Переработка нефти

Установки от экстрасенса 700х170

Цель переработки нефти (Нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой её физическое разделение на фракции. Сначала промышленная нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей — этот процесс называется первичной сепарацией нефти [1] .

Нефть поступает на НПЗ (нефтеперерабатывающий завод) в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины, и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

    Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д. Облагораживающие: риформинг, гидроочистка, изомеризация и т. д. Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг — каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С [2] . В результате риформинга бензиновая фракция обогащается ароматическими соединениями, и октановое число бензина повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения индивидуальных ароматических углеводородов, таких как бензол, толуол и ксилолы.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки

Каталитический крекинг — процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит водородсодержащий газ, образующийся при риформинге бензиновых фракций. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изоп из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Http://http-wikipediya. ru/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BD%D0%B5%D1%84%D1%82%D0%B8

Цель переработки нефти (Нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой её физическое разделение на фракции. Сначала промышленная нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей — этот процесс называется первичной сепарацией нефти [1] .

Нефть поступает на НПЗ (нефтеперерабатывающий завод) в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины, и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

    Углубляющие: каталитический крекинг, термический крекинг, висбрекинг, замедленное коксование, гидрокрекинг, производство битумов и т. д. Облагораживающие: риформинг, гидроочистка, изомеризация и т. д. Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т. д.

Каталитический риформинг — каталитическая ароматизация нефтепродуктов (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов). Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С [2] . В результате риформинга бензиновая фракция обогащается ароматическими соединениями, и октановое число бензина повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения индивидуальных ароматических углеводородов, таких как бензол, толуол и ксилолы.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Наиболее распространённый процесс нефтепереработки

Каталитический крекинг — процесс термокаталитической переработки нефтяных фракций с целью получения компонента высокооктанового бензина и непредельных жирных газов. Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит водородсодержащий газ, образующийся при риформинге бензиновых фракций. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Процесс получения изоуглеводородов (изобутан, изопентан, изогексан, изогептан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства (изоп из изопентана, МТБЭ и изобутилен из изобутана) и высокооктановых компонентов автомобильных бензинов.

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Http://ru-wiki. org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BD%D0%B5%D1%84%D1%82%D0%B8

Нефть представляет собой сложную смесь углеводородов с примесью других органических веществ.

Нефтепереработка ― это совокупность технологий получения товарной продукции из сырой нефти. Основными продуктами нефтепереработки являются бензин, керосин, смазочные масла, парафин, вазелин, битум.

Основные технологические процессы переработки нефти состоят из следующих операций:

Обезвоживание и обессоливание. Добытая из недр земли нефть обычно содержит сильно минерализованную буровую воду, количество которой составляет несколько десятков процентов. Транспортировка такой нефти невыгодна и связана с потерями.

Стабилизация. Добываемая нефть всегда содержит растворенные газы — метан и др. При транспортировке нефти эти газы улетучиваются, увлекая с собой углеводороды. Перед дальней транспортировкой сырую нефть освобождают от газов разными способами, в том числе нагреванием.

Первые две операции подготовки сырой нефти к транспортировке по трубопроводу на дальние расстояния могут проводиться как на месте добычи, так и на нефтеперерабатывающем заводе. Основные фазы нефтепереработки, осуществляемые на нефтеперерабатывающем заводе, представлены на рис. 2.15.

Перегонка нефти. Она может осуществляться при давлении близком к атмосферному (прямая перегонка), или под вакуумом (вакуумная перегонка). В результате перегонки получают товарные продукты, например мазут, и полуфабрикаты для дальнейшей переработки.

Деструктивная переработка включает различные виды переработки, важнейшими из которых являются Термический и каталитический крекинги. Первый представляет собой реакции разложения нефти при ее нагревании, сопровождающиеся отщеплением водорода и преобразованием строения сложных молекул. Одновременно с образованием газообразных и легколетучих продуктов (бензина и керосина) происходит новообразование веществ малолетучих и более вязких. В настоящее время в основном проводится каталитический крекинг с использованием искусственных алюмосиликатных или магнийсиликатных катализаторов.

Рис. 2.15. Основные этапы нефтепереработки на нефтеперерабатывающих заводах

Крекинг — это физический процесс разделения нефти на фракции разной плотности. Результатом крекинга являются такие фракции как керосин — самая легкая фракция, которая используется в авиации; бензин, дизельное топливо, затем мазут (топочное топливо); последние фракции крекинга — асфальт и битум.

На современных нефтеперерабатывающих заводах (НПЗ) крекинг представляет собой первую стадию переработки. Вторая стадия переработки называется тоже английским словом — Риформинг. Риформинг — это химический процесс трансформации первичных продуктов нефтепереработки, т. е. продуктов крекинга, в более сложные органические соединения.

В технологическом цикле до переработки есть только один продукт — нефть, после переработки много продуктов — от бензина до пластмасс. Соответственно, сырую нефть транспортировать экономически более целесообразно, поэтому Переработка обычно географически отделена от места добычи.

В настоящее время разработаны десятки технологий получения товарных продуктов. Разнообразие технологий связано с новыми разработками в области физико-химических процессов, применением новых катализаторов и совершенствованием конструкции оборудования. Развитие технологического прогресса в области нефтепереработки инициируется не только достижениями фундаментальной и прикладной науки, но и изменениями рыночного спроса. В последние 10―15 лет снижается потребность в остаточных топливах, вместе с тем повышаются требования к качеству моторного топлива, которое определяется низким содержанием серы и других примесей, растет потребность в дизельном и реактивном топливе, сжиженном нефтяном газе и других продуктах, использующихся в нефтехимии.

За этот же период произошли заметные технологические сдвиги в структуре мировой нефтеперерабатывающей промышленности. Значительно возросла доля углубляющих и облагораживающих процессов переработки, в результате чего значительно увеличился выход наиболее ценных высококачественных нефтепродуктов.

Кроме того, в последнее время достигнут значительный прогресс в энергосбережении на НПЗ. Многие компании применяют интегрированный подход к сбережению энергии и водорода ― так называемые «пинч-технологии», т. е. технологии оптимизации энергозатрат.

Http://studopedia. org/2-65455.html

Нефтепереработка — это многоступенчатый процесс физической и химической обработки сырой нефти, результатом которого является получение комплекса нефтепродуктов. Крекинг нефти (от англ. cracking, расщепление) — высокотемпературная переработка нефти (прим.)

Добываемая из нефтескважин нефть содержит попутный газ, песок, ил, кристаллы солей, а также воду, в которой растворены соли, преимущественно хлориды натрия, кальция и магния, реже – карбонаты и сульфаты. Как правило в начальный период эксплуатации месторождения добывается безводная или малообводненная нефть, но по мере добычи ее обводненность увеличивается и достигает до (94 ± 4) %. Очевидно, что такую “грязную” и сырую нефть, содержащую к тому же легколетучие органические (от метана до бутана) и неорганические (H2S, СО2) газовые компоненты, нельзя транспортировать и перерабатывать на НПЗ без ее тщательной промысловой подготовки.

Очиcтка и удаление коксоотложений, солей жесткости и продуктов распада в нефтепереработке

Инновационные аппараты «ШТОРМ УКМ НП» применяемые в нефтепереработке обеспечивают своим воздействием решение проблемы с удалением кокса, коксоотложений, шлаков, солей жесткости, парафинов, АСПО и мехпримесей на нефтеперерабатывающем оборудовании. В процессе нефтепереработки и крекинга нефти на установках (печах) нагрева нефти аппараты «ШТОРМ УКМ НП» предотвращают и разрушают коксообразования, АСПО, асфальтены, а так же отложения солей жесткости в трубах печей и теплообменниках и на стенках самих змеевиков. Приостанавливают развитие коррозионных процессов на металлической поверхности оборудования и технологических трубопроводах/нефтепроводах.

Эффективность воздействия аппаратов «ШТОРМ УКМ НП» обусловлена выработкой четко рассчитанного мощного магнитогидродинамического резонанса, который распространяется по металлической трубе, как вдоль оси самой трубы, так и перпендикулярно ей и при этом концентрируясь в самой жидкой среде, проходящей по трубе, являющейся продолжением как бы самой конструкции аппарата (сердечником). В нефтепереработке (таких процессах как нагрев, подогрев сырой нефти и нефтепродуктов и при крекинге нефти – препятствуют продуктам распада, которые представляют собой смесь углеводородной сажи и неорганических отложений, выпадать в твердые образования на стенках труб, технологических трубопроводов, участках теплообмена и змеевиках в печах и установках нагрева нефтепродуктов

Присутствие в нефти асфальтенов, парафинов, солей и мехпримесей оказывает вредное влияние на работу оборудования нефтеперерабатывающих заводов при нефтепереработке или крекингу нефти:

1) при большом содержании воды повышается давление в аппаратуре установок перегонки нефти, снижается их производительность, возрастает расход энергии;

2) отложение солей в трубах печей и теплообменников требует их частой очистки, уменьшает коэффициент теплопередачи, вызывает сильную коррозию;

3) при эксплуатации нагревательных печей и установок одной из серьезных и главных проблем, является проблема коксообразования и зашлакованности в трубопроводах теплообменников;

4) накапливаясь в остаточных нефтепродуктах (мазуте, гудроне) ухудшают их качество. Присутствие пластовой воды в нефти удорожает её транспортировку. Повышает энергозатраты на испарение воды и конденсацию паров. Кроме того, присутствие балластной воды повышает вязкость нефтяной системы, вызывает опасность образования кристаллогидратов при пониженной температуре.

Пластовые воды, добываемые с нефтью, содержат, как правило, значительное количество растворимых минеральных солей, растворимые газы, химические соединения, образующие неустойчивые коллоидные растворы (золи), твёрдые неорганические вещества, нерастворимые в воде и находящиеся во взвешенном состоянии.

