, чем с кислородом. Это означает, что даже небольшого количества СО во вдыхаемом воздухе оказывается достаточно, чтобы превратить около 2/3 гемоглобина крови в карбоксигемоглобин. Процесс этот обратим, но НЬ — СО диссоциирует медленно. По этой причине образовавшийся НЬ — СО нарушает дыхательную функцию крови (кровь насыщается окисью углерода и человек погибает от кислородной недостаточности).

Повышенное содержание СО в воздухе при высоких уровнях загрязнения атмосферы (0,1%) нарушает сердечно-сосудистую функцию у работающих. Оно смертельно опасно для людей, страдающих сердечно-сосудистыми заболеваниями. Содержание СО в атмосфере при концентрации 0,1% в 35 раз увеличивает смертность больных острым инфарктом миокарда и т. д.

Диссоциацию НЬ — СО можно ускорить увеличением парциального давления кислорода в воздухе (вдыхание кислородно-углекислотной смеси с содержанием 95%О2 и 5%СО2 или воздуха с повышенным содержанием кислорода).

Одним из опасных загрязнителей атмосферы Земли, связанных также с нефтегазодобывающим производством, является сера. По удельной значимости вклада в загрязнение сера занимает в настоящее время одно из первых мест, особенно в составе очень распространенных сульфатных аэрозолей [31].

Нефтяная пленка сильно влияет и на динамику биологических процессов в поверхностном микрослое воды. Прежде всего, микробиологическая деструкция углеводородов нефти сопровождается потреблением больших количеств растворенного кислорода: для полного окисления 10 л сырой нефти требуется столько кислорода, сколько его содержится примерно в 3750 м3 воды поверхностного 30-сантиметрового слоя. Следовательно, загрязнение нефтепродуктами приводит к значительным изменениям условий жизнедеятельности организмов, обитающих в верхних горизонтах воды [15].

Влияние нефтяных загрязнений на жизнь океана изучено далеко не достаточно. Принято общее воздействие нефтепродуктов на состояние гидробионтов подразделять на пять основных категорий:

4)болезненные изменения в организме гидробионтов, вызванные внедрением углеводородов;

5)изменение химических, биологических и биохимических свойств среды обитания.

Летальное отравление морских организмов наступает в результате прямого воздействия нефтяных углеводородов на внутриклеточные процессы и, особенно, на процессы обмена между клетками.

В этом отношении парафиновые углеводороды с относительно короткими (С10 и менее) цепями менее опасны. Они проявляют наркотическое действие лишь в очень больших концентрациях, отсутствующих в нефтяных пятнах.

Напротив, ароматические углеводороды, растворимые в воде, представляют большую опасность: смерть взрослых морских организмов может наступить после нескольких часов контакта с ними уже при концентрации 10-4—10-2 %. Смертельные концентрации ароматических углеводородов для икринок и мальков еще ниже.

Массовая гибель морских организмов отмечается, как правило, в прибрежных районах, где их обитает особенно много. При загрязнении морской воды вдали от берегов, на больших глубинах, токсичные нефтяные фракции успевают частично испариться, частично разбавиться водой до менее опасных концентраций. Однако и в сравнительно невысоких концентрациях ароматические углеводороды нефти оказывают негативное воздействие на морские биоценозы [10].

Эффекты покрытия нефтепродуктами и гибели находящихся в зоне прилива планктона, низкорастущих растений и птиц хорошо известны. Нефтепродукты нарушают изолирующие свойства оперения, а при попытке очистить перья птицы заглатывают загрязнения и погибают. Только в Северном море и Северной Атлантике нефтяные загрязнения являются причиной гибели 150—450 тыс. птиц в год. В акваториях с замедленным водообменом (заливы, бухты) наблюдается почти полное уничтожение морской флоры и фауны. Нефтяные разливы в реках создают в межсезонный период непроходимый барьер для некоторых видов рыб, чувствительных к углеводородному загрязнению[8].

Поражение морских организмов в результате накопления ароматических углеводородов в их тканях может происходить даже при очень низком содержании нефтепродуктов, если обитатели моря сравнительно долго пребывают в загрязненной ими среде.

Присутствие полициклических ароматических углеводородов не только ухудшает вкус съедобных организмов, но и опасно, так как эти вещества являются канцерогенным. Так, концентрация канцерогенных многоядерных углеводородов в ткани мидий, выловленных в районе порта Тулон (Франция), достигала 1,3—3,4 мг/кг сухого вещества.

Значение нижнего яруса растительного покрова как корма диких и домашних животных, тепло — и влагорегулятора почвы, основного средства против образования оврагов, оползней и эрозии трудно переоценить. Между тем основное воздействие нефти и нефтепродуктов на природно-растительный комплекс при отказах трубопроводов сводится именно к снижению биологической продуктивности почвы и фитомассы растительного покрова [9].

Характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами. Многие виды сосудистых растений оказываются устойчивыми против нефтяного загрязнения, тогда как большинство лишайников погибает при воздействии на них нефти и нефтепродуктов. Установлено, что наиболее токсичны углеводороды с температурой кипения в пределах от 150 до 2700С, т. е. нафтеновые и керосиновые фракции. Углеводороды с более низкой температурой кипения менее токсичны либо вообще безвредны, особенно их летучие фракции, поскольку они испаряются, не успевая проникнуть через растительную ткань. Высококипящие тяжелые фракции нефти также менее токсичны, чем нафтеновые и керосиновые фракции[23].

Деградация нефти в грунтовой среде происходит путем биологического окисления микроорганизмами и химического окисления. Значительно ускоряют процесс очищения почвы от нефти дождевые осадки, которые вымывают ее и тем самым снижают концентрацию нефти в верхних слоях почвы.

Загрязнение почвы нефтью и нефтепродуктами в северных районах будет, очевидно, иметь гораздо большие отрицательные последствия, нежели в районах с относительно умеренным климатом.

Низкие температуры воздуха и грунтовой среды, сильные ветры, небольшая продолжительность летнего теплого периода (во время которого активизируются биологические процессы) создают чрезвычайно сложный режим функционирования растительного покрова. Поэтому всякое нарушение этого режима может привести к необратимым процессам. Одним из наиболее опасных в этом является загрязнение нефтью грунтовой среды в результате утечек из магистральных нефтепроводов, резервуаров [13].

Таким образом, на основании вышеизложенного можно сделать вывод о том, что наибольшей токсичностью для биоты обладают нефтепродукты с температурой кипения 150-2700С (нафтеновые и керосиновые фракции), поражение морских организмов в результате накопления ароматических углеводородов в их тканях происходит даже при очень низком содержании нефтепродуктов, характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами. Это воздействие сводится именно к снижению биологической продуктивности почвы и фитомассы растительного покрова [18].

Экологические аспекты. Кризис во взаимоотношениях человека и природы в немалой степени обусловлен бурным развитием нефтяной и нефтеперерабатывающей отраслей промышленности. Особенностью развития этих отраслей на современном этапе является создание территориально-производственных комплексов, в которых различные отрасли сконцентрированы в единый производственный цикл и объединены территориально в один узел. В таких регионах сильно загрязнены воздух, вода, почва, продукты питания. Серьезно подорвано состояние здоровья населения. Регионы эти стали районами экологического бедствия, в Башкортостане это центральный (Уфа, Благовещенск) и южный ТПК (Стерлитамак, Салават, Ишимбай).

Башкортостан в этом ряду занимает особое место, потому что на его территории ведется добыча нефти и газа, земля пронизана мощными продуктопроводами, по которым осуществляется их транспортировка, располагаются мощнейшие заводы по переработке, развиты нефтехимия, химия, микробиология на основе переработки нефтепродуктов. Башкирии принадлежит исключительное место по концентрации экологически опасных производств в Европе. Здесь производится 23% продукции нефтехимии страны, 45% кальцинированной соды, 12%—каустической соды, 15%—гербицидов, 7%—смол и пластмасс и т. д.[3].

Большинство производств сосредоточено на юге республики. В центре этого промышленного узла находится г. Салават с населением 150 тыс, человек. В этом городе сосредоточено более 30 крупных предприятий нефтеперерабатывающей, нефтехимической и химической промышленности — всего 94 промышленных предприятия, 2277 источников загрязнения атмосферного воздуха. В радиусе 45 км расположены еще три крупных индустриальных города — Стерлитамак, Ишимбай, Мелеуз, где также сконцентрированы производства химии, нефтехимии, минеральных удобрений. Эти города составляют так называемый Южный башкирский промышленный узел. Аналогов по мощности нет в отечественной и зарубежной практике.

Экологическая опасность нефтехимических промышленных узлов очень высока потому, что, во-первых, сам продукт и процесс переработки состоит из сотен химических веществ, присутствующих одновременно в различных комбинациях между собой, сочетаниях с другими неблагоприятными факторами и обладает комплексным воздействием на организм, во-вторых, все продукты нефти и газа поражают объекты окружающей среды: воздух, воду, почву и трансформируются во все живое и неживое.

Главными загрязнителями в нефтяной и нефтеперерабатывающей отраслях принято считать углеводороды, сероводород, диоксид серы, оксиды углерода и азот [15].

В действительности же выбросы содержат до 250 химических веществ, одна треть из которых представляет I и II класс опасности, среди которых тяжелые углеводороды, лимонен, диоксин, бензпирен и т. д.

Еще следует сказать, что 30% таких предприятий находится в центре жилой зоны (в Уфе — РТИ, Гидравлика, 2 установки ароматики, СЖС и ВЖС в 500 м от жилых домов), санитарная зона других — составляет 2—3 км, а вещества, превышающие в десятки раз ПДК, выявляются во всех этих городах на расстоянии до 20 км от завода.

Необходимо учесть, что нефтеперерабатывающие и некоторые нефтехимические предприятия построены еще в 50-е годы и, несмотря на реконструкцию, 40—45% установок эксплуатируется более 30 лет.

Все это создает полное экологическое неблагополучие, стремительное ухудшение стандартов жизни, всех санитарно-гигиенических норм, что не может не отразиться на состоянии здоровья населения. В Уфе население, проживающее на расстоянии до 3 км от НХЗ, болеет в 3 раза чаще населения «чистых» районов по показателям обращаемости в медицинские учреждения, в 1,7 раза по данным углубленного медосмотра, в 1,5 раза по временной утрате трудоспособности, по болезням ЦНС — в 4 раза, простудными — в 3,5 раза.

Следует добавить, что у подавляющего большинства населения, а именно у работающих на предприятиях нефтяной промышленности уже в первые 3 года значительно снижается иммунитет, что безусловно, способствует росту заболеваемости простудными инфекционными, системными заболеваниями. Наверное, не случайно диагноз «ревматизм», болезни кожи и подкожной клетчатки в 6 раз чаще встречается именно в Уфе, Стерлитамаке, чем в других городах [29].

Огромные средства, выделенные на природоохранные мероприятия, тратятся не по назначению. При этом каждая отрасль составляет свои планы, из простой суммы предложений предприятий получается план социально-экономического развития региона. Настала необходимость иметь региональные планы комплексного развития экономики и общества, сохраняющие равновесие между человеком и природой. Состояние здоровья людей должно стать мерилом экологического благополучия. Альтернативы жизни нет. Создание здоровой среды обитания, обеспечивающей социальное, физическое и психическое благополучие человека, должно стать главной концепцией всех экологических программ [18].