Механические примеси нефти, состоящие из взвешенных в ней высокодисперсных частиц песка, глины, известняка и других пород, адсорбируясь на поверхности глобул воды, способствуют стабилизации нефтяных эмульсий. При большом содержании механических примесей усиливается износ труб и образование отложений в технологическом оборудовании, что приводит к снижению коэффициента теплопередачи и производительности установок.

Ещё более вредное воздействие, чем вода и механические примеси, на переработку нефти оказывают соли – хлориды, которые попадают в нефть вместе с эмульгированной водой. Особенно Са и Mg.

Аппараты «ШТОРМ УКМ НП» установлены на входных участках технологическгих трубопроводаов перед печами нагрева нефти для предотвращения и удаления коксообразований на змеевиках

Нефтепереработку нефти осуществляют методом перегонки, то есть физическим разделение нефти на фракции. Различают первичную и вторичную переработку нефти. При первичной переработке из нефти удаляют соли и воду. Эффективное обессоливание позволяет уменьшить коррозию оборудования, предотвратить разрушение катализаторов, улучшить качество нефтепродуктов. При первичной переработке, та же происходит и запарафинивание оборудования.

Далее в атмосферных или вакуумно-атмосферных ректификационных колоннах нефть разделяется на фракции. Их используют как готовую продукцию, например низкооктановые бензины, дизельное топливо, керосин, или направляют на последующую переработку.

Вторичная переработка нефти обеспечивает химическое превращение, вплоть до деструкции молекул, полученных при первичной переработке фракций (дистиллятов) в целях увеличения содержания в них углеводородов определенного типа. Основным методом вторичной переработки нефти является крекинг — термический, каталитический и гидрокрекинг.

Крекинг — это процесс переработки нефти и ее фракций, вызывающий распад тяжелых углеводородов, изомеризацию и синтез новых молекул. Он применяется главным образом для получения моторных топлив.

При термическом крекинге тяжелые углеводороды, входящие в состав остаточных продуктов перегонки нефти, расщепляются на легкие углеводороды. Наиболее распространенным является глубокий крекинг керосиногазойлевых фракций для получения бензина. Он проводится при температуре 500 —520 °С и давлении до 5 МПа. Выход бензина при этом достигает 60 — 70 %.

Тяжелые нефтепродукты (мазут, гудрон и др.) подвергаются термическому крекингу низкого давления, осуществляемому при температуре 500 —600 °С, или коксованию. Его проводят в целях получения газойля, используемого для производства моторных топлив, и кокса (выход до 20%), применяемого, например, для изготовления электродов.

Может проводиться высокотемпературный крекинг, или пиролиз, осуществляемый при температуре 650 — 750 °С и давлении, близком к атмосферному. Этот процесс дает возможность перерабатывать тяжелое остаточное нефтесырье в газ, используемый в химической промышленности, а также получать ароматические углеводороды — бензол, толуол, нафталин и др.

Каталитический крекинг служит для получения дополнительного количества высокооктанового бензина и дизельного топлива разложением тяжелых нефтяных фракций с применением катализаторов. Этот процесс позволяет увеличить выход и повысить качество бензина по сравнению с термическим крекингом.

Для переработки средних и тяжелых нефтяных фракций с большим содержанием сернистых и смолистых соединений большое распространение получил каталитический крекинг с использованием водорода — гидрокрекинг. При этом процессе выход светлых нефтепродуктов возрастает до 70%, содержание серы в них снижается.

Процесс получения высокооктанового компонента автомобильных бензинов путем каталитического превращения низкооктановых бензиновых фракций, вырабатываемых при прямой перегонке и крекинге, называется каталитическим риформингом.

Инновационный высокотехнологичный способ защиты теплообменников нагревательных печей от коксообразования.

При эксплуатации нагревательных печей в различных областях промышленности одной из серьезных и главных проблем, является проблема коксообразования в трубопроводах теплообменников. Особенно остро это ощущается в Нефтеперерабатывающей и нефтехимической отраслях, технологические процессы в которых связаны с нагревом углеводородов до высоких температур:

– это печи подогрева нефти, нефтяной эмульсии, газа и газового конденсата в системах сбора, транспортировки и подготовки продукции скважин,

– печи нагрева нефти или газовых смесей в нагревательных печах перед подачей в ректификационные колонки,

В результате процесса оседания на стенках змеевиков теплообменников шлама, который представляет собой смесь углеводородной сажи и неорганических отложений, уменьшается КПД печи из-за снижения пропускной способности и ухудшения процесса теплообмена. Одна из главных проблем, Это проблема коксообразования в печах крекинга и пиролиза, в которых присутствует высокое тепловое напряжение в связи с необходимостью нагрева углеводородов до высоких температур.

Следствием процесса коксообразования является непродолжительный срок службы трубопроводов, необходимость проведения регламентных работ по очистке и замене змеевиков теплообменников, применение в качестве материалов трубопроводов дорогих жаропрочных специальных марок стали для уменьшения их коррозии (прежде всего от контакта с продуктами отложений), применение различных способов уменьшения коксообразования (системы впрыска различных ингибиторов), а так же необходимость установки дорогих узлов подготовки нефтепродуктов по очистке от воды и соли (эксплуатация данных установок создает серьезные проблемы с утилизацией сточных вод и влечет за собой большие затраты электроэнергии).

С задачей предотвращения и очистки от кокса и шлама на технологических элементах печей нагрева нефти успешно справляются устройства «ШТОРМ УКМ НП», показывающие высокий ощутимый видимый результат. Отзыв о работе прибора

К методам вторичной переработки нефти также относятся: алкилирование — для получения изооктана и другого высокооктанового топлива, деструктивная гидрогенизация — для увеличения выхода легких и светлых нефтепродуктов, синтез углеводородов из газов — для превращения в жидкое состояние углеводородов, находящихся в газах крекинга, и др.

Http://mpk-vnp. com/neftepererabotka. html

Просмотров: 4781 Комментариев: 4 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно Скачать

Нефть представляет собой смесь тысяч различных веществ. Полный состав нефтей даже сегодня, когда имеются в наличии самые изощренные средства анализа и контроля: хроматография, ядерно-магнитного резонанса, электронных микроскопов – далеко не все эти вещества полностью определены. Но, несмотря на то, что в состав нефти входят практически все химические элементы таблицы Д. И. Менделеева, её основа всё-таки органическая и состоит из смеси углеводородов различных групп, отличающихся друг от друга своими химическими и физическими свойствами. Независимо от сложности и состава, переработка нефти начинается с первичной перегонки. Обычно перегонку проводят в два этапа – с небольшим избыточным давлением, близким к атмосферному и под вакуумом, при этом используя для подогрева сырья трубчатые печи. Поэтому, установки первичной переработки нефти носят названия АВТ – атмосферно-вакуумные трубчатки.

Смысл процесса довольно прост. Как и все другие соединения, нефть преимущественно содержит жидкие углеводороды, которые имеют свою температуру кипения, то есть температуру, выше которой они испаряются, переходят в паровую фазу.

Перегонка осуществляется в ректификационной колонне, которая представляет собой высокий цилиндрический аппарат, перегороженный множеством ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары углеводородов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают проходить через слой жидкости на каждой тарелке, и по мере прохождения по колонне вверх насыщаются более близкими по температурам кипения фракциями.

Температура в ректификационной колонне снижается по её высоте – от куба, до самой верхней тарелки. Для получения из нефти необходимой фракции, кипящей в заданных температурных пределах, достаточно сделать отводы из колонны на определённой высоте. Каждая фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов. И чем более узкие фракции необходимо получить, тем выше должны быть колонны. Чем больше в них тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку контактировать друг с другом, переходя из газовой фазы в жидкую и обратно. Другими словами пройти многократную конденсацию и испарение с массообменом.

На практике перегонку (или, как говорят специалисты, разгонку), проводят в нескольких колоннах. Обычно их пять. На первой колонне выделяется легкая бензиновая фракция, во второй керосиновая и дизельные фракции. Легкая, нестабильная бензиновая фракция конденсируется в специальном холодильнике-конденсаторе и уже в жидком виде отправляется в стабилизационную колонну, откуда стабильная, широкая бензиновая фракция направляется в колонну для разделения на узкие фракции с последующим использованием их на вторичных процессах. Остатки атмосферной перегонки нефти направляют для извлечения более тяжелых масляных фракций в вакуумную колонну.

Омский НПЗ, при существующей переработке 14 млн. тонн нефти в год, способен перерабатывать до 20 млн. тонн нефти. Наличие резервных мощностей по первичной переработке, гарантирует надёжную, стабильную работу всех вторичных процессов и предприятия в целом.

Нефти различных месторождений заметно отличаются по фрак­ционному составу – содержанию легких, средних и тяжелых дистиллятов. Большинство нефтей содержит 15-25% бензиновых фракций, выкипающих до 180 °С, и 45-55% фракций, перего­няющихся до 300-350 °С.

Основные химические элементы, входящие в состав нефти, – углерод (82-87%), водород (11-14%), сера (0,1-7%), азот (0,001-1,8%), кислород (0,5-1%).

Общее содержание алканов (парафины) в нефтях достигает 30-50%, циклоалканов (циклопарафины, нафтены) – от 25 до 75%. Арены (ароматические углеводороды) содержатся, как пра­вило, в меньшем количестве по сравнению с алканами и цикло-алканами (10-20%).

Соотношения между группами углеводородов придают неф-тям различные свойства и оказывают влияние на выбор метода переработки нефти и номенклатуру получаемых продуктов.