Экономические аспекты.Нефтяная промышленность России в последние годы переживает глубокий спад. Добыча нефти и газового конденсата сократилась по сравнению с 1990 г. более чем на 40%. При этом отрасль продолжает обеспечивать как внутренние потребности страны, так и экспорт. Несмотря на современное кризисное состояние нефтяной промышленности, Россия остается одним из крупнейших в мире производителей, потребителей и экспортеров нефти и продолжает сохранять важные позиции на мировом рынке, занимая третье место в мире по добыче нефти.

В настоящее время такой вид топлива, как нефть, имеет уникальное и огромное значение. Нефтяная промышленность — это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Нефть — наше национальное богатство, источник могущества страны, фундамент ее экономики[11].

Значение нефти в народном хозяйстве велико: это сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельного печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Россия — единственная среди крупных промышленно развитых стран мира, которая не только полностью обеспечена нефтью, но и в значительной мере экспортирует топливо. Велика ее доля в мировом балансе топливно-энергетических ресурсов, например по разведанным запасам нефти — около 10% [6].

Для России, как и для большинства стран-экспортеров, нефть — один из важнейших источников валютных поступлений. Удельный вес экспорта нефти и нефтепродуктов в общей валютной выручке страны составляет приблизительно 27%. Роль нефтяного комплекса России как источника бюджетных поступлений постоянно растет. На экспорт поставляются 2/5 добываемой в стране нефти и 1/3 от производимых нефтепродуктов. На долю крупных нефтяных компаний приходится около 80% добычи нефти в стране.

Таким образом, бюджетный вклад нефтяного комплекса с каждым годом становится все больше и больше в связи с ростом цены на сырую нефть, в то время как добыча нефти не только не увеличилась, но и сократилась более чем на 5%. Это значит, что последние пять лет характеризуются постоянным существенным, даже многократным ростом налоговой нагрузки на нефтяной комплекс [23].

Размещение основных запасов нефти РФ не совпадает с размещением населения, производством и потреблением топлива и энергии. Около 9/10 запасов минерального топлива (в том числе нефти) и свыше 4/5 гидроэнергии находится в восточных районах, тогда как примерно 4/5 общего количества топлива и энергии потребляется в европейской части страны.

Размещение нефтеперерабатывающей промышленности зависит от размеров потребления, техники переработки и транспортировки нефти, территориальных соотношений между ресурсами и объемами потребления жидкого топлива. В настоящее время переработка приблизилась к районам потребления.

Развитие нефтеперерабатывающей промышленности обусловливается целесообразностью использования нефти в основном для производства моторных топлив и химического сырья. Как энергетическое сырье более эффективным является природный газ, так как эквивалентное количество его вдвое дешевле нефти.

Размещение отраслей и производств нефтеперерабатывающей промышленности находится под совокупным влиянием различных факторов, среди которых наибольшую роль играют сырьевой, топливно-энергетический и потребительский [23].

Этические и социальные аспекты. Глобальные проблемы современности требуют немедленного переосмысления исторически сформировавшейся в человеческом сознании установки, направленной на потребительское, разрушающее и во многих случаях уничтожающее отношение человека к природе.

В последние годы во многих развитых странах произошла экологизация морального сознания, изменились ценностные ориентации; была создана такая система ценностей, в которую вошли как социальные, так и природные элементы. Природа в этом случае получила статус самостоятельной ценности в силу ее уникальности, единственности и неповторимости. Человек и общество выступают как элементы единой системы «природа — общество», вне которого их существование невозможно; однако при этом интересы природы выдвигаются на первый план, получают приоритет над интересами общества, включаются в сферу морали. При таком подходе природа в новой системе моральных ценностей выступает как цель, а не как средство, что прямо связано с новым пониманием сущности человека как природного существа. Встает также вопрос о нравственном отношении человека к природе, об особенностях этого отношения, о расширении сферы действия традиционных, привычных форм моральной регуляции (норм, принципов, ценностей, идеалов и т. д.).

Таким образом, в данной части дипломного проекта выполнен анализ основных загрязнений предприятий нефтехимического комплекса. Рассмотрен состав и вид основных загрязнителей [3].

Выявлено влияние загрязнения на атмосферу, водные объекты, почву и биоту. Загрязнение воздушного бассейна происходит при всех технологических процессах переработки нефти: на атмосферно-вакуумых и вакуумных установках, установках каталитического и термического крекинга, контактной очистки масел и коксования, гидроформинга и депарафинизации, производства битумов. Основными загрязнителями воздушного бассейна являются сероводород, сернистый газ, оксиды азота, оксид углерода, предельные и непредельные углеводороды.

Сточные воды НХЗ образуются на всех технологических установках, в зависимости от которых обусловлен их состав. Кроме промежуточных и конечных продуктов переработки нефти сточные воды содержат нефть, нафтеновые кислоты и их соли, эмульгаторы, смолы, фенолы, бензол, толуол, а также песок, частицы глины, кислоты и их соли, щелочи.

Загрязнение почвенного покрова вокруг НХЗ происходит за счет адсорбции атмосферных выбросов и фильтрации химических веществ из загрязненных сточными водами водных объектов, а также в результате складирования и захороненияотходов производств. Промышленные отходы состоят, в основном, из шлаков, кислого гудрона, растворов щелочей, отработанных катализаторов и др. Основными загрязнителями почвенного покрова являются нефтепродукты, сульфаты, ароматические углеводороды (бензол, толуол, стирол, альфаметилстирол, ортоксилол, этилбензол, изопропилбензол, бензин), бензапирен, азот аммонийный [23].

Наибольшей токсичностью для биоты обладают нефтепродукты с температурой кипения 150-2700С (нафтеновые и керосиновые фракции), поражение морских организмов в результате накопления ароматических углеводородов в их тканях происходит даже при очень низком содержании нефтепродуктов, характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами.

Также в данном разделе было выявлено влияние загрязнения на человека. Современный технологический процесс переработки нефти сопровождается наличием десятков и сотен различных химических веществ, большинство из которых являются синергистами. Почти каждый третий относится к 1 и 2 классам опасности. Преимущественно поражают центральную нервную систему, печень, кровь. Были рассмотрены экологические, экономические, этические и социальные аспекты [23].

2. Эколого-социально-экономические расчеты воздействия загрязнения на окружающую среду и человека

2.1 Расчет массы образующихся выбросов (инвентаризация) на предприятии ОАО «Уфанефтехим» в цехе 1 газотопливного производства

Инвентаризация выбросов (ГОСТ 17.2.1.04 — 77) представляет собой систематизацию сведений о распределении источников по территории, количестве и составе выбросов загрязняющих веществ в атмосферу.

Основной целью инвентаризации выбросов загрязняющих веществ является получение исходных данных для:

— оценки степени влияния выбросов загрязняющих веществ предприятия на окружающую среду (атмосферный воздух);

— установления предельно допустимых норм выбросов загрязняющих веществ в атмосферу как в целом, по предприятию, так и по отдельным источникам загрязнения атмосферы;

— организация контроля соблюдения, установленных норм выбросов загрязняющих веществ в атмосферу;

— оценки экологических характеристик, используемых на предприятии технологий;

— оценки эффективности использования сырьевых ресурсов и утилизации отходов на предприятии;

Источниками выбросов на этапе производства (газотопливное производство) являются:

— установки ЭЛОУ, где сырая нагретая нефть в смеси с деэмульгатором и водой под действием переменного электромагнитного поля обезвоживается и обессоливается. Выбросы вредных примесей в атмосферу могут поступать через неорганизованные источники (за счет не герметичности аппаратов, оборудования) и организованные — вентвыбросы из помещений насосных. На данном этапе технологического процесса в атмосферу выделяются вредные примеси испарений легких фракций нефти (бензин нефтяной и сероводород).

— атмосферно-вакуумные трубчатые установки (АВТ), где обезвоженная и обессоленная нефть нагревается и разделяется на фракции в ректификационных колоннах, как при повышенном давлении, так и при вакууме. Источниками выбросов являются дымовые трубы технологических печей, не герметичность технологического оборудования (неорганизованные источники) и производственные помещения насосных.

Количество загрязняющих веществ, поступающих в атмосферу от источника загрязнения по каждому веществу рассчитывается по формуле:

Где Сmax — максимальная концентрация загрязняющего вещества, измеренная в устье источника, загрязнения, г/м3;

V — объемный расход газовоздушной смеси в единицу времени (м3/с) в устье источника [24].

Таким образом, масса образующихся в цехе топливного производства веществ составляет 252,6036 т/год, из которого 252,534 т/год – бензин, а 0,0696 т/год – сероводород.

Расчет платы за загрязнение окружающей среды представляет собой плату за выбросы, сбросы и размещение отходов. Так как предприятия, в том числе и ОАО «Уфанефтехим» не могут соблюсти предельно допустимые концентрации, то для них устанавливаются предельно допустимые нормативы (ПДВ, ПДС для каждого вещества отдельно) и в соответствии с этими нормативами устанавливается плата за выбросы, сбросы и размещение отходов. В случае если, предприятие по каким – либо временным причинам не может соблюсти установленные нормативы, то для нее устанавливают временно-согласованные выбросы (сбросы) и плата за загрязнение увеличивается.

Если фактический объем выбросов загрязняющих веществ не превышает установленный норматив (ПДН), то плата за выбросы (сбросы) рассчитывается по формуле:

Где miф – фактическая масса выброса (сброса) i-го загрязняющего вещества, т;

Сi – ставка платы за выброс (сброс) 1 т i-го загрязняющего вещества, руб./т

В случае, если фактический объем выбросов(сбросов) превышает допустимый норматив, но находится в пределах лимита (ВСВ, ВСС), то плата рассчитывается по следующей формуле:

Где miф – фактическая масса выброса (сброса) i-го загрязняющего вещества, т;

Miн – предельно допустимый норматив выброса (сброса) i-го загрязняющего вещества, т;

В случае, если фактический объем выбросов (сбросов) превышает установленный лимит (ВСВ, ВСС), по плата рассчитывается по формуле:

Где miф – фактическая масса выброса (сброса) i-го загрязняющего вещества, т;

Miн – предельно допустимый норматив выброса (сброса) i-го загрязняющего вещества, т;

Расчет показал, что суммарная плата предприятия за выброс в атмосферу загрязняющих веществ с учетом экологического состояния атмосферного воздуха в Приволжском округе составляет Патм=524144,4038 · 1,9 = 995874,36722 руб/год., а суммарная плата за сброс в водные объекты с учетом коэффициента экологической значимости по Приволжскому округу составляет Пвод = 1414621,531 · 1,12 = 1584376,11472 руб/год.

Таким образом, ежегодно предприятие ОАО «Уфанефтехим» за выброс и сброс загрязняющих веществ платит 2580250,48194 руб/год.

2.4 Определение экологической опасности и санитарно-защитной зоны предприятия ОАО «Уфанефтехим»

Категория опасности предприятия (КОП) рассчитывается в зависимости от массы и видового состава выбрасываемых в атмосферу загрязняющих веществ в соответствии с рекомендациями по формуле:

ПДКI среднесуточная предельно допустимая концентрация i-гo вещества, мг/м3;

АI безразмерная константа, позволяющая соотнести степень вредности i-гo вещества с вредностью сернистого газа. Значение А для веществ различных классов опасности приведены в табл.2.4.1 [32].

По величине КОП предприятия делятся на четыре категории опасности. Граничные условия для деления предприятий на категории опасности в зависимости от значений КОП приведены в таблице 2.4.2 [32].

Http://www. ronl. ru/referaty/bzhd/449419/

Нефть и продукты ее естественного выхода на земную поверхность – асфальты и битумы – давно известны человечеству. Их использовали в Вавилоне и Византии как зажигательную смесь. В древнем Египте, Риме и междуречье Тигра и Евфрата их применяли как вяжущие гидроизоляционные материалы при строительстве дорог, акведуков и других сооружений. С конца 18 века продукт переработки нефти – керосин – стал использоваться для освещения жилищ и улиц, а с 19 века, с изобретением двигателя внутреннего сгорания нефтепродукты стали основным видом топлива для различных транспортных средств.

Нефтяная промышленность сегодня – это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям.

Сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей;

Источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно – печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт);

Сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики.

В отличие от других видов горючих ископаемых, нефть относительно легко добывается, транспортируется (по нефтепроводам) и довольно просто перерабатывается в широкую гамму продуктов различного назначения. Поэтому не удивительно, что в большинстве стран мира на нефть приходится более половины топливно-энергетического комплекса.

Экономика государств зависит от нефти больше, чем от любого другого продукта. Поэтому нефть с начала ее промышленной добычи и до настоящего времени является предметом острой конкурентной борьбы, причиной многих международных конфликтов и войн.

В условиях, когда нефть стала основным видом энергетического сырья, возросло ее экономическое и политическое значение в мире. Наличие собственных ресурсов нефти, возможность организовать экспорт нефти и нефтепродуктов позволяют различным государствам добиваться значительных успехов в экономическом и социальном развитии. Вместе с тем колебание мировых цен на нефть, конъюнктура на нефтяном рынке приводят к серьезным изменениям в экономической политике как нефтедобывающих стран, так и государств, промышленность которых базируется на привозной нефти.

России в 1823 году в Моздоке по проекту братьев Дубининых и в 1837 году в селе Балаханы (Азербайджан) по проекту П. Воскобойникова были построены небольшие нефтеперегонные заводы, на которых в железных кубах осуществлялась перегонка нефти с целью получения осветительного керосина. В 60-х годах 19-го века в районах грозного и Баку были построены первые нефтеперегонные кубы для промышленного производства керосина. В конце 70-х годов в Баку уже эксплуатировалось более 200 заводов, принадлежащих отдельным лицам и фирмам. в 19-м веке в России нефть была открыта только в районе Баку на Апшеронском полуострове и на Кавказе, и именно развитие этих двух районов положило начало российской нефтяной промышленности.

В 80-е годы 19-го века промышленное нефтяное производство существовало только в США и России. В 1879 году в России появилось нефтяное предприятие братьев Нобелей, которое сыграло исключительную роль в развитии нефтяной промышленности России. К 1883 году компания братьев Нобелей уже имела 49,1% общероссийского керосина. С 1879 по 1917 год доля продажи керосина этой компанией в России никогда не опускалась нище 50,1%, а в отдельные годы доходила до 89,3%.

Начиная с 1887 года Братья Нобели – Людвиг, Роберт и Альфред,- имея небольшой нефтеперегонный завод в Баку, стали вывозить керосин морским путем через Каспийское море в главные промышленные центры России и на экспорт. Вместе с ними активно работали в Баку компании семьи Ротшильдов и Манташева. Ниже приведены данные о добыче нефти в России с 1880 по 1915 год.

Таблица 1. Добыча нефти в ранние годы развития нефтяной отрасли в Российской империи.

Можно отметить, что уже в1888 году добыча нефти В Российской империи была сравнима с добычей нефти в США; через 10 лет количество добываемой нефти превысило аналогичные показателем в США, а экспорт нефтепродуктов составлял треть от экспорта США. Российский керосин стал составлять в Европе конкуренцию продукции американской компании Стандард Ойл, самому крупному поставщику керосина в мире. Тогда. чтобы вытеснить компанию Нобелей, Стандард Ойл стал применять свою обычную тактику – резко снижать цены на керосин для полного контроля за европейским рынком, но успеха это не принесло.

В 1893 году в России под эгидой царского министра финансов был создан синдикат – Союз бакинских керосинозаводчиков, объединивший компании Нобелей. Ротшильдов и Манташева. Союз был призван сыграть роль российского аналога Стандард Ойл, но оказался непрочным и гораздо слабее американского собрата.

В 1895 году Д. Рокфеллер предложил, учитывая сильную конкуренцию со стороны России, поделить мировой рынок продажи керосина, чтобы иметь 75% продажи, а остальное отдать российским компаниям, но не состоялась из-за отказа российского правительства. И в дальнейшем руководство Стандарт Ойл не смогло договориться с правительством России, а революция 1905 года, затем первая мировая война и революция 1917 года окончательно подорвали экономику Российской империи.

В 1911 году компания братьев Нобелей вынудила Ротшильдов уйти из российского нефтяного бизнеса в результате искусственного снижения цен на нефть и нефтепродукты. Практически в том же году компания Роял Датч Шелл вступает вместо Ротшильдов в российское нефтяное дело. Положение в нефтяной промышленности России продолжает ухудшаться, экспорт керосина практически сходит на нет. Однако очень выгодной становится продажа высококачественных бакинских смазочных масел, которые пользуются большим успехом в Европе, чем пенсильванские масла (так как пенсильванская нефть была хуже по качеству для производства масел из-за меньшего содержания масляных фракций).

С открытием двигателя внутреннего сгорания Р. Дизелем началась новая эра применения светлых нефтепродуктов в промышленности. Широкое использование двигателей Дизеля на нефтеналивных и военных судах резко увеличивает потребность промышленности в нефтяном топливе. Л. Нобель одним из первых поддержал Р. Дизеля в его изобретении и способствовал быстрому распространению дизельных двигателей.

Кроме того, компания Нобель нашла эффективное применение тяжелых фракций нефти в качестве дешевого топлива в паровых котлах после изобретения распылительной форсунки для нефтяного бизнеса. В целом же годы, предшествовавшие революциям 1917 года, можно охарактеризовать как годы спада в промышленности Российской империи. Последующая гражданская война 1918-1920 годов основательно разрушила нефтяное хозяйство и надолго исключила Россию из числа ведущих нефтяных держав мира.

После войны 1918-1920 гг. нефтяное хозяйство России оказалось полностью разрушенным. В мае 1920 г. советская власть национализировала нефтяные месторождения Апшерона. С этого времени в России, а с 1923 г. в Советском Союзе существует только государственная монополия в нефтяной промышленности.

Как отмечалось выше, в США с 1882 по 1911 г. в течение 29 лет существовала монополия треста Стандард Ойл в нефтяной промышленности, которую удалось нарушить только в результате огромных усилий правительства, конгресса, прессы и общественности. При этом хотелось бы обратить внимание на одну существенную деталь: трест принадлежал частным лицам, то есть прибыль, получаемая от продажи нефти и нефтяной продукции, шла в первую очередь на развитие нефтяной промышленности, ее модернизацию, на улучшение условий труда работникам этой отрасли.

В СССР в условиях государственной монополии большая часть прибыли не возвращалась обратно в нефтяную промышленность, а использовалась правительством в разных отраслях хозяйства или совсем для других целей.

После национализации советским правительством нефтяных предприятий и отказа выплатить компенсацию бывшим собственникам руководители нефтяных компаний Шелл и Стандард Ойл, имевшие интересы в России, настойчиво требовали от английского и американского правительства не признавать и бойкотировать Советское государство как не выполняющее международные законы и соглашения. К тому времени компания братьев Нобелей ушла из российского бизнеса, продав свою долю американской компании Стандард Ойл за 9 млн дол. Экономический бойкот доставил много дополнительных трудно­стей российскому правительству, которое вынуждено было сменить жесткую политику взаимоотношений с иностранными нефтяными компаниями на политику концессий, понимая, что без их усилий будет трудно поднять разрушенное нефтяное хозяйство.

В конце ноября 1920 г. в России (Табл. 2 приложения) принимается постановление о концессиях, которое позволяет иностранным компаниям на льготных условиях вести бизнес внутри страны. Это постановление имело благоприятные последствия для России, сумевшей в период нэпа (новой экономической программы, разрешавшей частную собственность и частный бизнес) восстановить с помощью ведущих нефтяных держав нефтяное хозяйство Апшерона и вывести его на ведущие мировые позиции.

В середине 20-х годов в Советском Союзе (в конце 1922 г. Россия вместе с другими республиками образовала союз) существовало три организации, которые контролировали добычу и экспорт нефти и нефтепродуктов. Это Азнефть (Бакинский регион), Грознефть (Грозненский район. Северный Кавказ) и Эмбанефть. Вышеназванные предприятия объединились в Нефтесиндикат и образовали монополию, начавшую активно торговать нефтью и нефтепродуктами с компаниями Шелл и Мобил в Великобритании, Европе и странах Ближнего и Дальнего Востока (Табл. 3 приложения). Затем эта монополия была преобразована в Нефтесиндикатсоюзнефть, и ее продукция составляла 14% всего импорта Западной Европы.

Политика концессий в 30-е годы была свернута, а нефтяная промышленность стала интенсивно переводиться на военные рельсы. В конце 20-х годов Советское правительство приняло решение о ликвидации нэпа и переходе к полной государственной монополии в промышленности. Контроль за развитием советской индустрии осуществлял Совет народных комиссаров. Нефтяная промышленность была в ведении Комитета по нефти, который входил в состав Народного комиссариата тяжелой промышленности. В 1939г. этот комиссариат был разделен на несколько комиссариатов, один из которых назывался Народным комиссариатом нефтяной промышленности. Комиссариат нефтяной промышленности и был, по существу, той монопольной организацией, которая руководила нефтяным хозяйством огромной страны и осуществляла распределение нефтепродуктов.

В 30-е годы автомобильная промышленность Советского Союза была развита еще весьма слабо, основным потребителем нефтяного топлива и масел была армия. Горючим и маслами обеспечивали в основном бакинские нефтеперерабатывающие заводы. Перед второй мировой войной были открыты нефтяные месторождения в Волго-Уральском районе, но промышленная добыча нефти началась лишь после войны. В 30-е годы основная нефтеперерабатывающая промышленность была сосредоточена в Баку.

В довоенные годы Советский Союз продолжал активно экспортировать нефть и нефтепродукты в страны Европы, причем эта статья экспорта была одной из самых успешных в бюджете страны. Некоторые страны Европы, например Италия и Германия, сильно зависели от советской нефти. Доля импортируемой из Советского Союза нефти в общем балансе итальянского государства с 1925 по 1935 г. составляла около 50%, а в 1940г. 75% советского экспорта нефтепродуктов и нефти пришлось на долю Германии.

Интересно отметить, что в годы советской власти произошло резкое изменение состава российского экспорта. Если до 1917 г. 70% российского экспорта составляло зерно (Россию называли хлебной корзиной Европы) и даже в лучшие годы нефть составляла только 7% экспорта, то после 1920 г. доля нефтяного экспорта постоянно растет и достигает к 1932 г. 18%. После коллективизации, когда Советский Союз, по существу, потерял свою роль поставщика зерна в Европу, процентное соотношение нефти в экспорте Советского Союза резко возрастает и составляет уже около 50%.

Правительство СССР понимало слабость положения страны, которая целиком зависела от бакинских нефтепродуктов, и в 30-е годы осуществило строительство нефтеперерабатывающих заводов в Ухте (1933), Москве (1938), Саратове (1934), Уфе (1938), Ишимбае (1936), Орске (1935), Батуми (1931), Одессе (1937) и Херсоне (1938). Во время второй мировой войны снабжение армии горючим и маслами происходило в основном с бакинских нефтеперерабатывающих заводов. Особенно это чувствовалось во время сталинградского сражения, когда немецкая армия перерезала пути доставки кавказской нефти и горючего в центральные районы Советского Союза.