Нефть является основным источником сырья для нефтепере­рабатывающих заводов при получении моторных топлив, масел и мазута. Нефть и продукты ее переработки служат также сы­рьем для синтеза многочисленных химических продуктов: по­лимерных материалов, пластических масс, синтетических каучу-ков и волокон, спиртов, растворителей и др. В перспективе большая часть нефтепродуктов (особенно энергетических топ­лив) может быть замещена альтернативными энергоносителями, в то время как замена нефтяного сырья в качестве источника получения нефтехимических продуктов мало вероятна. Более того, доля нефти, используемой в нефтехимических произ­водствах, в ближайшие годы в мире возрастет до 8% и по про­гнозам в 2000 г. достигнет 20-25%. В связи с этим происходит интеграция нефтеперерабатывающей и нефтехимической про­мышленности и формирование нефтехимических комплексов.

Комбинирование нефтепереработки (первичная переработка, каталитический крекинг, риформинг) с нефтехимическими про­цессами (пиролиз, синтез мономеров, производство пластмасс и др.) значительно расширяет возможности выбора оптимальных схем глубокой переработки нефти, повышает гибкость произ-водственньгх систем для получения моторных топлив или неф­техимического сырья, способствует увеличению их рентабель­ности. В настоящее время имеется большое число процессов и их комбинаций, которые потенциально могут обеспечить глуби­ну переработки нефти вплоть до 100%.

Существуют первичные и вторичные методы переработки неф­ти. Первичными являются процессы разделения нефти на фрак­ции перегонкой, вторичные процессы – это деструктивная (химическая) переработка нефти и очистка нефтепродуктов (фракции перегонки различаются интервалом температур кипе­ния компонентов).

Http://www. bestreferat. ru/referat-246114.html

Нефтепереработка – многоступенчатый процесс физической и химической обработки сырой нефти, результатом которого является получение комплекса нефтепродуктов. Переработку нефти осуществляют методом перегонки, то есть физическим разделением нефти на фракции.

Различают первичные и вторичные процессы переработки нефти. К первичным процессам относится прямая (атмосферно-вакуумная) перегонка нефти, в процессе которой углеводороды нефти не подвергаются химическим превращениям. В результате вторичных процессов (крекинг, риформинг) происходит изменение структуры углеводородов в процессе химических реакций.

Первичная переработка нефти. Прямая перегонка, или разделение нефти на фракции, основана на разной температуре кипения углеводородов разной молекулярной массы и осуществляется при нормальном атмосферном давлении и температуре до 350 °С.

Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих из трубчатой печи, ректификационной колонны, теплообменников и другой аппаратуры.

Вторичная переработка нефти. Прямогонные продукты не удовлетворяют требованиям современной техники и поэтому подвергаются дальнейшей переработке. Прямогонные бензины содержат сернистые соединения, ухудшающие экологические показатели топлив, вызывающие коррозию двигателя, отравляющие катализаторы, поэтому их подвергают гидроочистке.

Гидроочистка – это термокаталитический процесс, обеспечивающий гидрирование сероорганических соединений нефти до сероводорода, который затем улавливается и отделяется. Крекинг – расщепление тяжелых углеводородов для получения дополнительного количества бензинов и дизельных топлив. Различают следующие виды крекинга:

Термический – производится при 500 – 750 °С и давлении 4 – 6 МПа, выход бензина при этом достигает 60 – 70 %.

Риформинг Каталитический – процесс получения высокооктановых компонентов бензинов из бензиновых и лигроиновых фракций нефти.

Алкилирование – введение в молекулы углеводородов соединений алкила. Применяется для получения высокооктановых компонентов бензина.

Существует несколько классификаций нефти. В соответствии с ГОСТ Р нефть классифицируется по физико-химическим свойствам, степени подготовки, содержанию сероводорода и легких меркаптанов на классы, типы, группы, виды. Признаки классификации нефти одновременно являются показателями, по которым осуществляется приемка нефти по качеству.

В Зависимости от массовой доли серы нефть подразделяют на классы 1 – 4:

По Плотности, а при поставке на экспорт – дополнительно по выходу фракций и массовой доле парафина нефть подразделяют на пять типов:

По степени подготовки нефть подразделяют на группы 1 – 3 по таким показателям, как содержание воды, концентрация хлористых солей, давление насыщенных паров, массовая доля механических примесей.

По массовой доле сероводородов и легких меркаптанов нефть подразделяют на 2 вида.

Условное обозначение нефти состоит из четырех цифр, соответствующих обозначениям класса, типа, группы и вида нефти. При поставке нефти на экспорт к обозначению типа добавляется индекс «э».

Технологическая классификация нефти действует в России с 1967 г. и определяет использование ее как сырья для тех или иных нефтепродуктов. По технологической классификации нефти подразделяют на:

Химическая классификацияПодразделяет нефти различных месторождений по их углеводородному составу на шесть групп:

Ассортимент нефтеперерабатывающей промышленности насчитывает более 500 наименований газообразных, жидких и твердых нефтепродуктов в зависимости от их назначения. Нефтепродукты по назначению классифицируются на следующие группы: топлива, нефтяные масла, парафины и церезины, ароматические углеводороды, нефтяные битумы, нефтяной кокс и прочие нефтепродукты.

Топливом – горючие вещества для получения при их сжигании тепловой энергии. Практическая ценность топлива определяется количеством теплоты, выделяющейся при его полном сгорании.

Моторные бензины предназначены для поршневых авиационных и автомобильных двигателей внутреннего сгорания с принудительным воспламенением.

Современные автомобильные и авиационные бензины должны удовлетворять следующим требованиям:

– иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь при любых температурах;

– иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя; не изменять своего состава и свойств при длительном хранении;

– не оказывать вредного влияния на детали топливной системы и окружающую среду.

Автомобильные бензины используются в бензиновых двигателях внутреннего сгорания. Основные показатели качества бензинов – фракционный состав и октановое число. Фракционный состав характеризуется температурой начала кипения, температурами испарения. Октановое число является основным показателем качества бензина, характеризующим его детонационную стойкость. Детонацией – сгорание топливной смеси в цилиндре двигателя. Если марка бензина содержит буквенный индекс «И», то это значит, что октановое число данного бензина определяют исследовательским методом; если только букву «А» – моторным.

Авиационные бензины. Авиационные бензины предназначены для применения в поршневых авиационных двигателях.

Реактивные топлива предназначены для использования в современных самолетах с воздушно-реактивными двигателями.

Дизельное топливо предназначено для быстроходных дизельных и газотурбинных двигателей наземной и судовой техники

Http://megaobuchalka. ru/4/29158.html

Основная ценность нефти заключается в продуктах ее переработки: топливах, смазочных материалах, пластмассах и многих других. Для их получения нефть подвергается сложному комплексу операций с общим названием Нефтепереработка. О ней и пойдет речь в данном разделе.

Переработка нефти – комплекс процессов, которым подвергается нефтяное сырье, с целью получения различных видов нефтепродуктов.

Первым делом добытая нефть проходит процесс первичной сепарации – очистки от нефтяного газа, воды и механических примесей. Этот процесс, в том числе, подготавливает нефть к транспортировке на нефтеперерабатывающий завод.

На нефтеперерабатывающем заводе нефть проходит дополнительную очистку от механических примесей, а также подвергается процессу обессоливания.

Поступившая на нефтеперерабатывающий завод подготовленная нефть отправляется на первичную переработку.

Первичная переработка нефти представляют собой совокупность процессов физического разделения нефти на фракции (фракционирование, или ректификация), при этом каких-либо изменений химического состава не происходит.

На современных нефтеперерабатывающих заводах первичная переработка включает два процесса:

Атмосферная перегонка проводится при температурах до 350 °С, так как дальнейшее нагревание нефти приведет к неконтролируемому разрушению отдельных соединений. На выходе из такой колонны получается несколько отдельных фракций и остаток атмосферной перегонки – Мазут.

Мазут направляют на Вакуумную дистилляцию. Пониженное давление способствует уменьшению температуры кипения некоторых составляющих, что в свою очередь позволяет углубить процесс фракционирования. В данном случае используют мнимые температуры кипения, т. е. температуры, которые достигались бы при нормальном давлении.

Однако температура вакуумной дистилляции также имеет предел – 500-600 °С (мнимая). Не выкипающая при данной температуре субстанция называется Остатком вакуумной перегонкиГудроном.

Большинство дистиллятов, отобранных при атмосферной и вакуумной перегонке, а также остатки подвергаются вторичной переработке как для увеличения выхода некоторых фракций, так и для получения продуктов с определенными характеристиками. В данном случае переработка заключается не в физическом разделении смеси на компоненты, а в химическом изменении состава.

Вторичные процессы нефтепереработки связаны именно с химическими превращениями молекул углеводородов, входящих в ее состав.

Эта стадия переработки включает множество отдельных, зачастую в корне различающихся процессов, которые требуют отдельного рассмотрения.

Некоторые продукты после вторичной переработки уже готовы к применению, другие отправляются на компаундирование.

Компаундированием называют процесс смешения полученных в результате первичной и вторичной переработки дистиллятов, а также специальных присадок в определенных пропорциях для изготовления конечного товарного нефтепродукта, обладающего необходимыми качественными характеристиками.

Http://petrodigest. ru/info/refining

Многие сернистые соединения нефти представляют собой производные тиофена – гетероциклического соединения, молекула которого построена как бензольное кольцо, где две CH – группы заменены на атом серы. Большая часть сернистых соединений сосредоточена в тяжелых фракциях нефтей, соответствующих гидрированным тиофенам и тиофанам. Сера в нефтях – нежелательный компонент. Сернистые соединения обычно имеют резкий неприятный запах и часто коррозионноактивны как в природном виде, так и в виде продуктов горения. Для удаления серы и ее соединений разработано много специальных процессов очистки.

Фенолы (производные ароматических углеводородов, в которых присутствует гидроксильная группа ОН), обнаружены в дистиллятах нефтей США, Японии и Польши. Эти соединения обычно являются продуктом крекинг-процессов, поскольку большей частью обнаруживаются в крекинг-дистиллятах и лишь частично в первичных дистиллятах. Промышленное производство креозолов (производных ароматических углеводородов, в которых присутствуют как гидроксильная, так и метильная группы), из крекинг-дистиллятов калифорнийских нефтей экономически выгодно, даже несмотря на их низкое содержание (менее 0,01%).

Сырая нефть содержит некоторое количество растворенного газа, который соответствует по составу и строению природным газам и состоит из легких парафиновых углеводородов. Жидкая фаза сырой нефти содержит сотни углеводородов и других соединений, имеющих точку кипения от 38 ° С до примерно 430 ° С, причем процентное содержание каждого из углеводородов невелико. Например, бензиновая фракция может содержать до 200 индивидуальных углеводородов, однако в типичном бензине присутствует лишь около 60 углеводородов – от метана с т. кип. –161 ° С до мезитилена (ароматического углеводорода), с т. кип. 165 ° С. Они включают парафины, циклопарафины и ароматические соединения, но олефины отсутствуют. Огромный труд, необходимый для анализа состава углеводородов бензинов, делает практически невозможным проведение этих исследований при обычных шаблонных определениях. Что касается соединений, кипящих при температурах выше 165 ° С, присутствующих в керосине и высококипящих дистиллятах и остатках, трудности идентификации отдельных компонентов возрастают из-за большого количества соединений, перекрывания их температур кипения и возрастающей тенденции высококипящих соединений к разрушению при нагревании. Поэтому все горючие нефтяные продукты подразделяются на фракции по температурным пределам их кипения и по плотности, а не по химическому составу.

Соединения, присутствующие в асфальтах и подобных им тяжелых остаточных продуктах, чрезвычайно сложны. Анализы показывают, что они представляют собой полициклические соединения. См. также КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ.

Конструкция ректификационных колонн в нефтеперерабатывающей промышленности становится произведением искусства, в котором ни одна деталь не остается без внимания. Путем очень точного контроля температуры, давления, а также потоков жидкостей и паров разработаны методы сверхтонкого фракционирования. Эти колонны достигают высоты 60 м и выше и позволяют разделять химические соединения, т. кип. которых отличается менее чем на 6 ° С. Они изолированы от внешних атмосферных воздействий, а все этапы дистилляции автоматически контролируются. Процессы в некоторых таких колоннах происходят в условиях высоких давлений, в других – при давлениях, близких к атмосферному; аналогично температуры изменяются от экстремально высоких до значений ниже –18 ° С.

Выход кокса определяется природой перерабатываемого сырья и степенью рециклизации наиболее тяжелых фракций.

Как правило, из исходного крекируемого объема образуется примерно 15–25% лигроина и 35–50% газойля (т. е. легкого дизельного топлива) наряду с крекинг-газами и коксом. Последний используется в основном как топливо, исключая образующиеся специальные виды кокса (один из них является продуктом обжига и используется при производстве углеродных электродов). Коксование до сих пор пользуется популярностью главным образом как процесс подготовки исходного материала для каталитического крекинга.

Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т. е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430–480 ° С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах.

Целью большинства крекинг-процессов является достижение оптимального выхода бензина. При крекинге происходят распад тяжелых молекул, а также сложные процессы синтеза и перестройки структуры молекул углеводородов. Влияние разных катализаторов различно. Некоторые из них, такие, как оксиды хрома и молибден, ускоряют реакцию дегидрогенизации (отщепление водорода). Глины и специальные алюмосиликатные составы, используемые в промышленном каталитическом крекинге, способствуют ускоренному разрыву углерод-углеродных связей больше, чем отрыву водорода. Они также способствуют изомеризации линейных молекул в разветвленные. Эти составы замедляют полимеризацию (См. ниже) и образование дегтя и асфальта, так что нефти не просто деструктурируются, а обогащаются полезными компонентами.

При термическом риформинге, как и при каталитическом крекинге, основная цель состоит в превращении низкооктановых бензиновых компонентов в более высокооктановые. Процесс обычно применяется к парафиновым фракциям прямой перегонки, кипящим в пределах 95–205 ° С. Более легкие фракции редко подходят для таких превращений.

Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.

Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.

Большинство установок риформинга – это установки с неподвижным слоем. (Процесс каталитического риформинга, в котором используется стационарный катализатор, называется платформингом.) Но под действием давления ок. 50 атм (при получении бензина с умеренным октановым числом) активность платинового катализатора сохраняется примерно в течение месяца. Установки, в которых используется один реактор, приходится останавливать на несколько суток для регенерации катализатора. В других установках используется несколько реакторов с одним добавочным, где проводится необходимая регенерация. Жизнь платинового катализатора сокращается при наличии серы, азота, свинца и других «ядов». Там, где эти компоненты представляют проблему, обычно до входа в реактор проводят предварительную обработку смеси водородом (т. н. гидроочистка, когда до подачи в реактор нефтяных погонов – бензинов прямой перегонки – их пропускают через водородсодержащие газы, которые связывают вредные компоненты и снижают их содержание до допустимых пределов). Некоторые реакторы с неподвижным слоем заменяются на реакторы с непрерывной регенерацией катализатора. В этих условиях катализатор перемещается через реактор и непрерывно регенерируется.

Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

1) дегидрирование нафтенов и их превращение в соответствующие ароматические соединения;

2) превращение линейных парафиновых углеводородов в их разветвленные изомеры;

3) гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;

4) образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.

Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т. п.

Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0–15 ° C, а затем 20–40 ° С.

Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями. Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан. Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т. е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду).

Давления, используемые в современных процессах гидрокрекинга, составляют от примерно 70 атм для превращения сырой нефти в сжиженный нефтяной газ ( LP – газ) до более чем 175 атм, когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков – мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном – высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе.

Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75–80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20–30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации.

Необходимость уменьшения загрязнения воздуха в промышленных районах США, Западной Европы и Японии обусловливает значительное увеличение использования процессов гидрирования для десульфатизации дистиллятов и остаточных топлив. Процессы гидрокрекинга, предназначенные главным образом для удаления серы при невысоких требованиях к выходу продукции, известны как «гидроочистка».

Газообразные легкие фракции прежде всего проходят через вакуумную установку для сжижения, затем полученный на этой стадии газойль проходит десульфуризацию гидроочисткой, прежде чем вновь смешивается с некоторыми вакуумными остатками и другими низкосернистыми легкими фракциями сырой нефти.

Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.

В нефтяной промышленности используются два метода, делающие это сравнение более реальным, – моторный метод и исследовательский метод. Октановое число определяется как среднее из двух таких определений.

Http://files. school-collection. edu. ru/dlrstore/5240cee4-f27e-27c0-7097-d27b4ffefe8c/1004148A. htm

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Поэтому сырую нефть транспортируют танкерами или с помощью трубопроводов к нефтеперерабатывающим заводам.

Переработка нефти включает целый ряд физических и химических процессов: фракционную перегонку, крекинг, риформинг и очистку от серы.

Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Характер этих процессов, а также число и состав получаемых фракций нефти зависят от состава сырой нефти и от требований, предъявляемых к различным ее фракциям.

Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 18.6 указаны диапазоны температур кипения и состав различных фракций нефти, а на рис. 18.11 изображена схема устройства первичной дистилляционной (ректификационной) колонны для перегонки нефти. Перейдем теперь к описанию свойств отдельных фракций нефти.

Лаборатория экстракции и перегонки в Индийском нефтехимическом институте.

Газовая фракция. Газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской (нефтяной) газ. Ее удаляют из сырой нефти до того, как подвергнуть ее первичной перегонке, или же выделяют из бензиновой фракции после первичной перегонки. Нефтезаводской газ используют в качестве газообразного горючего или же подвергают его сжижению под давлением, чтобы получить сжиженный нефтяной газ. Последний поступает в продажу в качестве жидкого топлива или используется как сырье для получения этилена на крекинг-установках.

Бензиновая фракция. Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу (см. ниже), чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется разд. 15.2). Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлороэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца(II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и образуя бромид Поскольку бромид представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами (см. разд. 15.2).

Лигроин (нафта). Эту фракцию перегонки нефти получают в промежутке между бензиновой и керосиновой фракциями. Она состоит преимущественно из алканов (табл. 18.7).

Лигроин получают также при фракционной перегонке легкой масляной фракции, получаемой из каменноугольной смолы (см. табл. 18.5). Лигроин из каменноугольной смолы имеет высокое содержание ароматических углеводородов.

Большую часть лигроина, получаемого при перегонке нефти, подвергают риформингу для превращения в бензин. Однако значительная его часть используется как сырье для получения других химических веществ (см. ниже).

Керосин. Керосиновая фракция перегонки нефти состоит из алифатических алканов, нафталинов (см. выше) и ароматических углеводородов. Часть ее подвергается

Таблица 18.7. Углеводородный состав лигроиновой фракции типичной ближневосточной нефти

Очистке для использования в качестве источника насыщенных углеводородов-парафинов, а другая часть подвергается крекингу с целью превращения в бензин. Однако основная часть керосина используется в качестве горючего для реактивных самолетов.

Газойль. Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.

Мазут. Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях, электростанциях и в корабельных двигателях. Однако некоторую часть мазута подвергают вакуумной перегонке для получения смазочных масел и парафинового воска. Смазочные масла подвергают дальнейшей очистке путем экстракции растворителя. Темный вязкий материал, остающийся после вакуумной перегонки мазута, называется «битум», или «асфальт». Он используется для изготовления дорожных покрытий.

Мы рассказали о том, как фракционная и вакуумная перегонка наряду с экстракцией растворителями позволяет разделить сырую нефть на различные практически важные фракции. Все эти процессы являются физическими. Но для переработки нефти используются еще и химические процессы. Эти процессы можно подразделить на два типа: крекинг и риформинг.

В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы, из которых состоят низкокипящие фракции. Крекинг необходим потому, что потребности в низкокипяших фракциях нефти – особенно в бензине — часто опережают возможности их получения путем фракционной перегонки сырой нефти.