В предвоенные, военные и послевоенные годы нефтяная промышленность Советского Союза развивалась высокими темпами. Советское правительство хорошо понимало значение нефтяной индустрии для функционирования Советского государства и не жалело денег для ее роста. В целом работники нефтяной промышленности справлялись со своими задачами – бесперебойно обеспечивали армию и народное хозяйство нефтепродуктами и успешно осуществляли экспорт нефти и нефтепродуктов.

Надо отметить, однако, что избытка и разнообразия нефтепродуктов не было. Хозяйство было плановым, а планы в нефтяной промышленности выполнялись таким образом, чтобы обеспечение нефтепродуктами было на минимальном уровне. После второй мировой войны комиссариаты были преобразованы в министерства. Комиссариат по нефтяной промышленности был разделен на два министерства – Министерство нефтяной промышленности южного и западного регионов и Министерство нефтяной промышленности восточного региона и Сахалина, которые в 1948 г. образовали одно Министерство нефтяной промышленности. В 1957 г. вместо министерств были созданы региональные совнархозы, проведена децентрализация нефтяной промышленности с сохранением некоторых центральных функций у Госплана. По существу, были созданы десятки монополий, меньших по размеру в пределах региона, но с теми же функциями, что и министерства. В 1965 г. опять были восстановлены министерства, так как совнархозы не сумели эффективно управлять промышленностью. Причем в нефтяной промышленности образовалось 5 министерств – нефтедобывающей, газовой, нефтеперерабатывающей, нефтехимической и химической промышленностей. В 1970 г. первое министерство стало называться Министерством нефтяной промышленности.

В конце 40-х годов началась интенсивная разработка крупного Ромашкинского месторождения, которое находилось между Волгой и Уралом. Только за 4 года – с 1954 по 1958 г.- добыча нефти в Советском Союзе удвоилась. В ряде городов Советского Союза велось в то время строительство крупных нефтеперерабатывающих заводов. Кстово (Нижегородская область), Сызрань, Волгоград, Саратов, Пермь, Краснодар, Омск, Ангарск, Баку и Рязань—вот далеко не полный список городов, где было развернуто новое строительство, причем, так как строительство велось централизованно, большинство заводов копировалось в зависимости от топливного или масляного направления. Особенно бурно нефтяная промышленность Советского Союза стала развиваться в 60-е годы, когда были открыты богатые месторождения в Западной Сибири.

Началась интенсивная разработка и добыча нефти в Тюменской области – центральной среди нефтедобывающих областей Западной Сибири. Очень быстро Советский Союз выходит на первые позиции по добыче нефти в мире, а с конца 70-х годов закрепляется на первом месте. Добыча нефти в Советском Союзе продолжала оставаться самым успешным мероприятием, проводимым Советским правительством.

В табл. 3 и 4 (см. Приложение) представлены данные по добыче нефти в Советском Союзе в целом в 1920-1990 гг. и по регионам за 1975-1989 гг.

Следует отметить, что больше всего нефти добывалось в России, а в России самые крупные месторождения находились в Западной Сибири. Азербайджан практически потерял свое значение как регион, имеющий большие запасы нефти, хотя обладал развитой нефтеперерабатывающей и нефтехимической промышленностью. Из остальных бывших республик Советского Союза кроме России только Казахстан обладает промышленными запасами нефти, особенно после открытия крупного Тенгизского месторождения.

В 70-е годы нефть и нефтепродукты в больших количествах экспортировались в страны Восточной и Западной Европы. В табл. 3 и 6 приведены данные по добыче нефти в СССР и экспорту нефти и нефтепродуктов в 1920-1990 гг. и распределение его по странам – импортерам в 1970-1990 гг.

Как следует из данных табл. 5 (См. приложение), в 80-е годы при добыче нефти около 600 млн т/год экспорт составлял 150-200 млн – цифры огромные даже по нынешним временам. Если учесть, что население Советского Союза составляло чуть более 250 млн человек, то получается, что на каждого жителя страны приходилось около одной вывозимой тонны. К сожалению, нефть не принесла богатства России, как это случилось в странах Ближнего и Среднего Востока. По многим, главным образом, экономическим причинам.

В 70-80-е гг. было построено еще несколько нефтеперерабатывающих заводов – в основном вне России. Это заводы в Чимкенте и Павлодаре (Казахстан), Мажейкяе (Литва), Чарджоу (Туркмения), Лисичанске (Украина), Мозыре (Белоруссия).

С конца 80-ых годов мы наблюдается спад добычи и переработки нефти (за 1988 – 1991 годы объем добычи сократился более чем на 20%), главные причины которого заключаются в следующем:

Крупные и высокодебитные месторождения эксплуатируемого фонда, составляющие основу ресурсной базы, в значительной степени выработаны;

Резко ухудшились по своим кондициям и вновь приращиваемые запасы. За последнее время практически не открыто ни одного крупного высокопродуктивного месторождения;

Сократилось финансирование геологоразведочных работ, уменьшились объемы разведочного бурения;

Остро не хватает высокопроизводительной техники и оборудования для добычи и бурения. Основная часть технических средств имеет износ более 50 процентов, только 14 процентов машин и оборудования соответствует мировым стандартам, 70 процентов парка буровых установок морально устарело и требует замены. С распадом СССР усугубилось положение с поставками нефтепромыслового оборудования из стран СНГ.

Низкие внутренние цены на нефть не обеспечивают самофинансирования нефтедобывающих предприятий (эта ситуация сохраняется и сегодня после серии повышений цен на нефть). В итоге произошло серьезное ухудшение материально – технического и финансового обеспечения отрасли;

Нехватка эффективного и экологичного оборудования с особой остротой создает в отрасли проблему загрязнения окружающей среды. На решение этой проблемы отвлекаются значительные материальные и финансовые ресурсы, которые не участвуют непосредственно в увеличении добычи нефти;

Не определен единообразный собственник месторождений нефти, с которым следует иметь дело организациям, а также частным лицам;

Задолженность стран СНГ перед Россией за поставленную нефть и нарастающий кризис неплатежей.

Таблица 6. Задолженность республик бывшего СССР (по состоянию на 01.08.93г.), млрд. руб.

Http://topref. ru/referat/150892.html

Анализ последствий судебных тяжб в отношении всех предприятий башкирского топливно-энергетического комплекса. История развития компании ОАО "Уфанефтехим", перечень и общая характеристика выпускаемой им продукции, политика в области качества и экологии.

Речь надо вести не об “экологии вообще”, а о размерах отклонений экологических характеристик нашей среды обитания от значений минимально необходимых для жизнедеятельности обитателей планеты.

– внебюджетные государственные фонды, создающиеся для решения неотложных природоохранительных задач, восстановления природной среды, компенсации причиненного вреда и других природоохранительных задач. Образуют единую систему, объединяющую федеральные Э. ф. и Э. ф. субъектов РФ. Э. ф. образуются из средств, поступающих от юридических и физических лиц, в т. ч.: платы за выбросы, сбросы загрязняющих веществ в окружающую природную среду, размещение отходов и другие виды загрязнения; сумм, полученных по искам о возмещении вреда и штрафов за экологические правонарушения; средств от реализации конфискованных орудий охоты и рыболовства, незаконно добытой с их помощью продукции; полученных дивидендов, процентов по вкладам, банковским депозитам; инвалютных поступлений от иностранных юридических лиц и граждан (см.

Деградация почв является признанным в качестве основной глобальной проблемой, имеющих негативное воздействие на производительность сельского хозяйства, экосистем и атмосферных изменений, и воды и качество среды обитания. Однако, имеющиеся данные о типах, масштабов и степени деградации, в том числе на глобальном, региональном и национальном уровнях, не отвечают потребностям окружающей среды и развития учреждений.

Оценка экологического состояния территории. Интенсивность движения автотранспорта. Вред человеку от пищевых отходов. Радиационное загрязнение.

По данным Росгидромета за пять лет на 61% увеличилось количество городов, в которых уровень загрязнения атмосферы оценивается (по показателю индекса загрязнения атмосферы, учитывающего несколько примесей — ИЗА) как высокий и очень высокий.

Исследования проводились в районе населенных пунктов в 10-километровой зоне вокруг газоперерабатывающего комплекса. Основными источниками техногенного воздействия являлись газоперерабатывающий завод, гелиевый завод, Каргалинская ТЭЦ.

Соловьёвой Насти 9 «Г» Антропогенное загрязнение гидросферы. Ученые различают три вида загрязнения гидросферы: физическое, химическое и биологическое.

Перечислены основные документы. Приводятся их краткое содержание.

Вариант 3. При проверке деятельности акционерного общества “Тракторный завод” органами охраны окружающей среды было установлено, что данное общество систематически осуществляет сброс сточных вод в водоем. Проверка показала, что содержание загрязняющих веществ в сточных водах превышает установленные нормативы ПДС (предельно допустимых выбросов и сбросов).

Установка, гидроочистка, идентификация, опасность, риск, эксплуатация, разработка, мероприятия

Для человека вода имеет важное производственное значение: она и транспортный путь, и источник энергии, и сырье для получения продукции, и охладитель двигателей, и очиститель, и др

Тема Предмет, методы и задачи экологических исследований для целей оценки воздействия горнорудных предприятий на окружающую среду: предмет, методы и задачи овос; виды и факторы воздействия на окружающую среду

Ведь до 85% всех заболеваний современного человека связаны с неблагоприятными условиями окружающей среды, возникающими по его же вине

Выбор места, технических средств и материалов для локализации нефтяного загрязнения 11

Введение 1 Внешний вид 2 Место обитания 3 Питание 4 Размножение 5 Галерея Список литературы Введение Бородатая неясыть[1] (лат. Strix nebulosa) — крупная (размах крыльев до полутора метров) птица рода Неясыти.

Введение 1 Описание 2 Ареал 3 Место обитания 4 Время лёта 5 Гусеница Список литературы Введение Павлиноглазка грушевая, или большой ночной павлиний глаз, или сатурния грушевая ( лат. Saturnia pyri) — бабочка из семейства Павлиноглазки. Крупнейшая ночная бабочка Европы и России.

Введение 1 Описание 2 Среда обитания 3 Повадки и привычки Список литературы Введение Азиатский ябиру[1] (лат. Ephippiorhynchus asiaticus) — один из двух видов рода седлоклювых ябиру (Ephippiorhynchus).

Введение 1 Описание 2 Места обитания 3 Питание 4 Размножение 5 Подвиды 6 Галерея Список литературы Введение Багамская (белощёкая) шилохвостка[1] (лат. Anas bahamensis) — настоящая утка Карибского бассейна, Южной Америки и Галапагосских островов.

Введение 1 Описание 2 Места обитания и питание 3 Размножение 4 Голос Список литературы Введение Красноклювая шилохвость[1] (лат. Anas erythrorhyncha) – настоящая утка, многочисленный постоянный житель Южной и Восточной Африки, типичный южнее 10° южной широты. Эта утка не совершает перелетов, но пролетит огромные расстояния в поисках подходящей воды.

Введение 1 Описание 1.1 Внешний вид 1.2 Распространение и среда обитания 1.3 Питание 1.4 Размножение 2 Подвиды 3 Окаймлённая сухопутная черепаха и человек

Введение 1 Описание 1.1 Внешний вид 1.2 Распространение и среда обитания 1.3 Питание 2 Бахромчатая черепаха и человек Список литературы Введение Бахромчатая черепаха[1], или матамата (Chelus fimbriatus) — южноамериканская пресноводная черепаха из семейства змеиношеих, образует монотипичный род.