В результате крекинга кроме бензина получают также алкены, необходимые как сырье для химической промышленности. Крекинг в свою очередь подразделяется на три важнейших типа: гидрокрекинг, каталитический крекинг и термический крекинг.

Гидрокрекинг. Эта разновидность крекинга позволяет превращать высококипящие фракции нефти (воски и тяжелые масла) в низкокипящие фракции. Процесс гидрокрекинга заключается в том, что подвергаемую крекингу фракцию нагревают под очень высоким давлением в атмосфере водорода. Это приводит к разрыву крупных молекул и присоединению водорода к их фрагментам. В результате образуются насыщенные молекулы небольших размеров. Гидрокрекинг используется для получения газойля и бензинов из более тяжелых фракций.

Каталитический крекинг. Этот метод приводит к образованию смеси насыщенных и ненасыщенных продуктов. Каталитический крекинг проводится при сравнительно

Невысоких температурах, а в качестве катализатора используется смесь кремнезема и глинозема. Таким путем получают высококачественный бензин и ненасыщенные углеводороды из тяжелых фракций нефти.

Термический крекинг. Крупные молекулы углеводородов, содержащихся в тяжелых фракциях нефти, могут быть расщеплены на меньшие молекулы путем нагревания этих фракций до температур, превышающих их температуру кипения. Как и при каталитическом крекинге, в этом случае получают смесь насыщенных и ненасыщенных продуктов. Например,

Термический крекинг имеет особенно важное значение для получения ненасыщенных углеводородов, например этилена и пропена. Для термического крекинга используются паровые крекинг-установки. В этих установках углеводородное сырье сначала нагревают в печи до 800°С, а затем разбавляют его паром. Это увеличивает выход алкенов. После того как крупные молекулы исходных углеводородов расщепятся на более мелкие молекулы, горячие газы охлаждают приблизительно до 400°С водой, которая превращается в сжатый пар. Затем охлажденные газы поступают в ректификационную (фракционную) колонну, где они охлаждаются до 40°С. Конденсация более крупных молекул приводит к образованию бензина и газойля. Несконденсировавшиеся газы сжимают в компрессоре, который приводится в действие сжатым паром, полученным на стадии охлаждения газов. Окончательное разделение продуктов производится в колоннах фракционной перегонки.

Таблица 18.8. Выход продуктов крекинга с паром из различного углеводородного сырья (масс. %)

В европейских странах главным сырьем для получения ненасыщенных углеводородов с помощью каталитического крекинга является лигроин. В Соединенных Штатах главным сырьем для этой цели служит этан. Его легко получают на нефтеперерабатывающих заводах как один из компонентов сжиженного нефтяного газа или же из природного газа, а также из нефтяных скважин как один из компонентов природных сопутствующих газов. В качестве сырья для крекинга с паром используются также пропан, бутан и газойль. Продукты крекинга этана и лигроина указаны в табл. 18.8.

Реакции крекинга протекают по радикальному механизму (см. разд. 18.1).

В отличие от процессов крекинга, которые заключаются в расщеплении более крупных молекул на менее крупные, процессы риформинга приводят к изменению структуры молекул или к их объединению в более крупные молекулы. Риформинг используется в переработке сырой нефти для превращения низкокачественных бензиновых фракций в высококачественные фракции. Кроме того, он используется с целью получения сырья для нефтехимической промышленности. Процессы риформинга могут быть подразделены на три типа: изомеризация, алкилирование, а также циклизация и ароматизация.

Изомеризация. В этом процессе молекулы одного изомера подвергаются перегруппировке с образованием другого изомера. Процесс изомеризации имеет очень важное значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Мы уже указывали, что эта фракция содержит слишком много неразветвленных алканов. Их можно превратить в разветвленные алканы, нагревая данную фракцию до под давлением 20-50 атм. Этот процесс носит название термического риформинга.

Для изомеризации неразветвленных алканов может также применяться каталитический риформинг. Например, бутан можно изомеризовать, превращая его в – метил-пропан, с помощью катализатора из хлорида алюминия при температуре 100°С или выше:

Эта реакция имеет ионный механизм, который осуществляется с участием карбкатионов (см. разд. 17.3).

Алкилирование. В этом процессе алканы и алкены, которые образовались в результате крекинга, воссоединяются с образованием высокосортных бензинов. Такие алканы и алкены обычно имеют от двух до четырех атомов углерода. Процесс проводится при низкой температуре с использованием сильнокислотного катализатора, например серной кислоты:

Эта реакция протекает по ионному механизму с участием карбкатиона

Циклизация и ароматизация. При пропускании бензиновой и лигроиновой фракций, полученных в результате первичной перегонки сырой нефти, над поверхностью таких катализаторов, как платина или оксид на подложке из оксида алюминия, при температуре 500°С и под давлением 10-20 атм происходит циклизация с последующей ароматизацией гексана и других алканов с более длинными неразветвленными цепями:

Отщепление водорода от гексана, а затем от циклогексана называется дегидрированием. Риформинг этого типа в сущности представляет собой один из процессов крекинга. Его

Называют платформингом, каталитическим риформингом или просто риформингом. В некоторых случаях в реакционную систему вводят водород, чтобы предотвратить полное разложение алкана до углерода и поддержать активность катализатора. В этом случае процесс называется гидроформингом.

Сырая нефть содержит сероводород и другие соединения, содержащие серу. Содержание серы в нефти зависит от месторождения. Нефть, которую получают из континентального шельфа Северного моря, имеет низкое содержание серы. При перегонке сырой нефти органические соединения, содержащие серу, расщепляются, и в результате образуется дополнительное количество сероводорода. Сероводород попадает в нефтезаводской газ или во фракцию сжиженного нефтяного газа (см. выше). Поскольку сероводород обладает свойствами слабой кислоты, его можно удалить, обрабатывая нефтепродукты каким-либо слабым основанием. Из полученного таким образом сероводорода можно извлекать серу, сжигая сероводород в воздухе и пропуская продукты сгорания над поверхностью катализатора из оксида алюминия при температуре 400 С. Суммарная реакция этого процесса описывается уравнением

Приблизительно 75% всей элементной серы, используемой в настоящее время промышленностью несоциалистических стран, извлекают из сырой нефти и природного газа (см. разд. 15.4).

Http://edu. sernam. ru/book_act_chem2.php? id=123

Нефть и продукты ее преобразования были известны еще в далеком прошлом, их использовали для освещения или в лечебных целях. Потребность в нефти и нефтепродуктах резко возросла в начале XX в. в связи с появлением двигателей внутреннего сгорания и быстрым развитием промышленности.

В настоящее время нефть и газ, а также получаемые из них продукты применяются во всех отраслях мирового хозяйства.

Нефть и газ используются не только в качестве топлива, но и в качестве ценного сырья для химической промышленности. Великий русский ученый Д. И. Менделеев говорил, что сжигать нефть в топках – преступление, так как она является ценным сырьем для получения множества химических продуктов. Из нефти и газа в настоящее время вырабатывается огромное число продуктов, которые используются в промышленности, сельском хозяйстве, в быту (минеральные удобрения, синтетические волокна, пластмассы, каучук и т. д.). В последние годы во многих странах мира ведутся исследования с целью переработки нефти и нефтепродуктов при помощи микроорганизмов в белки, которые могут быть использованы как корм для скота.

Экономика государств зависит от нефти больше, чем от любого другого продукта. Поэтому нефть с начала ее промышленной добычи и до настоящего времени является предметом острой конкурентной борьбы, причиной многих международных конфликтов и войн.

Зависимость государства от нефти как сырья или способа экономического влияния, определяет её уровень развития и положение на мировой арене.

Итак, нефть играет очень значимую роль в современном мире. Это не только одно из важнейших полезных ископаемых, которое является сырьем для получения невероятного множества веществ и мощным энергетическим ресурсом, но и крупнейший объект международной торговли, и неотъемлемое звено экономических отношений.

Нефть – это природная горючая маслянистая жидкость, относящаяся к группе горных осадочных пород, одно из важнейших полезных ископаемых Земли. Отличается исключительно высокой теплотворностью: при горении выделяет значительно больше тепловой энергии, чем другие горючие смеси.

Нефть состоит главным образом из углерода – 80-85% и водорода – 10-15% от массы нефти. Кроме них в нефти присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5 – 8 %. В незначительных концентрациях в нефти встречаются ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий и др. Их общее содержание не превышает 0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоит нефть. Кислород и азот находятся в нефти только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

В состав нефти входит около 425 углеводородных соединений. Нефть в природных условиях состоит из смеси метановых, нафтеновых и ароматических углеводородов. В нефти также содержится некоторое количество твердых и газообразных растворенных углеводородов. Количество природного газа в кубометрах, растворенного в 1 т нефти в пластовых условиях, называется газовым фактором.

В нефтяных (попутных) газах кроме метана и его газообразных гомологов содержатся пары пентана, гексана и гептана.

Парафины – насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвлённого строения. Подразделяются на следующие основные группы:

Нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп. Изопарафины – с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками и пониженной, по сравнению с нормальными парафинами, температурой застывания.

Нафтены (циклопарафины) – насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

Ароматические углеводороды – ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом.

Олефины – углеводороды нормального, разветвлённого, или циклического строения, в которых связи атомов углерода, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

Наряду с углеводородами в нефти присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу – гетеросоединений. В нефти также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений – меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения – меркаптиды. В нефтях меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH. Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок. Главную массу неуглеводородных соединений в нефтях составляют асфальтово-смолистые компоненты. Это темно-окрашенные вещества, содержащие помимо углерода и водорода кислород, азот и серу. Они представлены смолами и асфальтенами. Смолистые вещества заключают около 93% кислорода в нефти. Кислород в нефти встречается в связанном состоянии также в составе нафтеновых кислот (около 6%), фенолов (не более 1%), а также жирных кислот и их производных. Содержание азота в нефтях не превышает 1%. Основная его масса содержится в смолах. Содержание смол в нефтях может достигать 60% от массы нефти, асфальтенов – 16%. Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белой” нефти смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.

Важнейшими свойствами нефти являются плотность, содержание серы, фракционный состав, вязкость и содержание воды, хлористых солей и механических примесей.

Плотность нефти, зависит от содержания тяжелых углеводородов, таких как парафины и смолы.

По плотности можно ориентировочно судить об углеводородном составе нефти и нефтепродуктов, поскольку ее значение для углеводородов различных групп различно. Более высокая плотность сырой нефти указывает на большее содержание ароматических углеводородов, а более низкая – на большее содержание парафиновых углеводородов. Углеводороды нафтеновой группы занимают промежуточное положение. Таким образом, величина плотности до известной степени будет характеризовать не только химический состав и происхождение продукта, но и его качество. Наиболее качественными и ценными являются легкие сорта сырой нефти. Чем меньше плотность сырой нефти, тем легче процесс ее переработки нефти и выше качество получаемых из нее нефтепродуктов.

По содержанию серы сырую нефть в Европе и России подразделяют на малосернистую (до 0,5%), сернистую (0,51-2%) и высокосернистую (более 2%).

Нефть является смесью нескольких тысяч химических соединений, большинство из которых углеводороды; каждое из этих соединений характеризуется собственной температурой кипения, что является важнейшим физическим свойством нефти, широко используемым в нефтеперерабатывающей промышленности.

Присутствие механических примесей в составе нефти объясняется условиями ее залегания и способами добычи. Механические примеси состоят из частиц песка, глины и других твердых пород, которые, оседая на поверхности воды, способствуют образованию нефтяной эмульсии. В отстойниках, резервуарах и трубах при подогреве нефти часть механических примесей оседает на дне и стенках, образуя слой грязи и твердого осадка. При этом уменьшается производительность оборудования, а при отложении осадка на стенках труб уменьшается их теплопроводность. Массовая доля механических примесей до 0,005% включительно оценивается как их отсутствие.

Вязкость определяется структурой углеводородов, составляющих нефть, т. е. их природой и соотношением, она характеризует свойства распыления и перекачивания нефти и нефтепродуктов: чем ниже вязкость жидкости, тем легче осуществлять ее транспортировку по трубопроводам, производить ее переработку. Особенно важна эта характеристика для определения качества масленых фракций, получаемых при переработке нефти и качества стандартных смазочных масел. Чем больше вязкость нефтяных фракций, тем больше температура их выкипания.

Технологические процессы нефтеперерабатывающего завода принято классифицировать на две группы: физические и химические.

Физическими (массообменными) процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений и удаление (извлечение) из фракций нефти, нефтяных остатков, масляных фракций, газоконденсата и газов нежелательных компонентов (полициклических аренов, асфальтенов, тугоплавких парафинов), неуглеводных соединений.

В химических процессах переработка нефтяного сырья осуществляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных нефтеперерабатывающих заводах, по способу активации химические реакции подразделяют на термические и каталитические.

Нефть, извлекаемая из скважин, всегда содержит в себе попутный газ, механические примеси и пластовую воду, в которой растворены различные соли. Очевидно, что такую «грязную» и сырую нефть, содержащую к тому же легколетучие органические и неорганические газовые компоненты, нельзя транспортировать и перерабатывать на нефтеперерабатывающих заводах без тщательной ее промысловой подготовки.

Нефть подготавливается к переработке в 2 этапа – на нефтепромысле и на нефтеперерабатывающем заводе с целью отделения от нее попутного газа, механических примесей, воды и минеральных солей.

Перегонка (фракционирование) – это процесс физического разделения нефти и газов на фракции (компоненты), отличающиеся друг от друга и от исходной смеси по температурным пределам кипения.

Перегонка с ректификацией – наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах – ректификационных колоннах путем многократного противоточного контактирования паров и жидкости. Контактирование потоков пара и жидкости может производиться либо непрерывно (в насадочных колоннах), либо ступенчато (в тарельчатых ректификационных колоннах). При взаимодействии встречных потоков пара и жидкости на каждой ступени контактирования (тарелке или слое насадки) между ними происходит тепло – и массообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами: пар несколько обогащается низкокипящими, а жидкость – высококипящими компонентами. При достаточно длительном контакте и высокой эффективности контактного устройства пар и жидкость, уходящие из тарелки или слоя насадки, могут достичь состояния равновесия, т. е. температуры потоков станут одинаковыми и при этом их составы будут связаны уравнениями равновесия. Такой контакт жидкости и пара, завершающийся достижением фазового равновесия, принято называть равновесной ступенью, или теоретической тарелкой. Подбирая число контактных ступеней и параметры процесса, можно обеспечить любую требуемую четкость фракционирования нефтяных смесей. Место ввода в ректификационную колонну нагретого перегоняемого сырья называют питательной секцией (зоной), где осуществляется однократное испарение. Часть колонны, расположенная выше питательной секции, служит для ректификации парового потока и называется концентрационной (укрепляющей), а другая – нижняя часть, в которой осуществляется ректификация жидкого потока, – отгонной, или исчерпывающей, секцией.

Простые ректификационные колонны обеспечивают разделение исходной смеси на два продукта: ректификат (дистиллят), выводимый с верха колонны в парообразном состоянии, и остаток – нижний жидкий продукт ректификации.

Сложные ректификационные колонны разделяют исходную смесь более чем на два продукта. Различают сложные колонны с отбором дополнительных фракций непосредственно из колонны в виде боковых погонов и колонны, у которых дополнительные продукты отбирают из специальных отпарных колонн, именуемых стриппингами. Последний тип колонн нашел широкое применение на установках первичной перегонки нефти.

Четкость погоноразделения – основной показатель эффективности работы ректификационной колоны – характеризует их разделительную способность. Она может быть выражена в случае бинарных смесей концентрацией целевого компонента в продукте.

Применительно к ректификации нефтяных смесей она обычно характеризуется групповой чистотой отбираемых фракций, т. е. долей компонентов, выкипающих по кривой истинной температуры кипения до заданной температурной границы деления смеси в отобранных фракциях (дистиллятах или остатке), а также отбором фракций от потенциала. Как косвенный показатель четкости (чистоты) разделения на практике часто используют такую характеристику, как налегание температур кипения соседних фракций в продукте. В промышленной практике обычно не предъявляют сверхвысоких требований по отношению к четкости погоноразделения, поскольку для получения сверхчистых компонентов или сверхузких фракций потребуются соответствующие сверхбольшие капитальные и эксплуатационные затраты.

При переработке нефти образуются газы, которые являются неразветвленными алканами: бутан, пропан, этан. Промышленное название данной фракции – нефтяной газ. Газовую фракцию нефти удаляют еще до первичной перегонки нефти или же выделяют из бензиновой фракции уже после перегонки. Нефтяной газ применяется в качестве горючего или же его сжижают для получения сжиженного газа, который затем используется в качестве сырья для получения этилена.

Она представляет собой смесь углеводородов и используется для получения различных видов моторного топлива. При более тонком разделении этой фракции получают петролейный эфир и бензин. Качество бензина определяется октановым числом.

Получается между бензиновой и керосиновой фракциями. Она практически полностью состоит из алканов. Большую часть лигроина подвергают риформингу, превращая его тем самым в бензин. Лигроин также используют в качестве сырья для получения других химических веществ.

Фракция состоит из алифатических алканов, ароматических углеводородов и нафталинов. После очистки одна часть керосиновой фракции используется для получения углеводородов-парафинов, а другую часть превращают в бензин. Однако большая часть керосина применяется в качестве топлива для реактивных самолетов.

Данная фракция нефти имеет другое, более распространенное название – дизельное топливо. Из одной ее части получают нефтезаводской газ и бензин, однако по большому счету она применяется в качестве топлива для дизельных двигателей и промышленных печей.

Мазут получают после того, как все остальные фракции из нефти будут удалены. Обычно мазут и то, что делают из нефти, используют в качестве жидкого топлива для получения пара и нагревания котлов на электростанциях, промышленных предприятиях и кораблях. Однако определенную часть мазута перегоняют для получения парафинового воска и смазочных масел. После вакуумной перегонки мазута образуется вещество темного цвета, которое носит название «асфальт» или «битум». Применяется битум при строительстве дорог.

Продукты первичной переработки нефти, как правило, не являются товарными нефтепродуктами. Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1% и более, тогда как норматив составляет, в зависимости от марки, от 0,005% до 0,2%. Кроме того, тёмные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

В связи с этим, нефтяные фракции поступают на установки вторичных процессов, призванные осуществить улучшение качества нефтепродуктов и углубление переработки нефти.

Под термолитическими процессами подразумевают процессы химического превращений нефтяного сырья.

Коксование – длительный процесс термолиза тяжелых остатков или ароматизированных высококипящих дистиллятов при невысоком давлении и температуре 470-540 °С. Основное целевое назначение коксования – производство нефтяных коксов различных марок в зависимости от качества перерабатываемого сырья. Побочные продукты коксования – малоценный газ, бензины низкого качества и газойли.

Пиролиз – высокотемпературный (750-800 °С) термолиз газообразного, легкого или среднего дистилляционного углеводного сырья, проводимый при низком давлении и исключительно малой продолжительности. Основным целевым назначением пиролиза является производство алкенсодержащих газов. В качестве побочного продукта при пиролизе получают высокоароматизированную жидкость широкого фракционного состава с большим содержанием алкенов.

Процесс получения нефтяных пеков (пекование) – новый внедряемый в отечественную нефтепереработку процесс термолиза (карбонизации) тяжелого дистилляционного или остаточного сырья, проводимый при пониженном давлении, умеренной температуре (360-420 °С) и длительной продолжительности. Помимо целевого продукта – пека в процессе получают газы и керосино-газойлевые фракции.