План Введение 1 Описание 2 Распространение 3 Места обитания 4 Размножение Список литературы Введение Желтоклювая шилохвость[1] (лат. Anas georgica) – настоящая утка рода речные утки (Anas).

План Введение 1 Описание 1.1 Внешний вид 1.2 Распространение и среда обитания 1.3 Питание 1.4 Размножение 1.5 Поведение 2 Охрана вида 3 План Введение в неволе

Б5-Рихард (нем. B5-Richard) — секретный подземный военный завод Третьего рейха, расположенный у чешского города Литомержице под холмами Биднице и Радобыл. Общая длина подземных сооружений оценивается приблизительно в 25-30 километров.

Введение 1 Достопримечательности 2 Климат 3 Промышленность Введение Суха́р (Сохар) — административный центр северной части провинции Эль-Батина Султаната Оман, а также одноименного вилайета. Расположен в 240 км к северо-западу от столицы Маската.

Георгий Виссарионович Гвахария (1901, Кутаиси — 1 сентября 1937) — революционер, государственный деятель, директор Макеевского металлургического завода.

Республика Башкортостан – промышленность, промышленные предприятия и заводы Башкирии Республика Башкортостан ( Башкирия) – регион Российской федерации. Входит в состав Приволжского федерального округа и Уральского экономического района. Код региона – 02. Столица Башкирии – город Уфа. Республика Башкирия граничит с Татарстаном, Удмуртией, Пермским краем, Свердловской, Челябинской и Оренбургской областями.

Краснодар, центр Краснодарского края, расположен на Кубано-Приазовской (Прикубанской) низменности, на правом берегу реки Кубань (порт), в 1539 км к югу-востоку от Москвы.

Город Хабаровск – центр Хабаровского края. По численности населения, объемам промышленного производства он занимает 1/3 часть края в целом.

Современная Рязань – административный центр Рязанской области. Расположен на Среднерусской возвышенности, на правом берегу р. Ока, при впадении в неe р. Трубеж.

Ярославль – центр Ярославской области, расположен в Европейской части России на 57 параллели в 282 километрах от Москвы в живописном месте на слиянии рек Волги и Которосли.

Таблица групп билогических факторов – абиатические, антропогенные и другие.

Крапивенская средняя общеобразовательная школа №24 Лабораторная работа. Тема: «Выявление черт приспособленности организмов к среде обитания». Выполнил: Кулешов Игорь

Взаимодействие человека со средой его обитания, компонентами которой являются биосфера и социальная среда. Рассмотрение результатов развития техносферы в возрастающей доле преобразованных территорий земли, демографического взрыва и урбанизации населения.

Http://refy. ru/8/12608-neftepererabatyvayuschiy-zavod-ufaneftehim-kak-istochnik-zagryazneniya-sredy-obitaniya. html

«НЕФТЯНАЯ ПРОМЫШЛЕННОСТЬ РОССИИ И ЕЁ РОЛЬ НА МИРОВОМ РЫНКЕ СЫРЬЯ.»

Глава 4. Роль экологического фактора для нефтяной промышленности 17

Развиваясь, человечество начинает использовать все новые виды ресурсов (атомную и геотермальную энергию, солнечную, гидроэнергию приливов и отливов, ветряную и другие нетрадиционные источники). Однако главную роль в обеспечении энергией всех отраслей экономики сегодня играют топливные ресурсы.

Топливно-энергетический комплекс тесно связан со всей промышленностью страны. На его развитие расходуется более 20% денежных средств. На ТЭК приходится 30% основных фондов и 30% стоимости промышленной продукции России. Он использует 10% продукции машиностроительного комплекса, 12% продукции металлургии, потребляет 2/3 труб в стране, дает больше половины экспорта РФ и значительное количество сырья для химической промышленности. Его доля в перевозках составляет 1/3 всех грузов по железным дорогам, половину перевозок морского транспорта и всю транспортировку по трубопроводам.

Наибольшее значение в топливной промышленности страны принадлежит трем отраслям: нефтяной, газовой и угольной, из которых особо выделяется нефтяная.

Отрасли ТЭК дают не менее 60% валютных поступлений, в Россию, позволяют иметь положительное внешнеторговое сальдо, поддерживать курс рубля. Высоки доходы в бюджет страны от акцизов на нефть и нефтепродукты.

Велика роль нефти и в политике. Регулирование поставок нефти в страны ближнего зарубежья является, по сути дела, важным аргументом в диалоге с новыми государствами.

Таким образом, нефть – это богатство России. Нефтяная промышленность РФ тесно связана со всеми отраслями народного хозяйства, имеет огромное значение для российской экономики. Спрос на нефть всегда опережает предложение, поэтому в успешном развитии нашей нефтедобывающей промышленности заинтересованы практически все развитые государства мира.

До настоящего времени нефтяную политику определяли два картеля – западный и восточный. Первый объединяет 6 крупнейших нефтяных компаний, на которые приходятся 40% нефтедобычи стран, не входящих в ОПЕК. Совокупный объем продаж этих компаний в 1991 году составил почти 400 млрд. долларов. В восточный картель (ОПЕК) входят 13 стран, дающих 38% всей мировой добычи и 61% мирового экспорта нефти. Добыча России составляет 10% мировой, поэтому можно с уверенностью сказать, что страна занимает сильные позиции на международном рынке нефти. Например, эксперты ОПЕК заявили, что государства, входящие в эту организацию, не смогут восполнить нехватку нефти, если мировой рынок покинет РФ (Приложение 1.).

Целью нашей работы является рассмотрение нефтяной промышленности России, а также её роли в мировой экономике.

Актуальность выбранной темы заключается в том, что в обозримом будущем нефть заменить нечем. Мировой спрос будет расти на 1,5 процента в год, а предложение существенно не возрастет. До энергетического кризиса 1973 года в течение 70 лет мировая добыча практически удваивалась каждые десять лет. Однако сейчас из стран – членов ОПЕК располагающих 66% мировых запасов, лишь четыре страны могут ощутимо увеличить объем нефтедобычи (Саудовская Аравия, Кувейт, Нигерия, Габон). Тем более существенной становиться роль России, иначе ряд экспертов не исключают возможность скорого возникновения очередного энергетического кризиса.

Итак, российская нефтяная промышленность имеет важнейшее значение для нашей страны и всего мира в целом.

Нефтяная промышленность является составной частью ТЭК – многоотраслевой системы, включающей добычу и производство топлива, производство энергии (электрической и тепловой), распределение и транспорт энергии и топлива.

Нефтяная промышленность – отрасль тяжелой индустрии, включающая разведку нефтяных и нефтегазовых месторождений, бурение скважин, добычу нефти и попутного газа, трубопроводный транспорт нефти.

Цель нефтеразведки – выявление, геолого – экономическая оценка и подготовка к работе промышленных залежей. Нефтеразведка производится с помощью геологических, геофизических, геохимических и буровых работ. Процесс геологоразведочных работ подразделяется на два этапа: поисковый и разведочный. Первый включает три стадии: региональные геолого-геофизические работы, подготовка площадей к глубокому поисковому бурению и поиски месторождений. Второй завершается подготовкой месторождения к разработке.

На сегодняшний день главная проблема геологоразведчиков – недостаточное финансирование, поэтому сейчас разведка новых месторождений частично приостановлена. Потенциально, по прогнозам экспертов, геологоразведка может давать Российской Федерации прирост запасов от 700 млн. до 1 млрд. т в год, что перекрывает их расход вследствие добычи (в 1993 году было добыто 342 млн. т).

Однако в действительности дело обстоит иначе. Мы уже извлекли 41%,

Содержащийся в разрабатываемых месторождениях. В Западной Сибири извлечено 26,6%. Причем нефть извлечена из лучших месторождений, требующих минимальных издержек при добыче. Средний дебит скважин непрерывно снижается: 1986 год – 14,1/ сутки. 1987 – 13.2, 1988 – 12,3, 1989 – 11,3, 1990 – 10,2. Темпы выработки запасов нефти на территории России в 3-5 раз превышают соответствующий показатель Саудовской Аравии, ОАЭ, Венесуэлы, Кувейта. Такие темпы добычи обусловили резкое сокращение разведанных запасов (Приложение 6.). И проблема здесь не столько в медленной разведке новых месторождений, сколько в нерациональной эксплуатации имеющихся. Большие потери при добыче и транспортировке, старение технологий вызвали целый комплекс проблем в нефтяной промышленности.

По разведанным запасам нефти в 1992 году Россия занимала второе место в мире вслед за Саудовской Аравией, на территории которой сосредоточена треть мировых запасов. Запасы бывшего СССР на 1991 год составляли 23,5 млрд. тонн. Из них запасы России – 20,2 млрд. т.

Если учесть низкую степень подтверждаемости прогнозных запасов и еще большую долю месторождений с высокими издержками освоения (из всех запасов нефти только 55% имеют высокую продуктивность), то общую обеспеченность России нефтяными ресурсами нельзя назвать безоблачной,

Даже в Западной Сибири, где предполагается основной прирост запасов, около 40% этого прироста будет приходиться на долю низко продуктивных месторождений с дебитом новых скважин менее 10 т в сутки, что в настоящее время является пределом рентабельности для данного региона.

Глубокий экономический кризис, охвативший Россию, не обошел и отрасли топливно-энергетического комплекса, особенно нефтяную промышленность. Это выразилось, прежде всего, в ускоряющемся сокращении объемов добычи нефти начиная с 1989 года. При этом только на месторождениях Тюменской области – основного нефтедобывающего региона – добыча нефти снизилась с 394 млн. тонн в 1988 году до 307 млн. тонн в 1991 году.

Нынешнее состояние нефтяной промышленности России характеризуется сокращением объемов прироста промышленных запасов нефти, снижением качества и темпов их ввода; сокращение объемов разведочного и эксплуатационного бурения и увеличением количества бездействующих скважин; повсеместном переходе на механизированный способ добычи при резком сокращении фонтанизирующих скважин; отсутствием сколь либо значительного резерва крупных месторождений; необходимостью вовлечения в промышленную эксплуатацию месторождений; расположенных в не обустроенных и труднодоступных районах; прогрессирующим техническим и технологическим отставанием отрасли; недостаточным вниманием к вопросам социального развития и экологии.

На территории Российской Федерации находятся три крупных нефтяные базы: Западно-Сибирская, Волго-Уральская и Тимано-Печорская. Основная из них – Западно-Сибирская. Это крупнейший нефтегазоносный бассейн мира, расположенный в пределах Западно-Сибирской равнины на территории Тюменской, Омской, Курганской, Томской и частично Свердловской, Челябинской, Новосибирской областей, Красноярского и Алтайского краев, площадью около 3,5 млн. км. Нефтегазоносность бассейна связана с отложениями юрского и мелового возраста. Большая часть нефтяных залежей находиться на глубине 2000-3000 метров. Нефть Западно-Сибирского нефтегазоносного бассейна характеризуется низким содержанием серы (до 1,1%), и парафина (менее 0,5%), содержание бензиновых фракций высокое (40-60%), повышенное количество летучих веществ.

Сейчас на территории Западной Сибири добывается 70% российской нефти. Добыча насосным способом превышает фонтанную на порядок. Это заставляет задуматься над важной проблемой топливной промышленности – старением месторождений. Вывод подтверждается и данными по стране в целом.

В Западной Сибири находятся несколько десятков крупных месторождений. Среди них такие известные, как Самотлор, Мегион, Усть-Балык, Шаим, Стрежевой. Большая часть из них расположена в Тюменской области – своеобразном ядре района.

Тюменская область, занимающая площадь 1435,2 тысячи квадратных километров (59 процентов площади Западной Сибири, 8,4% – Российской Федерации), относится к наиболее крупным (после Якутии и Красноярского края) административным образованиям России и включает Ямало – Ненецкий и Ханты – Мансийский автономные округа. В Российской Федерации Тюменская область занимает первое место по объему инвестиций, стоимости основных промышленно-производственных фондов, по вводу в действие основных фондов, пятое по объему промышленной продукции. В республиканском разделении труда она выделяется как главная база России по снабжению ее народнохозяйственного комплекса нефтью и природным газом. Область обеспечивает 70,8% российской добычи нефти, а общие запасы нефти и газа составляют 3/4 геологических запасов СНГ. Анализируя данную информацию, нельзя не сделать следующий вывод: нефтедобывающей промышленности Российской Федерации свойственна чрезвычайно высокая концентрация в ведущем районе.

Теперь коснемся структур, занимающихся нефтедобычей в Тюмени (Приложение 5.). На сегодняшний день почти 80 процентов добычи в области обеспечивается пятью управлениями (в порядке убывания веса – Юганскнефтегаз, Сургутнефтегаз, Нижневартовскнефтегаз, Ноябрьскнефтегаз, Когалымнефтегаз). Однако в недалеком времени абсолютные объемы добычи сократятся в Нижневартовске на 60%, в Юганске на 44%, что выведет первое за пределы ведущей пятерки управлений. Тогда (по объемам добычи) первая пятерка будет включать (в порядке убывания) Сургут, Когалым, Юганск, Ноябрьск и Лангепас (вместе – около 70% объемов добычи области).

Новым фактором упорядочивания является доля иностранного капитала, привлекаемого в первую очередь для разработки новых месторождений.

В зоне действия НоябрьскНГ таких месторождений находится около 70, ПурНГ и ЮганскНГ около 20.

Таким образом, сегодня в добывающей промышленности основного нефтяного района России мы наблюдаем сложную систему взаимодействия практически независимых управлений, несогласованно определяющих свою политику. Среди них нет признанного лидера, хотя можно предполагать сохранение ведущих позиций за Сургут, НоябрьскНГ и Юганск, не существует и настоящей конкурентной борьбы. Такая разобщенность создает немало проблем, но интеграция откладывается на неопределенную перспективу из-за большой динамичности отрасли: снижение статуса ПурНГ, КогальимНГ и ТюменьНГ вкупе с одновременным уменьшением влияния Нижневартовскнефтегаза способно уже сейчас дисбалансировать сложившуюся структуру отношений.

Вторая по значению нефтяная база – Волго-Уральская. Она расположена в восточной части Европейской территории Российской Федерации, в пределах республик Татарстан, Башкортостан, Удмуртия, а также Пермской, Оренбургской, Куйбышевской, Саратовской, Волгоградской Кировской и Ульяновской областей. Нефтяные залежи находятся на глубине от 1600 до 3000 м, т. е. ближе к поверхности по сравнению с Западной Сибирью, что несколько снижает затраты на бурение. Волго-Уральский район дает 24% нефтедобычи страны.

Подавляющую часть нефти и попутного газа (более 4/5) области дают Татария, Башкирия Куйбышевская область. Значительная часть нефти, добываемая на промыслах Волго-Уральской нефтегазоносной области, поступает по нефтепроводам на местные нефтеперерабатывающие заводы, расположенные главным образом в Башкирии и Куйбышевской области, а также в других областях (Пермской, Саратовской, Волгоградской, Оренбургской).

Нефть Восточной Сибири отличается большим разнообразием свойств и состав вследствие многопластовой структуры месторождений. Но в целом она хуже нефти Западной Сибири, т. к. характеризуется большим содержанием парафина и серы, которая приводит к повышенной амортизации оборудования. Если коснуться особенностей в качестве, то следует выделить республику Коми, где ведется добыча тяжелой нефти шахтным способом, а также нефть Дагестана, Чечни и Ингушетии с крупным содержанием смол, но незначительным серы. В ставропольской нефти много легких фракций, чем она ценна, хорошая нефть и на Дальнем Востоке.

Итак, почти каждое месторождение, а тем более каждый из нефтегазоносных районов отличаются своими особенностями в составе нефти, поэтому вести переработку, используя какую-либо "стандартную" технологию нецелесообразно. Нужно учитывать уникальную структуру для достижения максимальной эффективности переработки, по этой причине приходиться сооружать заводы под конкретные нефтегазоносные области. Существует тесная взаимосвязь между нефтяной и нефтеперерабатывающей промышленностью. Однако развал Советского Союза обусловил появление новой проблемы – разрыв внешних хозяйственных связей нефтяной промышленности. Россия оказалась в крайне невыгодном положении, т. к. вынуждена экспортировать сырую нефть ввиду дисбаланса нефтяной и нефтеперерабатывающей промышленности (максимальный объем переработки – 240 млн. тонн в год), в то время как цены на сырую нефть гораздо ниже, чем на нефтепродукты. Кроме того, низкая приспособляемость российских заводов, при переходе на нефть, ранее транспортировавшуюся на заводы республик, вызывает некачественную переработку и большие потери продукта.

Третья нефтяная база – Тимано – Печерская. Она расположена в пределах Коми, Ненецкого автономного округа Архангельской области и частично на прилегающих территориях, граничит с северной частью Волго – Уральского нефтегазоносного района. Вместе с остальными Тимано-Печорская нефтяная область дает лишь 6% нефти в Российской Федерации (Западная Сибирь и Уралоповолжье – 94%). Добыча нефти ведется на месторождениях Усинское, Верхнегруеторское, Памгня, Ярега, Нижняя Омра, Водейское и другие. Тимано – Печорский район, как Волгоградская и Саратовская области, считается достаточно перспективным. Добыча нефти в Западной Сибири сокращается, а в Ненецком автономном округе уже разведаны запасы углеводородного сырья, соизмеримые с западносибирскими. По оценке американских специалистов, недра арктической тундры хранят 2,5 миллиарда тонн нефти. Сегодня различные компании уже инвестировали в его нефтяную промышленность 80 млрд. долларов с целью извлечь 730 млн. тонн нефти, что составляет два годовых объема добычи Российской Федерации. Ведутся совместные разработки месторождений. Например, СП "Полярное сияние" с участием американской компании "Конако", которое разрабатывает Ардалинское месторождение с запасами нефти более 16 миллионов тонн. В проект инвестировано 375 миллионов долларов, из которых 80 миллионов получили 160 российских компаний – поставщиков и подрядчиков. 71 процент всех доходов "Полярного сияния" остается в России, что делает контракт выгодным не только для иностранцев, но и для жителей Ненецкого автономного округа, получивших дополнительные рабочие места, и в целом всей Российской Федерации.

Теперь, обобщив сказанное в данной главе, выделим главную особенность, проблему размещения нефтедобывающей промышленности России. Частично она уже была рассмотрена – это сверхвысокая концентрация нефтедобычи в ведущей нефтяной базе. Она имеет как раз преимущество для организации самой структуры промышленности, так создает целый комплекс проблем, среди которых, например, сложная экологическая обстановка в регионе. Особенно выделяется из них проблема дальней и сверхдальней транспортировки нефти и попутного газа, обусловленная объективной необходимостью в перевозке сырья от главного поставщика, восточных районов Российской Федерации, к главному потребителю – западной ее части.

Нефть не используется в первоначальном виде, поэтому нефтеперерабатывающие заводы – основной ее потребитель. Они располагаются во всех районах страны, т. к. выгоднее транспортировать сырую нефть, чем продукты ее переработки, которые необходимы во всех отраслях народного хозяйства. В прошлом она из мест добычи в места потребления перевозилась по железным дорогам в цистернах. В настоящее время большая часть нефти перекачивается по нефтепроводам и их доля в транспортировке продолжает расти. В состав нефтепроводов входят трубопроводы, насосные станции и нефтехранилища. Скорость движения нефти – 10-12 км/ч. Стандартный диаметр – 12 тыс. мм. Производительность в год – 90 млн. тонн нефти. По эффективности с нефтепроводами могут соперничать только морские перевозки танкерами. Кроме того, они менее опасны в пожарном отношении и резко снижают потери при транспортировке (доставке).

Стоимость строительства магистрального нефтепровода обычно окупается за 2-3 года.

Первый нефтепровод длиной в 6 км был сооружен в США в 1865 году. Нефтепроводы большей длины начали строить в 1875году. Первый нефтепровод в России проложен в 1878 году в Баку от промыслов до нефтеперерабатывающего завода, а в 1897 – 1907 году был построен самый большой в то время в мире по протяженности магистральный трубопровод Баку – Батуми диаметром 200 мм и длиной 835 км, который продолжает эксплуатироваться и по сей день.

Развитие нефтепроводного транспорта в Союзе было связано с освоением нефтяных месторождений в Башкирии, Татарии и Куйбышевской области. К 1941 году в эксплуатации находилось 4100 км магистральных трубопроводов для перекачки нефти и нефтепродуктов с суммарной годовой производительностью 7,9 млн. тонн. Максимальный диаметр составлял 300 мм. Общая протяженность магистральных нефтепроводов к 1956 году возросла до 11,5 тыс. км, а через 10 лет достигла уже 29 тыс. км. А в 1992 году в СНГ – 275 тысяч км. Сеть магистральных нефтепроводов развивалась в трех основных направлениях: урало-сибирское (Альметьевск – Уфа – Омск – Новосибирск – Иркутск) длиной 8527 км; северо-западное (Альметьевск – Горький – Ярославль – Кириши с ответвлениями на Рязань и Москву) длиной более 17700 км; юго-западное от Альметьевска до Куйбышева и далее нефтепроводом "Дружба" с ответвлением на Полоцк и Вентспилс протяженностью более 3500 км. Таким образом, наибольшей длиной обладали нефтепроводы урало-сибирского направления, т. к. связывали основного добытчика (Сибирь) с главным потребителем западными районами Российской Федерации. Важность этого направления сохраняется и в настоящее время.

С открытием новых нефтяных месторождений на Южном Мангышлаке и в Тюменской области сооружены следующие нефтепроводы: Узень – Гурьев – Куйбышев диаметром 1020 мм, длиной около 1000 км; Шаим – Тюмень, Александровское – Анжеро – Суджинск диаметром 1220 мм и протяженностью 840 км; Усть – Балык – Курган – Уфа – Альметьевск диаметром 1220 мм и протяженностью 1844 км, второй нефтепровод "Дружба".

Характерной особенностью развития нефтепроводного транспорта России является увеличение удельного веса трубопроводов большого диаметра, что объясняется их высокой рентабельностью.

Развитие нефтепроводного транспорта определяется общим состоянием дел в нефтяной промышленности, т. к. между ними существует неразрывная связь. Например, во время благоприятной ситуации в отрасли с 1940 по 1980 годы протяженность нефтепроводов увеличилась с 4 до 69,7 тыс. км, а грузооборот – с 4 до 1197 млрд. км, т. е. на 29825%.

Так, в прошлом формирование нефтяной базы между Волгой и Уралом, намного улучшив снабжение нефтью центральных и восточных районов страны, обусловило появление целой системы магистральных нефтепроводов:

1) на запад – нефтепровод "Дружба" от Альметьевска через Куйбышев – Брянск до Мозыря (Белоруссия), откуда в Польшу, Венгрию и Чехословакию с ответвлением в Белоруссию, Латвию и Литву; Куйбышев – Пенза – Брянск (нефтепродукты); Альметьевск – Горький – Рязань – Москва с ответвлением Горький – Ярославль – Кириши;

3) на восток – Туймазы – Омск – Новосибирск – Красноярск – Ангарск; Туймазы – Омск; Уфа – Омск – Новосибирск (нефтепродукты).

Формирование Западно-Сибирской нефтяной базы изменило ориентацию основных потоков нефти: Волго-Уральский район целиком переориентировался на западное направление.

Важнейшие функции дальнейшего развития сети магистральных нефтепроводов перешли к Западной Сибири, откуда трубопроводы идут:

1) на запад – Усть – Балык – Курган – Альметьевск; Нижневартовск – Куйбышев; Куйбышев – Лисичанск – Кременчук – Херсон – Одесса; Сургут – Новополоцк;

2) на юг – Шаим – Тюмень; Усть – Балык – Омск; Омск – Павлодар – Чимкент;

Для транспортировки нефти на запад используются, кроме того, трубопроводы Волго – Уральского района восточного направления.

Из трубопроводов выделяются: Гурьев – Орск; Мангышлак – Самара; Ухта – Ярославль (Тимано – Печерская нефтегазоносная область); Огса – Комсомольск-на-Амуре (Сахалин).

За границу нефть экспортируется также при помощи трубопроводов (например, "Дружба"). Экспорт нефти сегодня составляет 105-110 млн. т, нефтепродуктов – 35 млн. тонн. Средняя цена нефти на мировом рынке – приблизительно 107 долларов за тонну, а мазута – 86 долларов. Треть экспорта сырой нефти приходиться на страны СНГ (на Украину, Белоруссию и Казахстан вместе более 90%).

Остальная часть нефти направляется в дальнее зарубежье, т. е. в Западную Европу, где Германия, Италия, Великобритания и Ирландия вкупе потребляют 60% этого объема. Сегодня экспорт за границу в основном выгоден, однако есть уже указанные проблемы с оплатой при поставке нефти в страны ближнего зарубежья.

В самой же России в будущем предусмотрено создание региональных систем магистральных нефтепродуктопроводов с разводящей сетью к нефтебазам, однако сейчас трубопроводный транспорт переживает тяжелые времена в связи с общим спадом в нефтяной промышленности.

Глава 4. Роль экологического фактора для нефтяной промышленности

Значение нефти как источника энергии и сырья для нефтехимической промышленности возрастает, в связи с чем ежегодно увеличиваются объемы танкерных перевозок, строятся новые магистральные подводные и подземные нефтепроводы. В то же время нефтяная индустрия по инерции продолжает развиваться по принципу «максимальной эксплуатации» природных ресурсов. Огромная по масштабам техносфера, созданная людьми в качестве второй природы, отрицательно воздействует на климат планеты, недра земли, гидросферу. Потребление нефти на планете, осуществляемое в огромных количествах и с огромными скоростями, значительно опережает скорость и количество образования ее в недрах. Экологическая опасность в регионах нефтехимии нарастает в связи с применением высоких давлений, температур, скоростей, новых, в том числе незамкнутых, технологий переработки нефти. Подсчитано, что только в процессе переработки и транспортировки нефти теряется более 10% добываемого сырья. В результате нарушений технологических режимов, аварий и катастроф происходит загрязнение суши, водоемов и даже необитаемых ледяных массивов Арктики и Антарктики нефтью и нефтепродуктами. В настоящий момент вопросы, связанные с экологией нефтедобычи и нефтепереработки, требуют государственного регулирования. Под государственным регулированием нефтедобычи подразумевается проведение федеральной и региональной политики, направленной на формирование таких условий экологически эффективного природопользования, при которых собственные интересы производителя побуждали бы его действовать в интересах государства и устойчивого развития общества. Безусловно, в быстро меняющихся условиях современной экономики нельзя раз и навсегда найти решение, удовлетворяющее интересы всех субъектов недропользования, но можно постоянно поддерживать между ними некоторое динамическое равновесие отрасли, то есть такое развитие нефтедобычи, которое «Удовлетворяет потребности настоящего времени, но не ставит под угрозу способность будущих поколений удовлетворять свои собственные потребности».

Существует два основных направления природоохранной деятельности:

1)очистка вредных выбросов предприятий. Этот путь малоэффективен, так как, следуя ему, далеко не всегда удается прекратить поступление вредных веществ в биосферу;

2)устранение самих причин загрязнения, что требует разработки малоотходных, а в перспективе и безотходных технологий производства.

Этот путь наиболее эффективен и экономичен. Для достижения высоких эколого-экономических результатов необходимо совместить процесс очистки с процессом утилизации уловленных веществ, что сделает возможным объединение первого направления со вторым. Органы власти экономически воздействуют на предприятия через платежи за загрязнение, на воспроизводство минерально-сырьевой базы и др., направляя тем самым их экологическое финансирование в нужное русло.

На основании изучения и обобщения отечественного и зарубежного опыта составлен перечень мероприятий природоохранной деятельности на предприятиях нефтедобычи. К ним относятся:

• организационные мероприятия по созданию системы охраны окружающей среды;

• экологическая экспертиза с составлением экологического паспорта;

Для практического осуществления эффективной экологической политики в нефтедобывающем производстве важно создание экономического механизма экологически устойчивого развития предприятий отрасли, новыми чертами которого являются:

• совершенствование экономических показателей природоохранной деятельности для формирования системы экономических воздействий на экологию производства;

• создание эколого-экономического механизма инновационной деятельности для стимулирования развития рынков экологических услуг, продукции, технологий и оборудования;

Необходимо учитывать и еще один момент. В мировых запасах горючих ископаемых нефть составляет 10%, а уголь – 70%, в то время как их потребление, наоборот, составляет 70% нефти и 10% угля. За сутки потребляется столько топлива, сколько природа может синтезировать за тысячелетие. Вот почему необходимо не только оценивать экологические последствия загрязнения окружающей среды нефтяной промышленностью, но и проводить экономический анализ экономичности использования нефтяного сырья. В настоящий момент наблюдается постоянный рост затрат на проведение мероприятий по охране окружающей среды, а также расходов, связанных с совершенствованием хозяйственного и правового механизма охраны окружающей среды. Однако в теории и практике охраны окружающей среды до сих пор нет единого мнения по поводу ответов по крайней мере на три следующих вопроса, связанных с оценкой природоохранительных затрат: что относить к таким затратам; как считать такие затраты; кто должен платить. Необходимо найти единое решение и выработать общие стандарты, что даст возможность повысить эффективность экологической политики всех стран. Надо также отметить, что успешное решение задач по охране окружающей среды зависит от наличия и состояния методологической базы для определения последствий загрязнения окружающей среды и их экономической оценки. Размеры платежей и выплат, системы компенсаций и штрафов, средства экологических фондов и направления их использования, система экологического страхования – все эти показатели определяются исходя из экономических оценок тех или иных отрицательных последствий или изменений в окружающей среде, вызванных се загрязнением.

«Нефть – кровь российской экономики» .Экспорт нефти играет важнейшую роль в развитии экономики России, а в недалеком прошлом во многом определял возможности экономического развития бывшего Советского Союза. В условиях новой геополитической ситуации значительно сократился экспорт российской нефти в страны ближнего зарубежья. Если в 1992 г. поставки нефти из России в страны СНГ и Прибалтики составили 72 млн т, то в 1998 г. они сократились до 21,9 млн т. Снижение в 1992-1998 гг. экспорта нефти в ближнее зарубежье сопровождалось его ростом в дальнее зарубежье (главным образом, в промышленно развитые страны Европы) с 66 млн т в 1992 г. до 117 млн т в 1998 г. Такой резкий рост объясняется, главным образом, стремлением экспортеров компенсировать потери от обвала мировых цен за счет товарооборота. Сыграли свою роль и обязательства в рамках программы "экспорт за долги". Нефтяная промышленность России в последние годы переживает глубокий спад. Добыча нефти и газового конденсата сократилась по сравнению с 1990 г. более чем на 40%. При этом отрасль продолжает обеспечивать как внутренние потребности страны, так и экспорт. Несмотря на современное кризисное состояние нефтяной промышленности, Россия остается одним из крупнейших в мире производителей, потребителей и экспортеров нефти и продолжает сохранять важные позиции на мировом рынке, занимая третье место в мире по добыче нефти. Для России, как и для большинства стран-экспортеров, нефть – один из важнейших источников валютных поступлений. Удельный вес экспорта нефти и нефтепродуктов в общей валютной выручке страны составляет около 27%. На экспорт поставляются 2/5 добываемой в стране нефти и 1/3 от производимых нефтепродуктов. На долю крупных нефтяных компаний приходится около 80% добычи нефти в стране, а доля экспорта в 1998 г. возросла до 34,1%. В 1998 г. по сравнению с 1997 г. доля экспорта совместных предприятий сократилась с 57,2 до 48,7%.Нефтяная отрасль прошла более глубокую либерализацию и коммерциализацию, чем другие отрасли энергетического сектора экономики. Произошло разрушение командной, централизованной структуры, осуществлена демонополизация, появились новые производственные и сбытовые единицы, вертикально интегрированные компании, расширилась деятельность совместных предприятий, образовался внутренний рынок нефти. За период реформ проведена широкомасштабная либерализация внешнеэкономической деятельности. Установлен новый порядок экспорта нефти и нефтепродуктов, в том числе отменены квоты и лицензии, ликвидирован институт спец экспортеров, пересмотрены условия использования системы экспортных трубопроводов. Таким образом, сделаны дополнительные шаги к переходу на чисто экономические методы регулирования экспорта.

Основная проблема нефтяной промышленности заключается в отсутствии инвестиций. Она еще больше углубилась в результате падения мировых цен на нефть в 1997-1998 гг. и обострения финансово-экономической ситуации в мире и особенно в Юго-Восточной Азии. Начиная с 1997 г. нефтяным компаниям приходилось брать кредиты, в том числе в иностранных банках, для расчетов с бюджетом, а не для того, чтобы разрабатывать новые месторождения. В настоящее время полученные ранее нефтяными компаниями кредиты практически уже использованы, и при отсутствии ресурсов для капитальных вложений в нефтяной комплекс отрасль вряд ли сможет компенсировать падение добычи в связи с истощением месторождений.

Другой проблемой нефтяников является перегруженность отрасли налогами, забирающими более 50% выручки (в западных странах объем налогообложения 28-30%). Система налогообложения фактически не реагирует на изменение рыночных условий. Нефтяники сейчас являются крупнейшими заемщиками, как на внутреннем, так и на внешнем рынках, так как при отсутствии прибыли и даже убыточности экспорта из-за падения цен налоги фактически не уменьшились, что не дает возможности финансировать производство. В целом потребности российского ТЭК в инвестициях на период до 2010 г. оцениваются в 180-210 млрд. долларов. В связи с этим приоритетной задачей является создание стимулирующих условий для роста экспорта нефти и нефтепродуктов как одного из важнейших источников поступления валюты, установление реального курса рубля, снижение налоговой нагрузки, транспортных тарифов, различных таможенных сборов, обеспечение доступных кредитов. Согласно "Энергетической стратегии России до 2010 г." предполагается, что добыча нефти (включая газовый конденсат) будет осуществляться в соответствии с минимальным и максимальным сценариями развития энергетики на уровне 270-310 млн. т в год. Рассматривая перспективы за пределами 2010 г., следует отметить, что стратегия в этой области не может ориентироваться только на сохранение роли России исключительно как крупнейшего в международном сообществе поставщика углеводородного сырья – необходимо создать такие условия, чтобы в экспорте возросла доля готовой продукции и продукции машиностроения.

Экспорт топлива способствует формированию единого энергетического пространства на европейском континенте. Проблема энергообеспечения приобрела глобальный характер, и эффективное ее решение невозможно без широкого международного сотрудничества, без усиления интеграционных процессов в Европе и мировом сообществе в целом. Негативные моменты, связанные с поставкой топлива за рубеж, могут быть преодолены с помощью вмешательства государства в экономику, усиления его регулирующей роли в интересах всего общества.

Перспективы нефтяного экспорта России будут определяться, прежде всего, необходимостью обеспечения валютных поступлений в страну. От их получения зависит структурная перестройка экономики, переход на энергосберегающую модель хозяйствования, преодоление кризисных процессов в стране. Все эти факторы будут способствовать тому, чтобы, по крайней мере, сохранить существующий объем экспорта жидкого топлива. Россия способна сохранить и рас ширить свое присутствие на рынках жидкого топлива за границей. Сокращение нефтедобычи пока, по существу, не сказывается на объемах вывоза нефти. В то же время значительно увеличивать поставки нефти за рубеж также не представляется целесообразным. Это может привести к деформациям в экономике России, потере ею экономической самостоятельности.

Экспорт нефти и нефтепродуктов является важным фактором экономической стабилизации России и позволяет нефтяному комплексу развиваться и решать проблемы поддержания и развития материально-технической базы, повышать надежность и эффективность энергообеспечения России.

В настоящее время человечество переживает углеводородную эру. Нефтяная отрасль является главной для мировой экономики. В нашей стране эта зависимость особенно высока. К сожалению, российская нефтяная промышленность находиться сейчас в состоянии глубокого кризиса. Было перечислено немало ее проблем. Каковы же перспективы развития отрасли? Если продолжать хищническую эксплуатацию месторождений вкупе с большими потерями при транспортировке и нерациональной нефтепереработкой, то будущее нефтяной промышленности представляется весьма мрачным. Уже сегодня сокращение темпов производства составляет в среднем 12 – 15% в год, что чревато полным развалом стратегически важной для державы отрасли. Дальнейшее экстенсивное развитие нефтяной промышленности уже невозможно. Например, большие объемы нефти Восточной Сибири труднодоступны из-за сложного геологического строения, требуют огромных инвестиций в добычу. Следовательно, будут прирастать слабо. Эффект от геологоразведки выше в Западной Сибири, однако в этом регионе высокопродуктивные месторождения уже значительно истощены.

По этим и другим причинам России необходимо реформировать нефтяную промышленность. Для этого в первую очередь нужно:

1) Пересмотреть систему налогообложения, существенно снизив налоги на нефтепроизводителей, однако установить высокие штрафы за нерациональное использование природных богатств и нарушение экологии.

2) Менее жестко регулировать цены внутри страны, поддерживая их несколько ниже мирового уровня. Экспорт же нефти за рубеж вести только по мировым ценам.

3) Частично восстановить централизованное управление отраслью, вытекающее из самой структуры нефтяной промышленности и имеющее много положительных моментов (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления.

4) Сохранение единого экономического пространства – условия выживания топливно-энергетического комплекса.

5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность.

6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая представителей предприятий, добывающих, перерабатывающих и транспортирующих нефть и газ. Это позволит приостановить хаотичные бартерные сделки, подрывающие интересы государства.

7) Создать необходимую систему нормативных актов, обеспечивающую твердую законодательную базу для работы с иностранными компаниями по совместной разработке наиболее сложных месторождений.

8) Стабилизировать объемы геологоразведочных работ с целью восполнения запасов нефти и газа.

Реализация предлагаемых мер в комплексе с другими означала бы приостановку инфляции и укрепление курса рубля (например, стоимость сельскохозяйственной продукции на 40% определяется ценой горюче-смазочных материалов).

Появился бы интерес к приобретению нефтеперерабатывающего оборудования. Стимул к развитию получила бы не только нефтяная промышленность, но и машиностроительные предприятия, нефтехимическая, химическая, металлургическая и другие отрасли.

Таким образом, положение в нефтяной промышленности достаточно сложное, но выход существует – реформирование отрасли. После чего она, конечно, не станет "локомотивом", который потянет всю экономику, однако сможет внести весьма значительный вклад в возрождение России.

С труктура потребности мира в энергии за 1993 год

П риложение 2.

Приложение 3.

Http://fpsliga. ru/referaty_po_mezhdunarodnym_otnosheniyam/referat_neftyanaya_promyshlennost_rossii. html

Республика Башкортостан является одним из крупнейших индустриальных центров России. Под влиянием факторов природно-сырьевого, демографического, научно-технического и экономического характера, обусловивших в совокупности масштаб, уровень и динамику производственно-технического и социально-экономического развития, в республике сложился мощный региональный нефтехимическо-машиностроительный комплекс (производственный потенциал) с развитым производством нефтегазового и сельскохозяйственного сырья.

Обладая развитой многоотраслевой промышленностью, республика входит в первую десятку среди регионов России по объему промышленного производства. По производству целого ряда важнейших видов продукции мы занимаем ведущее место в общероссийском масштабе: сегодня в республике перерабатывается каждая седьмая тонна нефти, выпускается более половины общероссийского производства бутиловых и изобутиловых спиртов, половина кальцинированной соды и химических средств защиты растений, большая часть каустической соды, полиэтилена, синтетических смол и пластмасс.

Современный уровень цивилизации и технологии был бы немыслим без той дешевой и обильной энергии, которую предоставляет нам нефть. Нефть, кроме того, служит сырьем для нефтехимической промышленности, производящей пластмассы, синтетические волокна и множество других органических соединений.

Нефтеперерабатывающие предприятия Башкортостана остаются в авангарде лучших производителей топлива и масел России.

АО “Уфанефтехим” – современное предприятие с набором уникальных технологических процессов, мощной инженерной и производственной базой, квалифицированными кадрами. Все это позволяет получать разнообразную гамму качественного топлива, масел, мазутов, битумов и химических продуктов. На предприятии постоянно совершенствуются технологии переработки нефти и газа, реконструируются и модернизируются промышленные комплексы, многие из которых единственные не только в регионе, но и в стране. Высоко котируется на международном рынке продукция предприятия, более 40% ее экспортируется в ближнее и дальнее зарубежья. Уфимский нефтеперерабатывающий завод занимается нефти и производством автобензина, дизтоплива, мазута топочного и др. Продукция завода поставляется на 800 предприятий Республики Башкортостан и Российской Федерации и на 13 иностранных фирм.

Крупнейшим предприятием нефтеперерабатывающей промышленности страны является Ново-Уфимский нефтеперерабатывающий завод. Он функционирует уже более 40 лет, и все это время вырабатывает высококачественные нефтепродукты для машин и механизмов, нефтехимических производств. Эти продукты: бензины, авиационное и дизельное топливо, масла, парафины, битумы, углеводородные газы и коксы. Многие из них выпускаются только на этом заводе. Немаловажную роль в развитии экономики края играет химическая промышленность. Предприятиями этой области делается все возможное, чтобы увеличить выпуск серы, серной кислоты, каустической и кальцинированной соды, бутиловых и изобутиловых спиртов. Интенсивно наращивается производство прогрессивных видов: полистирола и его сополимеров, поливинилхлоридной смолы, полиэтилена, термопластов, полипропилена. Одно их таких предприятий

Стерлитамакское производственное объединение “Каустик”. Оно занимается переработкой природного сырья, поваренной соли и известняка. Объединение выпускает продукцию более 100 наименований и поставляет ее на предприятия Республики Башкортостан, Российской Федерации, стран СНГ, Англии, Финляндии, Турции, Китая, стран Восточной Европы.

В городе Уфе функционирует государственное предприятие по производству химической продукции – ” Химпром “. Завод выпускает более 40 наименований продукции, ее потребителями являются 334 предприятия Башкирии, 1374 – России и 283 фирмы из 34 стран мира. На выпуске промышленных взрывчатых веществ и продукции производственно-технического назначения специализируется Стерлитамакское производственное объединение “Авангард”. Продукция объединения поставляется в более чем 80 городов Российской Федерации, страны СНГ.

Стерлитамакское производственное объединение “Сода” . Кроме производства основной продукции – соды, предприятие выпускает строительный гипс, барий, тяжелую соду, известняковую муку, газобетон, синтетические моющие средства и многое другое.

ЗАО “Стерлитамакский нефтехимический завод” . Главная задача – отработка аппаратурного оформления и технологических процессов синтеза изопрена и изопренового каучука для своевременной корректировки технической документации строившихся промышленных предприятий, ради решения которой создавался завод, тогда еще считавшийся опытным производством “Стерлитамакского завода синтетического каучука”.

В настоящее время на предприятии выпускается около 20 наименований продукции, ориентированной по нескольким направлениям: фенольные антиоксиданты марки “Агидол”, высокооктановые добавки к бензинам, жидкие каучуки специального назначения, отвердители для эпоксидных смол и прочая нефтехимическая продукция. Более половины из них – это “Агидолы”, аналогов которым в России нет. Около 35 процентов продукции завода экспортируется в более чем двадцать стран ближнего и дальнего зарубежья.

ОАО АНК ” Башнефть ” . Разрабатывает нефтяные месторождения на территориях Республики Башкортостан и Ханты-Мансийского автономного округа (ХМАО) РФ. В Республике Башкортостан нефть добывается на 146 месторождений.

На территории Республики Башкортостан месторождения разрабатываются с 1932 года. Здесь прошли испытания и внедрены самые совершенные системы и технологии разработки, использовались самая передовая отечественная техника и многие разработки зарубежных фирм.

Но в процессе производственной деятельности нефтеперерабатывающих заводов сточными водами, выбросами в атмосферу, отходами производства наносится непоправимый ущерб окружающей среде. Причем отдельными популистами утверждается, что с каждым годом ситуация ухудшается и близок экологический кризис.

Загрязнения окружающей среды – один из факторов, существенно влияющих на здоровье людей, продолжительность жизни, увеличивающий опасность генетических нарушений. Согласно оценкам экспертов Всемирной Организации Здравоохранения (ВОЗ) три четверти всех болезней человека обусловлены неблагополучным состоянием окружающей среды, нарушением естественных связей в природе вследствие ее загрязнения продуктами деятельности цивилизации.

Фактическое положение дел в области охраны окружающей среды на Нефтеперерабатывающихся предприятиях, наоборот, с каждым годом улучшается благодаря усилиям специалистов и значительным финансовым вложениям.

На нефтебазах и автозаправочных станциях принимаются меры по недопущению загрязнения почвы и водоемов нефтепродуктами, отходами производства и потребления.

На предприятиях проводится постоянный контроль соблюдения предельно-допустимого уровня воздействия производства на природную среду.

В последние годы был проведен комплекс работ по организации очистки отходящих газов, повышению эффективности производства элементарной серы и разработке технологии доочистки газовых выбросов. Проведена большая работа по обновлению и модернизации основных фондов природоохранного назначения: сооружений очистки сточных вод и водоподачи.

Http://nreferat. ru/referat/neftepererabatyvauschie-predpriyatiya-bashkortostana/

Добавить комментарий