Катализ – многостадийный физико-химический процесс избирательного изменения механизма и скорости возможных химических реакций веществом – катализатором, образующим с участниками реакций промежуточные химические соединения.

Получение бензина из керосина осуществляется его крекингом. Крекинг изобрел русский инженер В. Г. Шухов в 1891 г.

Процесс крекинга происходит с разрывом углеводородных цепей и образованием более простых предельных и непредельных углеводородов:

Расщепление молекул углеводородов протекает по радикальному механизму.

Процесс получения битумов – средне-температурный продолжительный процесс окислительной дегидроконденсации (карбонизации) тяжелых нефтяных остатков (гудронов, асфальтитов диасфальтизации), проводимый при атмосферном давлении и температуре 250-300 °С.

Процесс получения технического углерода (сажи) – исключительно высокотемпературный (свыше 1200 °С) термолиз тяжелого высокоароматизированного дистилляционного сырья, проводимый при низком давлении и малой продолжительности. Этот процесс можно рассматривать как жесткий пиролиз, направленный не на получение алкенсодержащих газов, а на производство твердого высокодисперсного углерода – продукта глубокого термического разложения углеводного сырья, по существу на составляющие элементы.

Октановое число – показатель, характеризующий детонационную стойкость топлив для карбюраторных двигателей внутреннего сгорания. Численно равно содержанию (в % по объему) изооктана в его смеси с н-гептаном, при котором эта смесь эквивалентна по детонационной стойкости исследуемому топливу в стандартных условиях испытаний. Изооктан трудно окисляется даже при высоких степенях сжатия, и его детонационная стойкость условно принята за 100 единиц. Сгорание в двигателе н-гептана даже при невысоких степенях сжатия сопровождается детонацией, поэтому его детонационная стойкость принята за 0. Для оценки октанового числа выше 100 создана условная шкала, в которой используют изооктан с добавлением различных количеств тетраэтилсвинца.

Детонационные испытания проводят на полноразмерном автомобильном двигателе или на специальных установках с одноцилиндровыми двигателями. На полноразмерных двигателях в стендовых условиях определяют фактическое октановое число (ФОЧ), в дорожных условиях – дорожное октановое число (ДОЧ). На специальных установках с одноцилиндровым двигателем определение октанового числа принято проводить в двух режимах: более жестком (моторный метод) и менее жестком (исследовательский метод). Октановое число топлива, установленное исследовательским методом, как правило, несколько выше, чем октановое число, установленное моторным методом. Разность между этими октановыми числами характеризует чувствительность топлива к режиму работы двигателя.

Для повышения октанового числа бензина применяют Каталитический риформинг – химическое превращение углеводородов, входящих в их состав, до 92-100 пунктов. Процесс ведётся в присутствии алюмо-платино-рениевого катализатора. Повышение октанового числа происходит за счёт увеличения доли ароматических углеводородов. Научные основы процесса разработаны нашим соотечественником – выдающимся русским химиком Н. Д.Зелинским в начале ХХ века.

Выход высокооктанового компонента составляет 85-90% на исходное сырьё. В качестве побочного продукта образуется водород, который используется на других установках НПЗ. Мощность установок риформинга составляет от 300 до 1000 тыс. тонн и более в год по сырью.

Оптимальным сырьём является тяжёлая бензиновая фракция с интервалами кипения 85-180°С. Сырьё подвергается предварительной гидроочистке – удалению сернистых и азотистых соединений, даже в незначительных количествах необратимо отравляющих катализатор риформинга.

Каталитический риформинг на некоторых НПЗ используется также в целях производства ароматических углеводородов – сырья для нефтехимической промышленности. Продукты, полученные в результате риформинга узких бензиновых фракций, подвергаются разгонке с получением бензола, толуола и смеси ксилолов.

В процессе риформинга происходит изомеризация углеводородов линейного строения:

Образование более высоких сортов бензина, за счет воссоединения алканов и алкенов:

А также их превращение в циклические и ароматические углеводороды, что приводит к повышению октанового числа:

Бензин с более высоким значением октанового числа также получают в результате каталитического крекинга. Исследования Э. Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса. Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т. е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430–480°С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах.

Экологические проблемы, связанные с нефтью значительны и многообразны. Утечка даже небольшого количества нефти наносит часто непоправимый ущерб окружающей среде, а также экономике. Разработка безопасных способов нахождения месторождений нефти, её добычи и переработки является одной из наиболее приоритетных мировых задач. От этого зависит не только состояние природы сегодня, но и её состояние в будущем.

Экологические последствия разливов нефти носят разрушительный характер, поскольку нефтяное загрязнение нарушает многие естественные процессы и взаимосвязи, существенно изменяет условия обитания всех видов живых организмов и накапливается в биомассе.

Нефть является продуктом длительного распада и очень быстро покрывает поверхность вод плотным слоем нефтяной пленки, которая препятствует доступу воздуха и света.

Через 10 минут после того, как в воде оказалась одна тонна нефти, образуется нефтяное пятно, толщина которого составляет 10 мм. С течением времени толщина пленки уменьшается до менее 1 миллиметра, в то время как пятно расширяется. Одна тонна нефти способна покрыть площадь до 12 квадратных километров. Дальнейшие изменения происходят под воздействием ветра, волн и погоды. Обычно пятно дрейфует по воле ветра, постепенно распадаясь на более мелкие пятна, которые способны удаляться на значительные расстояния от места разлива. Сильные ветры и штормы ускоряют процесс дисперсии пленки. Во время катастроф не происходит одномоментной массовой гибели рыб, пресмыкающихся, животных и растений. Однако в средне – и долгосрочной перспективе влияние разливов нефти крайне негативно. Разлив тяжелее всего бьет по организмам, обитающим в прибрежной зоне, особенно обитающим на дне или на поверхности.

Птицы, которые большую часть жизни проводят на воде, наиболее уязвимы к разливам нефти на поверхности водоемов. Внешнее загрязнение нефтью разрушает оперение, спутывает перья, вызывает раздражение глаз. Гибель является результатом воздействия холодной воды. Разливы нефти от средних до крупных вызывают обычно гибель 5 тысяч птиц. Очень чувствительны к воздействию нефти яйца птиц. Небольшое количество некоторых типов нефти может оказаться достаточным для гибели в период инкубации.

Если авария произошла неподалеку от города или иного населенного пункта, то отравляющий эффект усиливается, потому что нефть образуют опасные "коктейли" с иными загрязнителями человеческого происхождения.

Разливы нефти приводят к гибели морских млекопитающих. Морские выдры, полярные медведи, тюлени, новорожденные морские котики погибают наиболее часто. Загрязненный нефтью мех начинает спутываться и теряет способность удерживать тепло и воду. Нефть, влияя на жировой слой тюлений и китообразных, усиливает расход тепла. Кроме того, нефть может вызвать раздражение кожи, глаз и препятствовать нормальной способности к плаванию.

Попавшая в организм нефть может вызвать желудочно-кишечные кровотечения, почечную недостаточность, интоксикацию печени, нарушение кровяного давления. Пары от испарений нефти ведут к проблемам органов дыхания у млекопитающих, которые находятся около или в непосредственной близости с большими разливами нефти.

Рыбы подвергаются воздействию разливов нефти в воде при употреблении загрязненной пищи и воды, а также при соприкосновении с нефтью во время движения икры. Гибель рыбы, исключая молодь, происходит обычно при серьезных разливах нефти. Однако сырая нефть и нефтепродукты отличаются разнообразием токсичного воздействия на разные виды рыб. Концентрация 0,5 миллионной доли или менее нефти в воде способна привести к гибели форели. Почти летальный эффект нефть оказывает на сердце, изменяет дыхание, увеличивает печень, замедляет рост, разрушает плавники, приводит к различным биологическим и клеточным изменениям, влияет на поведение.

Личинки и молодь рыб наиболее чувствительны к воздействию нефти, разливы которой могут погубить икру рыб и личинки, находящиеся на поверхности воды, а молодь – в мелких водах.

Влияние разливов нефти на беспозвоночные организмы может длиться от недели до 10 лет. Это зависит от вида нефти; обстоятельств, при которых произошел разлив и его влияния на организмы. Беспозвоночные чаще всего гибнут в прибрежной зоне, в отложениях или же в толще воды. Колонии беспозвоночных (зоопланктон) в больших объемах воды возвращаются к прежнему (до разлива) состоянию быстрее, чем те, которые находятся в небольших объемах воды.

Следует отметить тот факт, что производные нефтепродуктов имеют свойство накапливаться в организме и вызывают мутацию. Мутация генов у микроорганизмов может передаваться по пищевой цепи к рыбам и другим представителям морскойфауны.

Растения водоемов полностью погибают, если концентрация полиароматических углеводородов (образуются в процессе сгорания нефтепродуктов) достигает 1%.

Нефть и нефтепродукты нарушают экологическое состояние почвенных покровов и в целом деформируют структуру биоценозов. Почвенные бактерии, а также беспозвоночные почвенные микроорганизмы и животные не в состоянии качественно выполнять свои важнейшие функции в результате интоксикации легкими фракциями нефти.

От подобных аварий страдает не только животный и растительный мир. Серьезные убытки несут местные рыбаки, отели и рестораны. Кроме того, с проблемами сталкиваются и иные отрасли экономики, особенно те предприятия, деятельность которых нуждается в большом количестве воды. В случае, если разлив нефти происходит в пресном водоеме, негативные последствия испытывает на себе и местное население (например, коммунальным службам намного сложнее очищать воду, поступающую в водопроводные сети) и сельское хозяйство.

Долговременный эффект подобных происшествий точно неизвестен: одна группа ученых придерживается мнения, что разливы нефти оказывают негативное воздействие на протяжении многих лет и даже десятилетий, другая – что краткосрочные последствия крайне серьезны, однако за достаточно короткое время пострадавшие экосистемы восстанавливаются.

Ущерб от крупномасштабных разливов нефти подсчитать достаточно сложно. Он зависит от многих факторов, таких, как тип разлитых нефтепродуктов, состояния пострадавшей экосистемы, погоды, океанских и морских течений, времени года, состояния местного рыболовства и туризма и пр.

20 апреля 2010 года на нефтяной платформе Deepwater Horizon в 80 километрах от берегов Луизианы произошел взрыв, в результате которого погибли 11 человек. 22 апреля платформа затонула. В результате происшествия была в трех местах повреждена скважина, из которой начала вытекать нефть. Компании BP удалось прекратить утечку только через три месяца. В начале сентября 2010 года компания представила отчет о результатах расследования причин аварии. Согласно этому документу, к взрыву привели как человеческий фактор, так и недостатки конструкции нефтяной платформы. Позже комиссия, созданная по инициативе Барака Обамы, подготовила отчет, согласно которому причиной аварии стало сокращение расходов на обеспечение безопасности BP и ее партнерами.

Приразломное нефтяное месторождение расположено на шельфе Баренцева моря.

Сахалинские шельфовые проекты – обобщённое название целой группы проектов по разработке месторождений углеводородного сырья на континентальном шельфе Охотского и Японского морей и Татарского пролива, прилегающем к острову Сахалин.

Арланское месторождение – уникальное по запасам нефти, расположено на северо-западе Башкирии в пределах Волго-Уральской нефтегазоносной провинции. Расположено на территории Краснокамского и Дюртюлинского районов республики и частично на территории Удмуртии. Открыто в 1955, введено в разработку в 1958. Протяженность более 100 км, при ширине до 25 км.

Бованенковское нефтегазоконденсатное месторождение – крупнейшее месторождение полуострова Ямал. Бованенково расположено на полуострове Ямал, в 40 километрах от побережья Карского моря, нижнее течение рек Сё-Яха, Морды-Яха и Надуй-Яха. Количество газовых промыслов на объекте – три. Общее количество скважин 743.

Ванкорское месторождение – перспективное нефтегазовое месторождение в Красноярском крае России, вместе с Лодочным, Тагульским и Сузунским месторождениями входит в Ванкорский блок. Расположено на севере края, включает в себя Ванкорский (Туруханский район Красноярского края) и Северо-Ванкорский (расположен на территории Таймырского (Долгано-Ненецкого) автономного округа) участки. Для разработки месторождения создан вахтовый посёлок Ванкор.

Верхнечонское нефтяное месторождение – крупное месторождение нефти в Иркутской области России.

Лянторское – гигантское нефтегазоконденсатное месторождение в России. Расположено в Ханты-Мансийском автономном округе, вблизи Ханты-Мансийска. Открыто в 1965 году. Полные запасы нефти 2 млрд. тонн, а остаточные запасы нефти 380 млн. тонн.

Мамонтовское – крупное нефтяное месторождение в России. Расположено в Ханты-Мансийском автономном округе. Открыто в 1965 году. Освоение началось в 1970 году. Запасы нефти 1,4 млрд. тонн. Залежи на глубине 1,9-2,5 км.

Нижнечутинское нефтяное месторождение – крупное нефтяное месторождение Тимано-Печорской нефтегазоносной провинции, расположенное на территории Республики Коми, в районе города Ухты.

Правдинское – крупное нефтяное месторождение в России. Расположено в Ханты-Мансийском автономном округе, вблизи Ханты-Мансийска. Открыто в 1966 году. Освоение началось в 1968 году.

Приобское – гигантское нефтяное месторождение в России. Расположено в Ханты-Мансийском автономном округе, вблизи Ханты-Мансийска. Разделено рекой Обь на две части – лево – и правобережное. Освоение левого берега началось в 1988 г., правого – в 1999 г.

Ромашкинское нефтяное месторождение – крупнейшее месторождение Волго-Уральской провинции на юге Татарстана. Открыто в 1948 году.

Самотлорское нефтяное месторождение (Самотло́р) – крупнейшее в России и одно из крупнейших в мире месторождений нефти. Расположено в Ханты-Мансийском автономном округе, вблизи Нижневартовска, в районе озера Самотлор. В переводе с хантыйского Самотлор означает "мёртвое озеро", "худая вода".

Фёдоровское – крупное нефтяное месторождение в России. Расположено в Ханты-Мансийском автономном округе, вблизи Сургута. Открыто в 1971 году. Запасы нефти 2,0 млрд. тонн. Залежи на глубине 1,8-2,3 км.

Харасовейское нефтегазоконденсатное месторождение – месторождение полуострова Ямал. Расположено на западном побережье полуострова Ямал, на 1/3 общей площади уходит под воду на прибрежный шельф.

Южно-Русское нефтегазовое месторождение – расположено в Красноселькупском районе Ямало-Ненецкого автономного округа, одно из крупнейших в России.

Нефть используют для того, чтобы производить товары и услуги. Это значит, что ее цена, во-первых, влияет на себестоимость товаров и услуг, и, во–вторых, создает некоторую прибыль, которая перераспределяется в экономике. Причем, что довольно естественно, весь объем денег, на который увеличивается себестоимость продукции из-за роста цен на нефть, возвращается обратно в экономику, либо через расходы государства (то, что оно забирает себе в виде налогов и акцизов), либо – как прибыль компаний, которые эту нефть производят.

Значительная часть отраслей, обслуживающих нефте – и газодобычу, выведены из страны. А поскольку стоимость их услуг с ростом цены на нефть тоже растет, и, иногда, быстрее, чем сама нефть, то не исключено, что большая часть прибавки к стоимости нефти уйдет за пределы России. А если еще учесть, что уровень деградации российской экономики при этом вырастет – то вероятность такого перераспределения становится еще выше.

Есть и еще один фактор – рост цен на нефть вызывает инфляцию издержек в производстве практически любого товара. С учетом того, что значительная часть потребительских товаров в России получается по импорту, существенная часть дополнительных нефтяных доходов, которые перераспределяются в экономике нашей страны, тоже уйдет за рубеж. Не говоря уже о том, что значительную часть своих денег наши компании держат за рубежом – что тоже оказывает свое влияние не перераспределение доходов не в нашу пользу.

В нынешних непростых экономических условиях риски инвестирования в развивающиеся рынки, в частности в российский, слишком велики. Зависимость российского рынка от сырьевых товаров и особенностей корпоративного управления существует. Снижение цен на сырьевые товары оказывает максимальный негативный эффект на российский рынок, учитывая высокую долю этих секторов. Доля нефтегазового сектора в индексе РТС составляет 60%, доля сырьевых компаний – 15%. Таким образом, три четверти российского рынка зависит от мировых цен на нефть и цен на сырье.

Низкий уровень цен на сырье – это глобальная проблема. Цены на нефть могут выйти на новый, более высокий уровень при восстановлении глобальной экономики и восстановлении спроса на нефть. При этом российские нефтяные акции в силу высокого уровня налогообложения отрасли могут оказаться не самыми привлекательными по сравнению с зарубежными аналогами, работающими как в развитых, так и в развивающихся странах. Большая доля компаний сырьевых секторов в индексе РТС может быть снижена путем проведения публичных размещений новых компаний.

Высокая зависимость от цен на нефть и их существенное снижение приводит и к резкому пересмотру прогнозов темпа роста ВВП России. По масштабам пересмотров Россия является лидером среди других развивающихся стран: если осенью 2008г. еще ожидался рост ВВП в 2009г. на уровне 6%, то сейчас официальный прогноз составляет минус 2,4%, некоторые инвестиционные компании прогнозируют еще более сильное сокращение – до минус 3,5%. Исторически разворот на фондовых рынках совпадает с моментом стабилизации темпов падения ВВП в годовом сопоставлении.

Итак, Россия полностью зависит от нефти: её добычи, цен, являясь одним из главных экспортеров этого полезного ископаемого. Продавая сырую нефть за границу и покупая уже готовое переработанное сырье, наше государство ввергает в зависимость экономику, политику и всю инфраструктуру от малейших колебаний цен на нефть.

На первый взгляд очевидным решением данной проблемы является пересмотр работы ТЭК: внедрение новых проектов, планов, концепций развития, начать переработку сырой нефти, использовать менее затратные способы добычи полезных ископаемых, а также рациональное использование месторождений нефти и т. п..

Но все это невозможно осуществить без научно-технических разработок и проектов, ученых и других специалистов, недостаток которых в России существенно ощутим.

Следовательно, для того чтобы избавиться от сырьевой зависимости необходим обширнейший комплекс достаточно не популярных мероприятий в политике, экономике, науке, образовании и др., и только после слаженной системной работы всех отраслей промышленности и экономики будет возможно «слезть с нефтяной иглы».

Газ, бензин, керосин, мазут и другие виды топлива, которые получают из нефти, и без которых не было бы автомобилей, самолетов, паровозов, кораблей, тепло-, гидро-, электростанций, подводных лодок, фабрик, заводов, и всей инфраструктуры вообще, не составляют и сотой доли того, что делают из нефти.

Из нефти получают множество разных веществ: от углеводородов до спиртов и кислот, из которых впоследствии делают лекарства, косметику, бытовую химию, целлофановые упаковки, пластик (от шариковых ручек до деталей пилотируемых кораблей), радиодетали и радиотехнику, одежду и ткани. Этот список вещей, без которых мы сегодня не можем представить нашу жизнь, далеко не полный.

Любая профессия, будь то врач или учитель, экономист или юрист, ученый или разработчик, связана с добычей и переработкой нефти, так как нефть, особенно в России, объединяет все сферы жизни, не говоря о тех людях, которые непосредственно работают в этой области.

Я планирую связать свою жизнь с химией, а именно посвятить часть карьеры хай-тек разработкам.

Http://studentoriy. ru/referat-neft-i-sposoby-eyo-pererabotki/

Поделиться ссылкой: