Переработка топлива и нефти

Установки от экстрасенса 700х170

Переработка топлива.. – раздел Производство, ОСНОВЫ ТЕХНОЛОГИИ ХИМИЧЕСКИХ ПРОИЗВОДСТВ ТопливомНазываются Твердые, Жидкие И Газообразные Вещества, .

ТопливомНазываются твердые, жидкие и газообразные вещества, являющиеся источником тепловой энергии и сырьем для химической промышленности. В результате химической переработки различных топлив получают большое количество углеводородного сырья для производства пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. Одним из важнейших видов химического сырья является природный газ, содержащий до 98% метана. Древесина является источником получения целлюлозы, этилового спирта, уксусной кислоты и других продуктов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т. п.

Все топлива по агрегатному состоянию делятся на твердые, жидкие и газообразные; по происхождению – на естественные и искусственные. Искусственные топлива получают в результате переработки естественных топлив.

В настоящее время основным источником получения внутренней энергии служит нефть. В топливно-энергетических балансах промышленно развитых стран доля нефти составляет 47%, газа – 17%, угля – 30%). Остальные 6% на все прочие источники энергии. Преимущество нефти и газа – их экономичность. Сжигание топлива обеспечивает энергией тепловые электростанции, промышленные предприятия, транспорт, быт. Развитие угольной и ядерной энергетики даст в будущем возможность прекратить потребление нефти и природного газа в энергетических целях и полностью передать эти виды топлива в сферу промышленности как сырье для химической промышленности, а также для синтеза белков и жиров.

Основным принципом топливной энергетики нашей республики является максимальное и комплексное энерготехнологическое использование топливных ресурсов:

Регенерация (восстановление, возобновление) и Рекуперация (возвращение части энергии для повторного использования в том же технологическом процессе) Теплоты;

Максимальное использование местных топливных ресурсов и производственных отходов.

1. Пиролиз(сухая перегонка) осуществляется при нагревании топлива в закрытых реакторах без доступа воздуха. В результате протекают физические процессы (испарение влаги) и химические процессы – превращение компонентов топлива с получением ряда химических продуктов (Основной продукт – кокс и коксовый газ, побочные– смолы, сырой бензол, сульфат аммония). Используется в черной металлургии, литейном производстве как топливо для доменных печей, как химическое сырье.

2. Газификация– процесс преобразования органической массы твердого топлива с помощью газогенераторов в горючий газ. Генераторный газ используется для энергетических целей в качестве топлива и для получения химического сырья – синтез-газов, восстановительных газов, водорода и т. д.

3. Гидрирование– метод прямого получения искусственного жидкого топлива – заменителя нефтепродуктов – из бурых и каменных углей, сланцев и др. видов твердого топлива. Процесс гидрирогенезицацц проводится с помощью водорода, который подается к топливу под большим давлением (масла, бензин, энергетический газ).

Нефть представляет собой сложную органическую смесь. Химический состав нефти определяет ее физические свойства: плотность, температуру кипения, теплоту сгорания. Нефть – маслянистая вязкая горючая жидкость от светло-желтого до темно-коричневого цвета со специфическим запахом, легче воды.

1. Физические– основаны на различиях физических свойств компонентов нефти: температура кипения, кристаллизация и др. Химические реакции при этих методах не протекают. Наиболее распространенным физическим методом переработки нефти является ее прямая перегонка, при которой нефть разделяют на фракции. Процесс перегонки нефти состоит из 4-х операций: нагревание смеси, испарение, конденсация и охлаждение полученных фракций (фракции – бензин, керосин, мазут, газойль, лигроин).

2. Химические– основаны на том, что под влиянием высоких температур и давления в присутствии катализаторов углеводороды, содержащиеся в нефти и нефтепродуктах, претерпевают химические превращения, в результате которых образуются новые вещества. Это термический и каталитический крекинги. Основная цель термического крекинга – получение светлых топлив и мазута из гудрона). Каталитический крекинг проводят в присутствии катализаторов с получением повышенного выхода бензина.

В будущем восполнение топливных ресурсов связывают с рациональной переработкой угля, который будут сжижать. Неисчерпаемые возможности таит ядерная энергетика. Потенциальная энергия мировых запасов ядерного горячего превосходит в десятки раз потенциальную энергию запасов угля, нефти и природного газа вместе взятых. Атомные АЭС обладают высоки КПД.

Http://allrefs. net/c42/3z5ce/p1/

Топливом называют существующие в природе или искусственно полученные вещества, являющиеся источником тепловой энергии и сырьем для химической промышленности.

Роль топлива в народном хозяйстве страны велико и все время возрастает, так как бурное развитие промышленности органического синтеза — производство пластических масс, химических волокон, синтетических каучуков, красителей, растворителей и т. д. — требует огромным количеств углеродного сырья, которое получается в результате химической переработки различных топлив.

Все топлива можно разделить по агрегатному состоянию на твердые, жидкие и газообразные, а по происхождению — на естественные в искусственные.

Искусственные топлива получают главным образом при переработке естественных топлив. Твердые искусственные топлива — кокс, полукокс, древесный уголь; жидкие — бензин, керосин, лигроин и др.; газообразные — генераторные газы, коксовый газ, газы переработки нефти и др.

Нефть в основном состоит из углерода (80-85%) и. водорода (10-14%), входящих в состав сложной смеси углеродов. Кроме углеродной в нефти имеется небольшая неуглеводородная часть я минеральные примеси. Состав природных и попутных газов очень разнообразен.

В таблице представлен состав органической, или горючей, массы топлива — той части топлива, которая при горении дает тепло. .

Газообразное топливо обладает рядом преимуществ по сравнению с твердым и жидким топливом, которые обусловлены его свойствами. При сгорании газа можно довести до минимума потерю теплоты с уходящими в дымовую трубу продуктами горения; при сгорании газа не образуется золы, шлака, дыма. Газ можно транспортировать самым дешевым видом транспорта — трубопроводом. По этим причинам газообразное топливо находит все более широкое применение в промышленности, а также в качестве бытового топлива и топлива для автотранспорта.

Методы переработки твердого топлива основаны на гетерогенных, главным образом некаталитических процессах в системах «твердое — газ», «твердое — жидкость — газ» и многофазных, осуществляемых при высоких температурах.

При нагревании уголь и другие виды топлива претерпевают сложные изменения, ведущие к образованию новых твердых, жидких и газообразных продуктов.

Основными методами, переработки твердого топлива являются коксование, полукоксование, газификация и деструктивная гидрогенизация.

Коксование — метод переработки каменных углей нагреванием без доступа воздуха до 900-1060 0С в коксовых печах. Коксохимическое производство включает три технологические стадии: подготовку сырья, коксование и переработку коксового газа.

Сырьем для коксования служит смесь каменных углей, способных при нагревании спекаться (т. е, размягчаться и слипаться в общую массу). К таким углям относятся коксующие угли различных марок: коксующиеся, паровично-спекающиеся, паровично-жирные и др. Но запасы коксовых углей ограничены, поэтому наряду с ними применяют другие марки каменных углей — неспекающиеся: жирные, газовые, длинно пламенные.

Поступающие на переработку угли подвергаются подготовке: дроблению, сортировке, обогащению, обезвоживанию. Эта работа по улучшению качества угля требует дополнительных расходов, но она экономически целесообразна.

Процесс коксования протекает в коксовых печах, представляющих собой щелевидные камеры 2 шириной 0,4 м, высотой 4 м и длиной 14-15 м, сложенные из огнеупорного материала. В своде такой камеры имеются отверстия — люки для загрузки угля. Несколько десятков вечей (до 75), расположенных параллельно друг другу и связанных кирпичной кладкой, образуют коксовую батарею. В простенках между печами располагаются отопительные каналы 1. В них сжигается какое-либо газообразное топливо. Полученное при этой тепло через стенки печей, передается загруженному в них углю.

Коксование длится 13-14 часов. По окончании процесса открывают переднюю и заднюю двери печи и специальным толкателем выталкивают кокс из камеры в стальной полувагон, в котором его тушат. После выгрузки кокс сортируют. Из одной тонны угольной шихты получают 730-780 кг кокса, содержащего 85-95% чистого углерода, 5-11% золы и небольшое количество других веществ.

Образующийся при коксовании газ (до 350 м3 на 1 т угля) содержит много ценных веществ. Кроме водорода, метана, окиси и двуокиси углерода, в его состав входят пары каменноугольной смолы, бензола, аммиака, сероводорода и ряд других соединений. Парогазовую смесь, отходящую из коксовых камер, улавливают и отводят V цех конденсации на переработку, извлекая содержащиеся в газе компоненты.

Полукоксование — низкотемпературный пиролиз низкосортного твердого топлива (каменные и бурые угли, сланцы) при нагревании до конечной температуры 500-550 0С без доступа воздуха.

Полукокс — слабо спекшийся хрупкий продукт, содержащий до 10% летучих веществ, обладающий высокой реакционной способностью 8 большой зольностью. Применяют как местное энергетическое топливо я как составляющую шихты для коксования.

Смола, в особенности сланцевая, служит источником получения моторных топлив, растворителей я самых разнообразных органических мономеров, выделяемых прямой перегонкой смолы.

Газификация. В последнее время газификация твердого топлива приобретает особое значение как источник энергия и химического сырья.

Газификации могут быть подвергнуты любые виды твердого топлива — торф, низкосортные угли, сланцы, полукокс, отходы лесоразработок и др. При газификации, проводимой в реакторах, называемых газогенераторами, органическая масса топлива превращается в генераторные газы. Твердый остаток газификации (шлак) представляет собой минеральную часть топлива, т. е. золу. В зависимости от назначения генераторного газа применяют различные виды дутья и получают газ заданного состава.

Представляет интерес возрождение идеи Д. И. Менделеева о подземной бесшахтной газификации каменных углей, Когда газификация протекает в подземном газогенераторе без извлечения топлива на поверхность, т. е. без трудоемких горных работ.

Метод заключается в том» что с поверхности земли к угольному пласту бурятся скважины на расстоянии 25-30 м друг от друга, после чего забои этих скважин соединяются каналом газификации по угольному пласту. Одна скважина предназначена для подвода дутья, а другие — для отвода образующихся газов.

Деструктивная гидрогенизация — это метод прямого получения искусственного жидкого топлива — заменителя нефтепродуктов — из бурых и каменных углей, сланцев и других видов твердого топлива.

Сырьем служат каменные и бурые угли, содержащие в своей массе минимум серы, азота, кислорода, но максимум водорода. Угли подготавливают; дробят, измельчают, обогащают и сушат. Тонко измельченный угольный порошок смешивают с тяжелым маслом. Полученную массу нагревают в автоклавах под давлением в присутствии водорода и катализатора. В этих условиях уголь насыщается водородом — гидрогенизуется. Одновременно с гидрогенизацией происходит расщепление (деструкция) больших молекул, составляющих уголь, в смесь жидких и газообразных веществ с меньшим молекулярным весом. В результате образуются углеводороды (Сn Нm), аналогичные молекулам веществ, составляющих нефть. В зависимости от степени гидрирования можно получить бензин, керосин, дизельное топливо и другие вещества.

Нефть — основа энергетики и ряда отраслей промышленности. Добытую нефть направляют в трапы и сепараторы. Здесь от нее отделяют попутный газ (дегазация) и подают его на отбензинивание. Пары бензина и газа выделяют либо путем сжатия газа я последующего охлаждения, при котором бензин переходит в жидкое состояние, либо, пропуская газ через специальные поглотители (соляровое масло), из которых бензин затем отгоняют. Отбензяненный сухой газ направляют на компрессорную станцию для последующего использования. После дегазации нефть подают в мерники, где ее освобождают от взвешенных частиц (песка, глины и др.), а затем замеряют. Помимо песка и глины нефть содержит воду и соли. Поэтому ее подвергают дальнейшей обработке, обезвоживанию и обессоливанию.

Переработку нефти, в зависимости от качества используемого сырья и характера производимых продуктов, осуществляют разными методами. Все методы нефтепереработки можно разделить на два вида: физические и химические. К первым относится перегонка, ко вторым — крекинг, пиролиз и др.

Перегонка представляет собой процесс разделения нефти как сложной жидкости на отдельные фракции (части). В основе такого процесса лежит метод раздельной конденсации паров веществ, составляющих нефть. Обычно перегонка производится в две стадии. Вначале из нефти под атмосферным давлением выделяют моторное топливо, получая в остатке мазут, а затем под вакуумом мазут перерабатывают.

Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих их трубчатой печи 1, ректификационной колонны 2, теплообменников 3, насосов и других аппаратов.

Трубчатая печь 1 — это устройство, внутри которого помещена система стальных труб, обогреваемых теплом сжигаемого горючего газа или мазута. Ректификационная’ колонна 2 представляет собой вертикальный стальной цилиндр высотой до 40 м разделенный внутри горизонтальными перегородками (барботажными тарелками) на отделения.

Пройдя ряд теплообменников, нефть попадает в змеевики трубчатой печи, где нагревается до 320 "С. При этом наиболее легкие углеводороды нефти закипают, переходя в газообразное состояние. Смесь жидкости и паров попадает в нижнюю часть ректификационной колонны и здесь разделяется. Пары устремляются вверх, проходя. Через отверстия в тарелках, а жидкая, неиспарившаяся часть нефти (мазут) стекает вниз.

Выделенные из нефти при перегонке вещества (дистилляты) являются полупродуктами. Чтобы получить товарные нефтепродукты, дистилляты очищают и, если необходимо, вторично ректифицируют. Например, бензиновый дистиллят при разгонке дает различные марки автомобильного и авиационного бензина, уайт-спирита (лаковый бензин) и другие продукты.

В настоящее время в нефтеперерабатывающей промышленности вое большее значение приобретают химические процессы. Они позволяют резко увеличить выход целевых продуктов и улучшить их качество.

При перегонке нефти выход бензина составляет в среднем 10-25% веса взятого сырья. Такое количество бензина не может покрыть возрастающий спрос народного хозяйства на этот вид топлива. Увеличение производства бензина (как и других видов моторного топлива) достигается применением крекинга. Он представляет собой химико-термический процесс расщепления молекул тяжелых углеводородов, в результате которого образуется смесь веществ меньшего молекулярного веса.

Крекингу подвергают различные нефтепродукты, преследуя разные цели, но его главная задача — получение бензина, выход которого при этом может достигнуть 70% веса взятого сырья.

Термический крекинг осуществляют при высокой температуре и значительном давлении. В таких условиях молекулы тяжелых углеводородов расщепляются легче.

Установка термического крекинга включает трубчатую печь для нагрева сырья, испарители, ректификационную колонну, газосепараторы.

Особой разновидностью крекинга является пиролиз. Он проводится при температуре 700-720 С и атмосферном давлении. Исходным материалом для этого процесса служат легкие фракции: нефтелигроин и керосин. Цель пиролиза — получение газа и ароматических углеводородов.

Каталитический крекинг — более совершенный процесс крекингования, осуществляемый с применением катализатора. Наличие последнего ускоряет разложение высокомолекулярных углеводородов, позволяет вести процесс при более низкой температуре и давлении близком к атмосферному. Таким способом обычно получают авиационный бензин, выход которого достигает 70% веса взятого сырья. Исходным материалом для каталитического крекинга служит преимущественно керосиновый и соляровый дистиллят.

Продукты переработки нефти. При переработке нефти получают большое количество разнообразных продуктов. Их можно разделить на три обширные группы: горючие, смазочные и прочие. К первой группе относится моторное, реактивное и котельное топливо, ко второй — смазочные масла и разнообразные консистентные смазки, а к третьей — битумы, нефтяные кислоты и их производные, ароматические углеводороды, парафины, вазелин, церезин и др.

Газообразное топливо имеет значительные преимущества по сравнению с твердым топливом.

Газообразное топливо находит широкое применение в промышленности» в быту, в автотранспорте, химической промышленности.

К газовому топливу относят природные, нефтяные (попутные) газы, а также промышленные, получаемые при переработке топлива. Промышленными являются крекинг-газ, коксовый, полукоксовый, генераторный. При химической переработке газ предварительно разделяют на составляющие компоненты или узкие фракции. Состав при – родных и попутных газов весьма разнообразен. Они. содержат метан, этан, пропан, бутан и небольшое количество азота. В газах нефтепереработки содержится этилен, пропилен, бутилен. В генераторных газах находится окись углерода и водорода. Вещества, содержащиеся в этих газах, являются сырьем для получения удобрений, пластических масс, химических волокон, синтетических каучуков, растворителей, моющих средств и т. д. Чтобы получить эти продукты, газы необходимо переработать.

Прямое использование веществ, входящих в состав газа; присоединением 1$ ним кислорода (окисление), хлора (хлорирование), воды (гидрирования), присоединением к молекулам групп СН, СnНm, (алкирование), изменением структуры молекул (изомеризация), соединением многих простых молекул в сложные (полимеризация).

Крекинг углеводородов, входящих в состав газов для получения непредельных углеводородов.

Конверсия — взаимодействие с водяными парами для получения окиси углерода и водорода.

В результате этих процессов из газов можно получать самые разнообразные продукты. Следует отметить большой экономический эффект использования газов.

Сейчас более половины потребляемого газа расходуется промышленностью» с его применением производятся все основные промышленные продукты — чугун, сталь, прокат, цветные металлы, штамповки для машиностроения, минеральные удобрения. Наиболее эффективно применение газа в качестве химического сырья.

Http://refeteka. ru/r-147172.html

Топливом называют существующие в природе или искусственно полученные вещества, являющиеся источником тепловой энергии и сырьем для химической промышленности.

Роль топлива в народном хозяйстве страны велико и все время возрастает, так как бурное развитие промышленности органического синтеза — производство пластических масс, химических волокон, синтетических каучуков, красителей, растворителей и т. д. — требует огромным количеств углеродного сырья, которое получается в результате химической переработки различных топлив.

Все топлива можно разделить по агрегатному состоянию на твердые, жидкие и газообразные, а по происхождению — на естественные в искусственные.

Искусственные топлива получают главным образом при переработке естественных топлив. Твердые искусственные топлива — кокс, полукокс, древесный уголь; жидкие — бензин, керосин, лигроин и др.; газообразные — генераторные газы, коксовый газ, газы переработки нефти и др.

Нефть в основном состоит из углерода (80-85%) и. водорода (10-14%), входящих в состав сложной смеси углеродов. Кроме углеродной в нефти имеется небольшая неуглеводородная часть я минеральные примеси. Состав природных и попутных газов очень разнообразен.

В таблице представлен состав органической, или горючей, массы топлива — той части топлива, которая при горении дает тепло. .

Газообразное топливо обладает рядом преимуществ по сравнению с твердым и жидким топливом, которые обусловлены его свойствами. При сгорании газа можно довести до минимума потерю теплоты с уходящими в дымовую трубу продуктами горения; при сгорании газа не образуется золы, шлака, дыма. Газ можно транспортировать самым дешевым видом транспорта — трубопроводом. По этим причинам газообразное топливо находит все более широкое применение в промышленности, а также в качестве бытового топлива и топлива для автотранспорта.

Методы переработки твердого топлива основаны на гетерогенных, главным образом некаталитических процессах в системах «твердое — газ», «твердое — жидкость — газ» и многофазных, осуществляемых при высоких температурах.

При нагревании уголь и другие виды топлива претерпевают сложные изменения, ведущие к образованию новых твердых, жидких и газообразных продуктов.

Основными методами, переработки твердого топлива являются коксование, полукоксование, газификация и деструктивная гидрогенизация.

Коксование — метод переработки каменных углей нагреванием без доступа воздуха до 900-1060 0С в коксовых печах. Коксохимическое производство включает три технологические стадии: подготовку сырья, коксование и переработку коксового газа.

Сырьем для коксования служит смесь каменных углей, способных при нагревании спекаться (т. е, размягчаться и слипаться в общую массу). К таким углям относятся коксующие угли различных марок: коксующиеся, паровично-спекающиеся, паровично-жирные и др. Но запасы коксовых углей ограничены, поэтому наряду с ними применяют другие марки каменных углей — неспекающиеся: жирные, газовые, длинно пламенные.

Поступающие на переработку угли подвергаются подготовке: дроблению, сортировке, обогащению, обезвоживанию. Эта работа по улучшению качества угля требует дополнительных расходов, но она экономически целесообразна.

Процесс коксования протекает в коксовых печах, представляющих собой щелевидные камеры 2 шириной 0,4 м, высотой 4 м и длиной 14-15 м, сложенные из огнеупорного материала. В своде такой камеры имеются отверстия — люки для загрузки угля. Несколько десятков вечей (до 75), расположенных параллельно друг другу и связанных кирпичной кладкой, образуют коксовую батарею. В простенках между печами располагаются отопительные каналы 1. В них сжигается какое-либо газообразное топливо. Полученное при этой тепло через стенки печей, передается загруженному в них углю.

Коксование длится 13-14 часов. По окончании процесса открывают переднюю и заднюю двери печи и специальным толкателем выталкивают кокс из камеры в стальной полувагон, в котором его тушат. После выгрузки кокс сортируют. Из одной тонны угольной шихты получают 730-780 кг кокса, содержащего 85-95% чистого углерода, 5-11% золы и небольшое количество других веществ.

Образующийся при коксовании газ (до 350 м3 на 1 т угля) содержит много ценных веществ. Кроме водорода, метана, окиси и двуокиси углерода, в его состав входят пары каменноугольной смолы, бензола, аммиака, сероводорода и ряд других соединений. Парогазовую смесь, отходящую из коксовых камер, улавливают и отводят V цех конденсации на переработку, извлекая содержащиеся в газе компоненты.

Полукоксование — низкотемпературный пиролиз низкосортного твердого топлива (каменные и бурые угли, сланцы) при нагревании до конечной температуры 500-550 0С без доступа воздуха.

Полукокс — слабо спекшийся хрупкий продукт, содержащий до 10% летучих веществ, обладающий высокой реакционной способностью 8 большой зольностью. Применяют как местное энергетическое топливо я как составляющую шихты для коксования.

Смола, в особенности сланцевая, служит источником получения моторных топлив, растворителей я самых разнообразных органических мономеров, выделяемых прямой перегонкой смолы.

Газификация. В последнее время газификация твердого топлива приобретает особое значение как источник энергия и химического сырья.

Газификации могут быть подвергнуты любые виды твердого топлива — торф, низкосортные угли, сланцы, полукокс, отходы лесоразработок и др. При газификации, проводимой в реакторах, называемых газогенераторами, органическая масса топлива превращается в генераторные газы. Твердый остаток газификации (шлак) представляет собой минеральную часть топлива, т. е. золу. В зависимости от назначения генераторного газа применяют различные виды дутья и получают газ заданного состава.

Представляет интерес возрождение идеи Д. И. Менделеева о подземной бесшахтной газификации каменных углей, Когда газификация протекает в подземном газогенераторе без извлечения топлива на поверхность, т. е. без трудоемких горных работ.

Метод заключается в том» что с поверхности земли к угольному пласту бурятся скважины на расстоянии 25-30 м друг от друга, после чего забои этих скважин соединяются каналом газификации по угольному пласту. Одна скважина предназначена для подвода дутья, а другие — для отвода образующихся газов.

Деструктивная гидрогенизация — это метод прямого получения искусственного жидкого топлива — заменителя нефтепродуктов — из бурых и каменных углей, сланцев и других видов твердого топлива.

Сырьем служат каменные и бурые угли, содержащие в своей массе минимум серы, азота, кислорода, но максимум водорода. Угли подготавливают; дробят, измельчают, обогащают и сушат. Тонко измельченный угольный порошок смешивают с тяжелым маслом. Полученную массу нагревают в автоклавах под давлением в присутствии водорода и катализатора. В этих условиях уголь насыщается водородом — гидрогенизуется. Одновременно с гидрогенизацией происходит расщепление (деструкция) больших молекул, составляющих уголь, в смесь жидких и газообразных веществ с меньшим молекулярным весом. В результате образуются углеводороды (Сn Нm), аналогичные молекулам веществ, составляющих нефть. В зависимости от степени гидрирования можно получить бензин, керосин, дизельное топливо и другие вещества.

Нефть — основа энергетики и ряда отраслей промышленности. Добытую нефть направляют в трапы и сепараторы. Здесь от нее отделяют попутный газ (дегазация) и подают его на отбензинивание. Пары бензина и газа выделяют либо путем сжатия газа я последующего охлаждения, при котором бензин переходит в жидкое состояние, либо, пропуская газ через специальные поглотители (соляровое масло), из которых бензин затем отгоняют. Отбензяненный сухой газ направляют на компрессорную станцию для последующего использования. После дегазации нефть подают в мерники, где ее освобождают от взвешенных частиц (песка, глины и др.), а затем замеряют. Помимо песка и глины нефть содержит воду и соли. Поэтому ее подвергают дальнейшей обработке, обезвоживанию и обессоливанию.

Переработку нефти, в зависимости от качества используемого сырья и характера производимых продуктов, осуществляют разными методами. Все методы нефтепереработки можно разделить на два вида: физические и химические. К первым относится перегонка, ко вторым — крекинг, пиролиз и др.

Перегонка представляет собой процесс разделения нефти как сложной жидкости на отдельные фракции (части). В основе такого процесса лежит метод раздельной конденсации паров веществ, составляющих нефть. Обычно перегонка производится в две стадии. Вначале из нефти под атмосферным давлением выделяют моторное топливо, получая в остатке мазут, а затем под вакуумом мазут перерабатывают.

Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих их трубчатой печи 1, ректификационной колонны 2, теплообменников 3, насосов и других аппаратов.

Трубчатая печь 1 — это устройство, внутри которого помещена система стальных труб, обогреваемых теплом сжигаемого горючего газа или мазута. Ректификационная’ колонна 2 представляет собой вертикальный стальной цилиндр высотой до 40 м разделенный внутри горизонтальными перегородками (барботажными тарелками) на отделения.

Пройдя ряд теплообменников, нефть попадает в змеевики трубчатой печи, где нагревается до 320 "С. При этом наиболее легкие углеводороды нефти закипают, переходя в газообразное состояние. Смесь жидкости и паров попадает в нижнюю часть ректификационной колонны и здесь разделяется. Пары устремляются вверх, проходя. Через отверстия в тарелках, а жидкая, неиспарившаяся часть нефти (мазут) стекает вниз.

Выделенные из нефти при перегонке вещества (дистилляты) являются полупродуктами. Чтобы получить товарные нефтепродукты, дистилляты очищают и, если необходимо, вторично ректифицируют. Например, бензиновый дистиллят при разгонке дает различные марки автомобильного и авиационного бензина, уайт-спирита (лаковый бензин) и другие продукты.

В настоящее время в нефтеперерабатывающей промышленности вое большее значение приобретают химические процессы. Они позволяют резко увеличить выход целевых продуктов и улучшить их качество.

При перегонке нефти выход бензина составляет в среднем 10-25% веса взятого сырья. Такое количество бензина не может покрыть возрастающий спрос народного хозяйства на этот вид топлива. Увеличение производства бензина (как и других видов моторного топлива) достигается применением крекинга. Он представляет собой химико-термический процесс расщепления молекул тяжелых углеводородов, в результате которого образуется смесь веществ меньшего молекулярного веса.

Крекингу подвергают различные нефтепродукты, преследуя разные цели, но его главная задача — получение бензина, выход которого при этом может достигнуть 70% веса взятого сырья.

Термический крекинг осуществляют при высокой температуре и значительном давлении. В таких условиях молекулы тяжелых углеводородов расщепляются легче.

Установка термического крекинга включает трубчатую печь для нагрева сырья, испарители, ректификационную колонну, газосепараторы.

Особой разновидностью крекинга является пиролиз. Он проводится при температуре 700-720 С и атмосферном давлении. Исходным материалом для этого процесса служат легкие фракции: нефтелигроин и керосин. Цель пиролиза — получение газа и ароматических углеводородов.

Каталитический крекинг — более совершенный процесс крекингования, осуществляемый с применением катализатора. Наличие последнего ускоряет разложение высокомолекулярных углеводородов, позволяет вести процесс при более низкой температуре и давлении близком к атмосферному. Таким способом обычно получают авиационный бензин, выход которого достигает 70% веса взятого сырья. Исходным материалом для каталитического крекинга служит преимущественно керосиновый и соляровый дистиллят.

Продукты переработки нефти. При переработке нефти получают большое количество разнообразных продуктов. Их можно разделить на три обширные группы: горючие, смазочные и прочие. К первой группе относится моторное, реактивное и котельное топливо, ко второй — смазочные масла и разнообразные консистентные смазки, а к третьей — битумы, нефтяные кислоты и их производные, ароматические углеводороды, парафины, вазелин, церезин и др.

Газообразное топливо имеет значительные преимущества по сравнению с твердым топливом.

Газообразное топливо находит широкое применение в промышленности» в быту, в автотранспорте, химической промышленности.

К газовому топливу относят природные, нефтяные (попутные) газы, а также промышленные, получаемые при переработке топлива. Промышленными являются крекинг-газ, коксовый, полукоксовый, генераторный. При химической переработке газ предварительно разделяют на составляющие компоненты или узкие фракции. Состав при – родных и попутных газов весьма разнообразен. Они. содержат метан, этан, пропан, бутан и небольшое количество азота. В газах нефтепереработки содержится этилен, пропилен, бутилен. В генераторных газах находится окись углерода и водорода. Вещества, содержащиеся в этих газах, являются сырьем для получения удобрений, пластических масс, химических волокон, синтетических каучуков, растворителей, моющих средств и т. д. Чтобы получить эти продукты, газы необходимо переработать.

Прямое использование веществ, входящих в состав газа; присоединением 1$ ним кислорода (окисление), хлора (хлорирование), воды (гидрирования), присоединением к молекулам групп СН, СnНm, (алкирование), изменением структуры молекул (изомеризация), соединением многих простых молекул в сложные (полимеризация).

Крекинг углеводородов, входящих в состав газов для получения непредельных углеводородов.

Конверсия — взаимодействие с водяными парами для получения окиси углерода и водорода.

В результате этих процессов из газов можно получать самые разнообразные продукты. Следует отметить большой экономический эффект использования газов.

Сейчас более половины потребляемого газа расходуется промышленностью» с его применением производятся все основные промышленные продукты — чугун, сталь, прокат, цветные металлы, штамповки для машиностроения, минеральные удобрения. Наиболее эффективно применение газа в качестве химического сырья.

Http://xreferat. com/76/3417-1-toplivo-metody-pererabotki-topliva. html

Нефть — основа энергетики и ряда отраслей промышленности. Добытую нефть направляют в трапы и сепараторы. Здесь от нее отделяют попутный газ (дегазация) и подают его на отбензинивание. Пары бензина и газа выделяют либо путем сжатия газа я последующего охлаждения, при котором бензин переходит в жидкое состояние, либо, пропуская газ через специальные поглотители (соляровое масло), из которых бензин затем отгоняют. Отбензяненный сухой газ направляют на компрессорную станцию для последующего использования. После дегазации нефть подают в мерники, где ее освобождают от взвешенных частиц (песка, глины и др.), а затем замеряют. Помимо песка и глины нефть содержит воду и соли. Поэтому ее подвергают дальнейшей обработке, обезвоживанию и обессоливанию.

Переработку нефти, в зависимости от качества используемого сырья и характера производимых продуктов, осуществляют разными методами. Все методы нефтепереработки можно разделить на два вида: физические и химические. К первым относится перегонка, ко вторым — крекинг, пиролиз и др.

Перегонка представляет собой процесс разделения нефти как сложной жидкости на отдельные фракции (части). В основе такого процесса лежит метод раздельной конденсации паров веществ, составляющих нефть. Обычно перегонка производится в две стадии. Вначале из нефти под атмосферным давлением выделяют моторное топливо, получая в остатке мазут, а затем под вакуумом мазут перерабатывают.

Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих их трубчатой печи 1, ректификационной колонны 2, теплообменников 3, насосов и других аппаратов.

Трубчатая печь 1 — это устройство, внутри которого помещена система стальных труб, обогреваемых теплом сжигаемого горючего газа или мазута. Ректификационная’ колонна 2 представляет собой вертикальный стальной цилиндр высотой до 40 м разделенный внутри горизонтальными перегородками (барботажными тарелками) на отделения.

Пройдя ряд теплообменников, нефть попадает в змеевики трубчатой печи, где нагревается до 320 “С. При этом наиболее легкие углеводороды нефти закипают, переходя в газообразное состояние. Смесь жидкости и паров попадает в нижнюю часть ректификационной колонны и здесь разделяется. Пары устремляются вверх, проходя. Через отверстия в тарелках, а жидкая, неиспарившаяся часть нефти (мазут) стекает вниз.

Выделенные из нефти при перегонке вещества (дистилляты) являются полупродуктами. Чтобы получить товарные нефтепродукты, дистилляты очищают и, если необходимо, вторично ректифицируют. Например, бензиновый дистиллят при разгонке дает различные марки автомобильного и авиационного бензина, уайт-спирита (лаковый бензин) и другие продукты.

В настоящее время в нефтеперерабатывающей промышленности вое большее значение приобретают химические процессы. Они позволяют резко увеличить выход целевых продуктов и улучшить их качество.

При перегонке нефти выход бензина составляет в среднем 10-25% веса взятого сырья. Такое количество бензина не может покрыть возрастающий спрос народного хозяйства на этот вид топлива. Увеличение производства бензина (как и других видов моторного топлива) достигается применением крекинга. Он представляет собой химико-термический процесс расщепления молекул тяжелых углеводородов, в результате которого образуется смесь веществ меньшего молекулярного веса.

Крекингу подвергают различные нефтепродукты, преследуя разные цели, но его главная задача — получение бензина, выход которого при этом может достигнуть 70% веса взятого сырья.

Термический крекинг осуществляют при высокой температуре и значительном давлении. В таких условиях молекулы тяжелых углеводородов расщепляются легче.

Установка термического крекинга включает трубчатую печь для нагрева сырья, испарители, ректификационную колонну, газосепараторы.

Особой разновидностью крекинга является пиролиз. Он проводится при температуре 700-720 С и атмосферном давлении. Исходным материалом для этого процесса служат легкие фракции: нефтелигроин и керосин. Цель пиролиза — получение газа и ароматических углеводородов.

Каталитический крекинг — более совершенный процесс крекингования, осуществляемый с применением катализатора. Наличие последнего ускоряет разложение высокомолекулярных углеводородов, позволяет вести процесс при более низкой температуре и давлении близком к атмосферному. Таким способом обычно получают авиационный бензин, выход которого достигает 70% веса взятого сырья. Исходным материалом для каталитического крекинга служит преимущественно керосиновый и соляровый дистиллят.

Продукты переработки нефти. При переработке нефти получают большое количество разнообразных продуктов. Их можно разделить на три обширные группы: горючие, смазочные и прочие. К первой группе относится моторное, реактивное и котельное топливо, ко второй — смазочные масла и разнообразные консистентные смазки, а к третьей — битумы, нефтяные кислоты и их производные, ароматические углеводороды, парафины, вазелин, церезин и др.

Http://studbooks. net/1423554/tovarovedenie/pererabotka_nefti

Нефть — основа энергетики и ряда отраслей промышленности. Добытую нефть направляют в трапы и сепараторы. Здесь от нее отделяют попутный газ (дегазация) и подают его на отбензинивание. Пары бензина и газа выделяют либо путем сжатия газа я последующего охлаждения, при котором бензин переходит в жидкое состояние, либо, пропуская газ через специальные поглотители (соляровое масло), из которых бензин затем отгоняют. Отбензяненный сухой газ направляют на компрессорную станцию для последующего использования. После дегазации нефть подают в мерники, где ее освобождают от взвешенных частиц (песка, глины и др.), а затем замеряют. Помимо песка и глины нефть содержит воду и соли. Поэтому ее подвергают дальнейшей обработке, обезвоживанию и обессоливанию.

Переработку нефти, в зависимости от качества используемого сырья и характера производимых продуктов, осуществляют разными методами. Все методы нефтепереработки можно разделить на два вида: физические и химические. К первым относится перегонка, ко вторым — крекинг, пиролиз и др.

Перегонка представляет собой процесс разделения нефти как сложной жидкости на отдельные фракции (части). В основе такого процесса лежит метод раздельной конденсации паров веществ, составляющих нефть. Обычно перегонка производится в две стадии. Вначале из нефти под атмосферным давлением выделяют моторное топливо, получая в остатке мазут, а затем под вакуумом мазут перерабатывают.

Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих их трубчатой печи 1, ректификационной колонны 2, теплообменников 3, насосов и других аппаратов.

Трубчатая печь 1 — это устройство, внутри которого помещена система стальных труб, обогреваемых теплом сжигаемого горючего газа или мазута. Ректификационная’ колонна 2 представляет собой вертикальный стальной цилиндр высотой до 40 м разделенный внутри горизонтальными перегородками (барботажными тарелками) на отделения.

Пройдя ряд теплообменников, нефть попадает в змеевики трубчатой печи, где нагревается до 320 “С. При этом наиболее легкие углеводороды нефти закипают, переходя в газообразное состояние. Смесь жидкости и паров попадает в нижнюю часть ректификационной колонны и здесь разделяется. Пары устремляются вверх, проходя. Через отверстия в тарелках, а жидкая, неиспарившаяся часть нефти (мазут) стекает вниз.

Выделенные из нефти при перегонке вещества (дистилляты) являются полупродуктами. Чтобы получить товарные нефтепродукты, дистилляты очищают и, если необходимо, вторично ректифицируют. Например, бензиновый дистиллят при разгонке дает различные марки автомобильного и авиационного бензина, уайт-спирита (лаковый бензин) и другие продукты.

Http://vuzlit. ru/742515/pererabotka_nefti

Для добычи нефти и природно­го газа производят бурение скважин с помощью буровых устано­вок, состоящих из буровой вышки, колонн буровых труб, силовых и подъемных машин, электростанций и другого оборудования. Бу­рение скважин ведут с помощью вращения бурового инструмента — долота совместно с колонной свинченных буровых труб, либо за­бойным способом, когда колонна неподвижна, а вращается только долото; вращение долота производят с помощью электромотора (электробур) или турбины (турбобур), приводимой в действие потоком глинистого раствора, нагнетаемого в турбобур. Последний метод наиболее эффективен и наименее энергоемок.

Извлечение нефти из скважин производится фонтанным, ком­прессорным (газлифтным) или глубинно-насосным методами. По мере выработки пласта давление становится недоста­точным для подъема нефти на поверхность, и тогда переходят к принудительным методам — компрессорному и глубинно-насосному.

Нефть, поступающая на поверхность, содержит попутные газы (50—100 м 3 /т), воду (200—300 кг/т), минеральные соли (10—15 кг/т) На нефтяных промыслах производят подготовку нефти к переработке —удаление растворенных газов, воды, механических примесей, минеральных солей, атакже стабилизацию нефти. Отде­ление попутных газов ведут много­ступенчатой сепарацией в сепарато­рах-газоотделителях (трапах), где снижают давление и скорость пото­ка нефти; в результате происходит десорбция газов, совместно с кото­рыми удаляют, а затем частично конденсируют «газовый бензин» (конденсат) — смеси наиболее лег­ких углеводородов.

Удаление минеральных солей осуществляют многократной про­мывкой нефти водой, растворяю­щей соли. Воду, образующую эмуль­сию с нефтью, удаляют при даль­нейшей операции — обезвоживании нефти. Обезвоживают нефть, разрушая водно-нефтяную эмульсию химическими и технологическими методами; подогретая эмульсия расслаивается при обра­ботке ПАВ-деэмульгаторами. Остаточная вода присутствует в нефти в виде мельчайших частиц; такую эмульсию разрушают в электродегидрататорах при воздействии переменного электриче­ского тока высокого напряжения (30—45 кВ). Одновременно с обезвоживанием происходит и обессоливание нефти. Для нейтра­лизации химически активных примесей, корродирующих аппара­туру и трубопроводы (сернистые соединения, кислоты), нефть об­рабатывают дозированными количествами щелочей или аммиака.

Состав и классификация нефтей.Нефть представляет собой сложную смесь разнообразных химических соединений, в первую очередь углеводородов. В состав нефти входят жидкие и раство­ренные твердые парафиновые углеводороды (алканы), нафтеновые (циклоалканы), ароматические (арены) углеводороды — всего сот­ни наименований. Углеводородная часть нефти составляет 90— 95% от ее массы. Нефть содержит также нафтеновые кислоты, смолистые и асфальтовые вещества, сернистые соединения, азотис­тые соединения вида аминов, пиридина, хинолина и др. Элемен­тный состав нефти (массовые доли в %) меняется в пределах:

С —83—87; Н —12—14; S —0,3—3; О — 0,1 —1,0; N — 0,001—0,4.Классификация нефтей производится главным образом по прин­ципу наибольшего содержания в них углеводородов одного или не­скольких видов; по этому принципу нефти принято делить на па­рафиновые, парафино-нафтеновые, нафтеновые, нафтено-ароматические, парафино-нафтеноароматические и ароматические. По со­держанию твердых парафинов нефти делят на малопарафинистые (до 1,5% твердых парафинов), парафинистые (1,5—6%) и высоко-парафинистые (более 6%). По содержанию сернистых соединений нефти делят па малосернистые, содержащие до 0,5% S, сернис­тые — от 0,5% до 2% S и высокосернистые — более 2% S.

Физические свойства нефти определяются ее составом. Некото­рые из них изменяются в следующих пределах: относительная плотность от 0,72 до 1; температура застывания от —20 до +20°С (высокопарафинистая нефть); температура кипения — ни­же 100°С; вязкость — от 0,3 до 4 см 2 /с, цвет — от светло-желтого до темно-коричневого.

Характеристика важнейших нефтепродуктов.На нефтеперерабатывающих заводах (НПЗ) вырабатывают горючие и смазочные материалы, твердые и полужидкие смеси парафинов (парафин, це­резин, вазелин), битумы, электродный кокс, растворители, а также индивидуальные парафиновые, олефиновые (алкены) и аромати­ческие углеводороды. К жидким горючим нефтепродуктам отно­сятся: 1) моторные топлива — карбюраторные для авиационных и автомобильных поршневых двигателей с воспламенением от искры; топливо для реактивных двигателей; дизельное топливо для поршневых двигателей внутреннего сгорания; 2) котельное топливо для тепловых электростанций, промышленных печей, теплоходов и теп­ловозов— мазут и другие нефтяные остатки.

К карбюраторным топливам относятся авиационные бензины различных марок, автомобильные бензины и тракторное топливо— лигроины и керосин. Основной характеристикой бензинов и других карбюраторных топлив являются их детонационные свой­ства. Детонационные свойства бензинов определяют по их октановому числу; шкала октановых чисел отсчитывается от 0, за который принимают наименее стойкий н-гептан, до 100 — числа, отвечающего весьма стойкому к детонации изооктану. Наи­большую стойкость к детонации проявляют изомерные цикличе­ские и особенно ароматические углеводороды, некоторые из них (бензол, толуол, ксилол) имеют октановое число выше 100. Для низкооктановых бензинов применяют антидетонационные добавки. По­вышение октанового числа бензинов сейчас достигается не за счет токсичных антидетонационных присадок, а применением таких ме­тодов получения и обработки бензиновых фракций, как риформинг, а также добавкой к бензинам ароматических углеводородов.

Реактивные топлива представляют собой фракции керосина или смеси бензина с керосиновыми фракциями (авиабензины). Дизель­ное топливо, применяемое для поршневых двигателей внутреннего сгорания с воспламенением от сжатия, — это керосины, газойли и соляровые фракции. Дизельное топливо характеризуется цетановым числом, оценивающим самовоспламеняемость топлива, а так­же вязкостью, температурой застывания и др. Цетановое число — это содержание (объемные доли в %) цетана — гексадекана, при­нятого за 100 в смеси с a-метилнафталином, принятом за нуль, эквивалентной по самовоспламеняемости с испытуемым топливом в стандартных условиях. Чем выше цетановое число, тем лучше ка­чество дизельного топлива.

Смазочные масла — высококипящие фракции нефти, очищен­ные от примесей, в зависимости от области применения делят на индустриальные, турбинные, компрессорные, трансмиссионные, при­борные, моторные, специального назначения. Особую группу составляют смазочные масла, используемые в качестве ра­бочих жидкостей в гидравлических системах и тормозных смесях, а также трансформаторах и конденсаторах как электроизолирую­щая среда.

Консистентные смазки — это смазки, загущенные каким-либо загустителем, например мылами, твердыми углеводородами.

Для химической промышленности особенно важны индивиду­альные углеводороды переработки нефти и нефтяных газов; к ним относятся: парафины — метан, этан, пропан; олефины — этилен, пропилен; ароматические — бензол, толуол, ксилол. Углеводороды нефтепереработки служат основной сырьевой базой для органиче­ского и микробиологического синтеза, а также производства вы­сокомолекулярных продуктов.

Методы пере­работки нефти делят на первичные и вторичные. Первичные — физические методы разделения нефти основаны на разных температурных интервалах кипения отдельных фракций нефти; это прямая гонка нефти. Вторичные — химические методы, основаные нa полном преобразовании нефтяного сырья в результате глубоких структурных превращений углеводородов под влиянием повышен­ных температуры и давления, а также применения катализаторов; это различные виды крекинга и риформинга нефти и нефтепро­дуктов.

Все методы переработки нефти и нефтепродуктов основаны на высокотемпературных эндотермических процессах и реакциях, для осуществления которых необходим подвод теплоты извне. Типовыми реакторами для нагревания нефти и нефтепродуктов и для проведения химических превращений служат трубчатые печи различных типов с внешним обогревом пламенного или беспламенного горения.

В трубчатых печах нефть или нефтепродукты проходят внутри печи по трубам, сгруппированным в секции, нагреваясь до задан­ной температуры дымовыми газами, образующимися при сжигании топлива. Гидродинамический режим движения сырья в трубчатых печах близок к модели идеального вытеснения. Передача теплоты от горючих газов к жидким нефтепродуктам, протекающим по тру­бам, происходит излучением (радиацией) или конвекцией.

Различные типы трубчатых печей отличаются друг от друга числом и расположением конвекционных камер, горелок, перего­родок, радиантных труб, профилем свода и т. д.

Http://helpiks. org/6-57856.html

“Нефть не топливо. Топить можно и ассигнациями” – эти слова Д. И. Менделеева стали хрестоматийными, но справедливы они лишь отчасти. В начале XX в., еще при жизни Д. И. Менделеева, начался перевод кораблей военно-морского флота крупнейших держав с угольного топлива на нефтяное. К 1914 г., к началу первой мировой войны, он практически завершился в большинстве стран, в том числе и в России. Это увеличило мощность силовых установок, работавших на судах, на одну треть без строительства новых кораблей!

В наши дни в промышленно развитых странах вся добываемая и покупаемая нефть идет на переработку. Но при этом около 90% всей массы нефтепродуктов— топлива и масла и лишь 10% — сырье для нефтехимии. Таким образом, нефть не только топливо, но и основа многих совершенно необходимых нам топлив, прежде всего моторных. И потребность в них продолжает расти.

В 1896 г. в мире было несколько автомобилей. Через 15 лет их количество исчислялось уже миллионами. А в годы второй мировой войны в эксплуатации находилось около 40 млн. автомобилей и тягачей, свыше 200 тыс. самолетов, почти 150 тыс. танков. Для того чтобы вся эта техника могла работать, необходимы были сотни миллионов тонн моторных и смазочных материалов.

Добыча и потребление нефти — важный показатель промышленного развития государств; организация ее переработки отражает уровень химической науки и технологии.

В 1932 г. замечательный советский ученый академик И. М. Губкин выпустил книгу «Учение о нефти», ставшую впоследствии классической. Изучение нефти продолжается. Огромные научные коллективы исследуют состав и свойства нефти в целом и многочисленных ее компонентов; совершенствуются методы добычи и переработки этого ценнейшего ископаемого сырья.

С точки зрения геологии нефть — важнейшее горючее ископаемое, маслянистая жидкость со специфическим запахом, образующая в недрах скопления (как правило, вместе с газообразными горючими ископаемыми), а на поверхности Земли обычно превращающаяся в полутвердый асфальт или густую маль-ту. В химии та же мальта называется продуктом осмоления и частичной полимеризации нефти, а сама нефть — сложной смесью углеводородов с другими органическими соединениями.

Основные химические элементы нефти — углерод (82—87%) и водород (11-14%). Количество серы в ней колеблется от 0,1 до 5%, содержание азота и кислорода, как правило, не превышает десятых долей процента. Есть, правда, исключения: в калифорнийской нефти (США) 1,2% связанного кислорода и 1,7% азота. Кислород нефти обычно содержится в нафтеновых кислотах — асфальтосмолистых веществах, фенолах (производных бензола). Азот находится в пиридине (принадлежит к гетероциклическим соединениям), его производных и гомологах (см. Гомология). Сера — в тиофене и его производных, органических сульфидах и меркаптанах (спиртах, в которых кислород замещен серой), а также в виде сероводорода — в составе попутных нефтяных газов. Есть в нефти и вода (хотя взаимная растворимость этих двух веществ невелика), растворенные газы, немного минеральных солей. В золе, образующейся при сжигании нефти, найдено около 20 различных химических элементов, но о том, как мало их в нефти, можно судить хотя бы по тому, что самой золы образуется менее 0,5%. Главные и самые важные для нас компоненты нефти — это углеводороды: насыщенные углеводороды метанового ряда, алициклические соединения — нафтены, ароматические углеводороды.

Непредельных углеводородов — олефинов и диолефинов — в сырой нефти практически нет, но они образуются в процессе ее вторичной переработки (см. Ненасыщенные углеводороды). Классифицируют нефти по принципу преобладания в них тех или иных углеводородов. Нефтяные залежи большинства местоторождений смешанные: метано-нафтеновые, нафтено-ароматические и т. д. Молекулярная масса углеводородов нефти колеблется в очень широких пределах. Правда, нафтеновые углеводороды нефти представлены главным образом пяти – и шестичленными циклами.

Практически важные характеристики нефтей: вязкость, содержание серы, смол, парафинов, выход фракций (химических частей нефти) при различных режимах термообработки.

Сырая нефть, как правило, не сразу поступает на переработку, а проходит сначала определенную подготовку. Ее обезвоживают, разрушают образовавшиеся в процессе добычи водонефтяные эмульсии, применяя для этого нагрев до 50—160° С, иногда давление (5—10 ат), поверхностно-активные вещества и деэмульгаторы — разрушители эмульсий. Но при обезвоживании из нефти уходят не все растворенные в воде и в нефти хлористые соли. Если их не удалить, нужно будет применять коррозионноустойчивые материалы при переработке нефти. Поэтому выгоднее полное удаление хлоридов на стадии подготовки нефти к переработке, что обеспечивает работа электрообессоливающих установок. Легкие нефти после обезвоживания и обессоливания подвергают еще и стабилизации — отгоняют легкую пропан-бутановую, а частично и пентановую фракции. Если этого не сделать, велики будут потери ценных легких углеводородов в процессе их транспортировки. К тому же нестабилизированные легкие нефти опаснее в обращении, чем стабилизированные. Деление нефтей на легкие и тяжелые условно: эта классификация — по плотности и соответственно количеству присутствующих в нефти легчайших и наиболее летучих углеводородов. Легкими называют нефти с плотностью до 0,9 г/см3, тяжелыми — больше 0,9 г/см3.

Переработка нефти начинается с ее перегонки— процесса термического разделения нефти на несколько основных фракций: бензин, лигроин, керосин, реактивное и дизельное топлива, топочный мазут. Последний используют не только как горючее, но и как сырье для производства парафина, смазочных масел, гудрона и некоторых других нефтепродуктов. Перегонку нефти ведут в непрерывно действующих трубчатых установках (см. с. 156). Остатком перегонки обычно является мазут или гудрон; мазут перегоняется в вакууме, в результате чего отбираются масляные фракции и остается гудрон.

Но перегонка лишь начальная стадия переработки нефти. За первичной переработкой следуют вторичные: крекинг, риформинг, гидроформинг и другие, при которых происходит распад тяжелых углеводородов на более легкие.

Полученные нефтепродукты обязательно подвергают очистке, после чего к ним добавляют различные присадки, чтобы улучшить их эксплуатационные качества.

Бензин. Правильнее — бензины. Сложная смесь легких углеводородов нефти, применяемая главным образом как топливо для карбюраторных двигателей. Температура конца кипения не выше 205° С, но 10% массы должно перегоняться при температуре 68— 79° С. Это так называемая пусковая фракция, от ее характеристик зависит легкость запуска двигателя. Бензины получают как при прямой перегонке нефти, так и в процессах ее вторичной переработки. Часть производимого бензина используется в химической промышленности как растворитель.

Керосин — это смесь углеводородов, выкипающих при температуре 180—320° С, но некоторые керосины, например из суруханской и грозненской нефти, начинают кипеть при более низкой температуре. Сто лет назад керосин называли иначе — фотогеном, что в переводе с древнегреческого означает «рождающий свет». В то время керосин был лишь топливом осветительных (керосиновых) ламп. Однако позже он стал и моторным топливом: сначала для тракторов, а затем и для реактивных самолетов. Классические авиационные топлива — Т-1 и Т-5 — делаются на основе керосиновой фракции нефти. Используется керосин и как горючее в жидком ракетном топливе.

Дизельное топливо. На этом топливе работает дизель — двигатель внутреннего сгорания. Это средние и отчасти тяжелые фракции нефти. Пределы выкипания — 270—400° С.

Минеральные масла: моторные, индустриальные (для смазки станков), приборные, трансмиссионные, цилиндровые, турбинные, компрессорные и др. Это все смазочные масла, а есть еще и несмазочные: трансформаторные, кабельные, поглотительные и др. Среди нефтепродуктов есть и медицинские препараты, например вазелиновое масло и просто вазелин. Все это достаточно тяжелые фракции нефти, подвергнутые специальной очистке.

Парафин, церезины — твердые углеводороды и их смеси с маслами. В состав парафина входят главным образом насыщенные углеводороды от до с температурами плавления 50—70° С. Смесь высших твердых насыщенных углеводородов мелкокристаллического строения состава называется церезином. Больше всего парафина потребляет спичечная промышленность — им пропитывают древесину, чтобы она горела ровнее. В химической промышленности парафин используют для получения карбоновых кислот и спиртов, моющих средств, поверхностно-активных веществ.

Кроме того, в процессах нефтепереработки получают битумы и нефтяной кокс (из самых тяжелых фракций), сажу (необходимую резиновому производству), важнейшие растворители — бензол и толуол (см. Нефтехимия).

Нефтяные технические битумы имеют широкое применение в народном хозяйстве: дорожные, строительные битумы и др. В качестве химического сырья используют газы нефтепереработки и многие другие продукты термической и каталитической переработки нефти.

Http://alnam. ru/book_e_chem. php? id=141

При переработки нефти получают следующие продукты: топлива жидкие и газообразные, растворители, смазочные масла, твердые и полутвердые смеси углеводородов ( парафины, церезины, вазелины и т. д), нефтяные битумы и пеки, нефтяные кислоты и их производные ( сульфокислоты, жирные кислоты и пр), индивидуальные углеводороды газообразные и жидкие – этилен, пропилен, метан, бензол, толуол, ксилол), являющиеся сырьем для химической промышленности.

Нефтяные жидкие топлива подразделяют на бензины, дизельное топлива, котельное топливо, топливо для реактивных двигателей

К газообразным нефтяным топливам относят попутные газы, получаемые при переработке нефти и нефтепродуктов

Переработка нефти – весьма сложный процесс, которому предшествует специальная её подготовка.

Необходимость подготовки нефти к переработке объясняется следующими причинами . Это наличие растворенных газов, воды, соли. Все это должно быть удалено из нефти, так как их присутствие приводит к нарушению технологических процессов её переработки.

Подготовка нефти к переработке начинается на нефтяных промыслах. Нефть из скважин поступает по трубам в ловушки ( трапы), в которых происходит отделение растворенных ( попутных газов, и затем попадает в отстойники. На дне отстойников оседает песок и другие твердые примеси, а также скапливаются вод, так она тяжелее нефти. Из отстойников нефть поступает в резервуары, из которых по трубопроводам или ы цистернах её доставляют н нефтеперерабатывающие заводы.

На заводах происходит окончательное обезвоживание нефти, удаление из неё растворенных солей, механических примесей, и лишь после этого нефть поступает на переработку.

Методы переработки нефти можно разделить на две группы: физические (первичные) и вторичные (химические)

Физические методы переработки нефти основаны на использовании различий в физических свойств веществ, входящих в состав нефти. Например, одни из них затвердевают или кристаллизуются при более высоких, другие при более низких температурах, одни растворяются в каких-либо растворителях, лучше чем другие и т. д. Если нагревать нефть, то по мере повышения температуры из неё будут испарятся различные продукты. Сначала будут улетучиваться те продукты, которые испаряются или закипают при более низких температурах, а затем те, которые кипят при более высоких температурах. Такой процесс называют перегонкой нефти. Химические реакции при физических методах переработки нефти не протекают.

Нефть подаётся в трубчатая печь 1, затем подаётся в ректификационную колонну2. Снизу в колонну вводится пар, и в ней происходит разделение нефти на фракции, или дистилляты, которые отбираются по высоте колонны.

Сверху из колонны выводятся пары бензина, которые охлаждаются в холодильнике 4. При охлаждении пары бензина конденсируются, превращаются в жидкий бензин, который частично идет в хранилище, а частично на орошение колонны. Выход бензина при перегонки нефти составляет от 3 до 15 % массы перерабатываемой нефти. Остальные продукты перегонки нефти – лигроин, керосин, соляровый дистиллят, мазут – выводятся из колонны, охлаждаются в теплообменниках и перекачиваются в хранилищах.

Снизу колонны отбирается самый тяжелый продукт – мазут, теплота которого используется в теплообменнике 3 для нагрева нефти.

Мазут – это не конечный продукт перегонки нефти. На установке, аналогичной на рис.1, но работающей под вакуумом можно проводить можно проводить разгонку мазута на фракции, получая смазочные масла. Остаток после разгонки мазута называется гудроном.

Мазут часто называют котельным топливом, потому что его сжигают в топках паровых котлов и различных печей. Однако это не единственное его применение. Как уже говорилось, мазут используют для получения смазочных масел; кроме того, при химической переработке из мазута получают бензин, а также газообразные углеводороды, служащие сырьем химического синтеза.

Выход бензина при перегонки нефти зависит от природных свойств нефти – он составляет всего 3-15%. Важно отметить, что при этом не получают продукты, являющиеся сырьем химической промышленности. Этих недостатков лишены химические процессы

Химические методы переработки основаны на том, что под влиянием температуры, давления, катализаторов углеводороды, содержащие в нефти и нефтепродуктах, претерпевают глубокие изменения.

Химические процессы по сравнению с физическими имеют ряд преимуществ.

Выход бензина составляет 40-50%. Наряду с бензином получают газообразные углеводороды, служащие сырьем химической промышленности. Некоторые химические процессы дают возможность получать для химической промышленности не только газообразно сырье, но и жидкие ароматические углеводороды – бензол, ксилол и другие. Благодаря «гибкости», т. е. возможности получения больших количеств бензина и других химических продуктов химические процессы стали одним из основных методов переработки нефти и нефтепродуктов.

В качестве сырья для химических процессов используются не только нефть, но и фракции, получаемые при перегонки нефти,- от лигроина до мазута.

Химические процессы можно разделить на три группы: термические, при которые преобразования сырья происходит под действием высокой температуры. Термо-каталитические под действием высокой температуры и катализаторов. Низко температурные каталитические – под действием катализатор.

Термические процессы включают термический крекинг, коксование, пиролиз.

При термических процессах бензин и другие продукты получаются в результате превращений, которые претерпевают углеводороды, содержащиеся в исходном сырье. Эти превращения заключаются в том, что при высоких температурах происходит расщепление (крекинг) углеводародов с высокой молекулярной массой, в результате чего образуются углеводороды с меньшей молекулярной массой, которые и входят в состав получаемых бензина и газов.

Термокаталитические процессы-каталитический крекинг, каталитический риформинг

Очистка – завершающая стадия производства моторных топлив и смазочных масел. Она необходима потому, что получаемые при перегонке и крекинге продукты содержат непредельные, реакционно способные углеводороды, сернистые а азотистые соединения, которые вызывают нестабильность их свойств, появление темного цвета, неприятного запаха, нагара в цилиндрах двигателей и т. д

К химическим методам принадлежат очистка серной кислотой, гидроочистка. К физико – химическим-адсорбционные и абсорбционные способы очистки (заключается в изберательной ( селективной) способности некоторых жидкостей растворять вредные вещества, содержащиеся в нефтепродуктах)

Http://infourok. ru/konspekt-po-himii-na-temu-pererabotka-zhidkih-topliv-neft-i-nefteprodukti-369606.html

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Топливо. Методы переработки топлива (предмет: Производство и технологии) находятся в архиве, который можно скачать с нашего сайта. Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0) .

Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.

Кстати! В нашей группе ВКонтакте мы Бесплатно помогаем с поиском рефератов, курсовых и информации для их написания. Не спешите выходить из группы после загрузки работы, мы ещё можем Вам пригодиться 😉

Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф. рф абсолютно бесплатно!

Учебное пособие по дисциплине Производство и технологии на тему: Топливо. Методы переработки топлива; понятие и виды, классификация и структура, 2016-2017, 2018 год.

Топливом называют существующие в природе или искусственно полученные вещества, являющиеся источником тепловой энергии и сырьем для химической промышленности.

Роль топлива в народном хозяйстве страны велико и все время возрастает, так как бурное развитие промышленности органического синтеза — производство пластических масс, химических волокон, синтетических каучуков, красителей, растворителей и т. д. — требует огромным количеств углеродного сырья, которое получается в результате химической переработки различных топлив.

Все топлива можно разделить по агрегатному состоянию на твердые, жидкие и газообразные, а по происхождению — на естественные в искусственные.

Искусственные топлива получают главным образом при переработке естественных топлив. Твердые искусственные топлива — кокс, полукокс, древесный уголь; жидкие — бензин, керосин, лигроин и др.; газообразные — генераторные газы, коксовый газ, газы переработки нефти и др.

Нефть в основном состоит из углерода (80-85%) и. водорода (10-14%), входящих в состав сложной смеси углеродов. Кроме углеродной в нефти имеется небольшая неуглеводородная часть я минеральные примеси. Состав природных и попутных газов очень разнообразен.

В таблице представлен состав органической, или горючей, массы топлива — той части топлива, которая при горении дает тепло. .

Газообразное топливо обладает рядом преимуществ по сравнению с твердым и жидким топливом, которые обусловлены его свойствами. При сгорании газа можно довести до минимума потерю теплоты с уходящими в дымовую трубу продуктами горения; при сгорании газа не образуется золы, шлака, дыма. Газ можно транспортировать самым дешевым видом транспорта — трубопроводом. По этим причинам газообразное топливо находит все более широкое применение в промышленности, а также в качестве бытового топлива и топлива для автотранспорта.

Методы переработки твердого топлива основаны на гетерогенных, главным образом некаталитических процессах в системах «твердое — газ», «твердое — жидкость — газ» и многофазных, осуществляемых при высоких температурах.

При нагревании уголь и другие виды топлива претерпевают сложные изменения, ведущие к образованию новых твердых, жидких и газообразных продуктов.

Основными методами, переработки твердого топлива являются коксование, полукоксование, газификация и деструктивная гидрогенизация.

Коксование — метод переработки каменных углей нагреванием без доступа воздуха до 900-1060 0 С в коксовых печах. Коксохимическое производство включает три технологические стадии: подготовку сырья, коксование и переработку коксового газа.

Сырьем для коксования служит смесь каменных углей, способных при нагревании спекаться (т. е, размягчаться и слипаться в общую массу). К таким углям относятся коксующие угли различных марок: коксующиеся, паровично-спекающиеся, паровично-жирные и др. Но запасы коксовых углей ограничены, поэтому наряду с ними применяют другие марки каменных углей — неспекающиеся: жирные, газовые, длинно пламенные.

Поступающие на переработку угли подвергаются подготовке: дроблению, сортировке, обогащению, обезвоживанию. Эта работа по улучшению качества угля требует дополнительных расходов, но она экономически целесообразна.

Процесс коксования протекает в коксовых печах, представляющих собой щелевидные камеры 2 шириной 0,4 м, высотой 4 м и длиной 14-15 м, сложенные из огнеупорного материала. В своде такой камеры имеются отверстия — люки для загрузки угля. Несколько десятков вечей (до 75), расположенных параллельно друг другу и связанных кирпичной кладкой, образуют коксовую батарею. В простенках между печами располагаются отопительные каналы 1. В них сжигается какое-либо газообразное топливо. Полученное при этой тепло через стенки печей, передается загруженному в них углю.

Коксование длится 13-14 часов. По окончании процесса открывают переднюю и заднюю двери печи и специальным толкателем выталкивают кокс из камеры в стальной полувагон, в котором его тушат. После выгрузки кокс сортируют. Из одной тонны угольной шихты получают 730-780 кг кокса, содержащего 85-95% чистого углерода, 5-11% золы и небольшое количество других веществ.

Образующийся при коксовании газ (до 350 м 3 на 1 т угля) содержит много ценных веществ. Кроме водорода, метана, окиси и двуокиси углерода, в его состав входят пары каменноугольной смолы, бензола, аммиака, сероводорода и ряд других соединений. Парогазовую смесь, отходящую из коксовых камер, улавливают и отводят V цех конденсации на переработку, извлекая содержащиеся в газе компоненты.

Полукоксование — низкотемпературный пиролиз низкосортного твердого топлива (каменные и бурые угли, сланцы) при нагревании до конечной температуры 500-550 0 С без доступа воздуха.

Полукокс — слабо спекшийся хрупкий продукт, содержащий до 10% летучих веществ, обладающий высокой реакционной способностью 8 большой зольностью. Применяют как местное энергетическое топливо я как составляющую шихты для коксования.

Смола, в особенности сланцевая, служит источником получения моторных топлив, растворителей я самых разнообразных органических мономеров, выделяемых прямой перегонкой смолы.

Газификация. В последнее время газификация твердого топлива приобретает особое значение как источник энергия и химического сырья.

Газификации могут быть подвергнуты любые виды твердого топлива — торф, низкосортные угли, сланцы, полукокс, отходы лесоразработок и др. При газификации, проводимой в реакторах, называемых газогенераторами, органическая масса топлива превращается в генераторные газы. Твердый остаток газификации (шлак) представляет собой минеральную часть топлива, т. е. золу. В зависимости от назначения генераторного газа применяют различные виды дутья и получают газ заданного состава.

Представляет интерес возрождение идеи Д. И. Менделеева о подземной бесшахтной газификации каменных углей, Когда газификация протекает в подземном газогенераторе без извлечения топлива на поверхность, т. е. без трудоемких горных работ.

Метод заключается в том» что с поверхности земли к угольному пласту бурятся скважины на расстоянии 25-30 м друг от друга, после чего забои этих скважин соединяются каналом газификации по угольному пласту. Одна скважина предназначена для подвода дутья, а другие — для отвода образующихся газов.

Деструктивная гидрогенизация — это метод прямого получения искусственного жидкого топлива — заменителя нефтепродуктов — из бурых и каменных углей, сланцев и других видов твердого топлива.

Сырьем служат каменные и бурые угли, содержащие в своей массе минимум серы, азота, кислорода, но максимум водорода. Угли подготавливают; дробят, измельчают, обогащают и сушат. Тонко измельченный угольный порошок смешивают с тяжелым маслом. Полученную массу нагревают в автоклавах под давлением в присутствии водорода и катализатора. В этих условиях уголь насыщается водородом — гидрогенизуется. Одновременно с гидрогенизацией происходит расщепление (деструкция) больших молекул, составляющих уголь, в смесь жидких и газообразных веществ с меньшим молекулярным весом. В результате образуются углеводороды (Сn Нm), аналогичные молекулам веществ, составляющих нефть. В зависимости от степени гидрирования можно получить бензин, керосин, дизельное топливо и другие вещества.

Переработку нефти, в зависимости от качества используемого сырья и характера производимых продуктов, осуществляют разными методами. Все методы нефтепереработки можно разделить на два вида: физические и химические. К первым относится перегонка, ко вторым — крекинг, пиролиз и др.

Перегонка представляет собой процесс разделения нефти как сложной жидкости на отдельные фракции (части). В основе такого процесса лежит метод раздельной конденсации паров веществ, составляющих нефть. Обычно перегонка производится в две стадии. Вначале из нефти под атмосферным давлением выделяют моторное топливо, получая в остатке мазут, а затем под вакуумом мазут перерабатывают.

Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих их трубчатой печи 1, ректификационной колонны 2, теплообменников 3, насосов и других аппаратов.

Трубчатая печь 1 — это устройство, внутри которого помещена система стальных труб, обогреваемых теплом сжигаемого горючего газа или мазута. Ректификационная’ колонна 2 представляет собой вертикальный стальной цилиндр высотой до 40 м разделенный внутри горизонтальными перегородками (барботажными тарелками) на отделения.

Пройдя ряд теплообменников, нефть попадает в змеевики трубчатой печи, где нагревается до 320 “С. При этом наиболее легкие углеводороды нефти закипают, переходя в газообразное состояние. Смесь жидкости и паров попадает в нижнюю часть ректификационной колонны и здесь разделяется. Пары устремляются вверх, проходя. Через отверстия в тарелках, а жидкая, неиспарившаяся часть нефти (мазут) стекает вниз.

Выделенные из нефти при перегонке вещества (дистилляты) являются полупродуктами. Чтобы получить товарные нефтепродукты, дистилляты очищают и, если необходимо, вторично ректифицируют. Например, бензиновый дистиллят при разгонке дает различные марки автомобильного и авиационного бензина, уайт-спирита (лаковый бензин) и другие продукты.

В настоящее время в нефтеперерабатывающей промышленности вое большее значение приобретают химические процессы. Они позволяют резко увеличить выход целевых продуктов и улучшить их качество.

При перегонке нефти выход бензина составляет в среднем 10-25% веса взятого сырья. Такое количество бензина не может покрыть возрастающий спрос народного хозяйства на этот вид топлива. Увеличение производства бензина (как и других видов моторного топлива) достигается применением крекинга. Он представляет собой химико-термический процесс расщепления молекул тяжелых углеводородов, в результате которого образуется смесь веществ меньшего молекулярного веса.

Крекингу подвергают различные нефтепродукты, преследуя разные цели, но его главная задача — получение бензина, выход которого при всём этом может достигнуть 70% веса взятого сырья.

Термический крекинг осуществляют при высокой температуре и значительном давлении. В таких условиях молекулы тяжелых углеводородов расщепляются легче.

Установка термического крекинга включает трубчатую печь для нагрева сырья, испарители, ректификационную колонну, газосепараторы.

Особой разновидностью крекинга является пиролиз. Он проводится при температуре 700-720 С и атмосферном давлении. Исходным материалом для этого процесса служат легкие фракции: нефтелигроин и керосин. Цель пиролиза — получение газа и ароматических углеводородов.

Каталитический крекинг — более совершенный процесс крекингования, осуществляемый с применением катализатора. Наличие последнего ускоряет разложение высокомолекулярных углеводородов, позволяет вести процесс при более низкой температуре и давлении близком к атмосферному. Таким способом обычно получают авиационный бензин, выход которого достигает 70% веса взятого сырья. Исходным материалом для каталитического крекинга служит преимущественно керосиновый и соляровый дистиллят.

Продукты переработки нефти. При переработке нефти получают большое количество разнообразных продуктов. Их можно разделить на три обширные группы: горючие, смазочные и прочие. К первой группе относится моторное, реактивное и котельное топливо, ко второй — смазочные масла и разнообразные консистентные смазки, а к третьей — битумы, нефтяные кислоты и их производные, ароматические углеводороды, парафины, вазелин, церезин и др.

Газообразное топливо имеет значительные преимущества по сравнению с твердым топливом.

Газообразное топливо находит широкое применение в промышленности» в быту, в автотранспорте, химической промышленности.

К газовому топливу относят природные, нефтяные (попутные) газы, а также промышленные, получаемые при переработке топлива. Промышленными являются крекинг-газ, коксовый, полукоксовый, генераторный. При химической переработке газ предварительно разделяют на составляющие компоненты или узкие фракции. Состав при – родных и попутных газов весьма разнообразен. Они. содержат метан, этан, пропан, бутан и небольшое количество азота. В газах нефтепереработки содержится этилен, пропилен, бутилен. В генераторных газах находится окись углерода и водорода. Вещества, содержащиеся в этих газах, являются сырьем для получения удобрений, пластических масс, химических волокон, синтетических каучуков, растворителей, моющих средств и т. д. Чтобы получить эти продукты, газы необходимо переработать.

Прямое использование веществ, входящих в состав газа; присоединением 1$ ним кислорода (окисление), хлора (хлорирование), воды (гидрирования), присоединением к молекулам групп СН, СnНm, (алкирование), изменением структуры молекул (изомеризация), соединением многих простых молекул в сложные (полимеризация).

Крекинг углеводородов, входящих в состав газов для получения непредельных углеводородов.

Конверсия — взаимодействие с водяными парами для получения окиси углерода и водорода.

В результате этих процессов из газов можно получать самые разнообразные продукты. Следует отметить большой экономический эффект использования газов.

Сейчас более половины потребляемого газа расходуется промышленностью» с его применением производятся все основные промышленные продукты — чугун, сталь, прокат, цветные металлы, штамповки для машиностроения, минеральные удобрения. Наиболее эффективно применение газа в качестве химического сырья.

Http://referatwork. ru/refs/source/ref-19442.html

Из продуктов перегонки нефти (так называемых дистиллятов) и продуктов их дальнейшей химической переработки путем смешения их в надлежащем соотношении, чаще всего с предварительной или с последующей очисткой, изготовляются многочисленные товарные нефтепродукты.

Важнейшими группами нефтепродуктов являются топлива и смазочные масла.

Нефтяные топлива разделяются на топлива для двигателей, или светлые нефтепродукты, применяемые для сжигания в двигателях, и котельные топлива — для сжигания в топках паровых котлов и в промышленных печах. Первые из них разделяются в свою очередь на карбюраторные, дизельные топлива и топлива для реактивных авиационных двигателей. Карбюраторными топливами для двигателей внутреннего сгорания с карбюраторами являются бензин и керосин.

Бензин в настоящее время является важнейшим из всех нефтепродуктов, так как служит топливом для двигателей, устанавливаемых на автомашинах и винтомоторных самолетах. Авиационный бензин является более легким, уд. вес его 0,73—0,76, т. кип.

40—180°, автомобильный — более тяжелым, уд. вес его 0,74—0,77, т. кип. 50—200°. Важнейшей характеристикой бензина как топлива является его стойкость к детонации.

При работе двигателя бензин испаряется в карбюраторе при прохождении через него воздуха. Образовавшаяся горючая смесь паров с воздухом всасывается в цилиндр двигателя и сжимается поршнем, после чего поджигается посредством электрической искры и, плавно сгорая, быстро расширяется, совершая работу. Чем сильнее сжимается смесь перед воспламенением, тем большее развивается давление и тем больше мощность и коэффициент полезного действия двигателя. Однако при определенной степени сжатия к концу горения смеси скорости распространения пламени внезапно увеличивается примерно в сто раз, что вызывает взрыв смеси. Образующаяся взрывная волна, ударяясь о поршень, вызывает появление резкого стука в цилиндре. Это явление взрыва горючей смеси в цилиндре двигателя носит название детонации.

Детонация приводит к преждевременному износу двигателя и падению его мощности. Для различных по составу бензинов детонация возникает при различных степенях сжатия. Причиной детонации является образование нестойких перекисей вследствие окисления углеводородов во время сжатия. Наиболее склонны к детонации предельные углеводороды нормального строения; наоборот, предельные углеводороды с сильно разветвленной цепью детонируют

Слабо. Способность данного бензина к детонации оценивается его октановым числом. Чем оно больше, тем в большей степени может быть сжата горючая смесь. Условно было принято, что октановое число легко детонирующего н-гептана равно нулю, а у весьма стойкого к детонации изооктана (2,2,4-триметилпентана) — 100. Октановое число бензина находят путем сравнения с различными смесями этих двух углеводородов, и оно равно объемному проценту изооктана в смеси, которая детонирует как данный бензин. Например, если бензин детонирует как смесь 40% изооктана + 60% н-гептана, то его октановое число — 40.

Высокими октановыми числами, кроме изопарафинов, обладают ароматические углеводороды (бензол — 108, толуол — 104), нафтены — несколько меньшими (циклогексан — 77). Этиленовые углеводороды (олефины) нормального строения имеют более высокие октановые числа, чем нормальные парафины с тем же числом атомов углерода. Октановое число бензина зависит, следовательно, от относительного содержания в нем углеводородов указанных классов и от их строения. Бензин, получаемый перегонкой (бензин прямой гонки) нафтеновых нефтей, имеет октановые числа 65—78, а из парафинистых нефтей — 40—60. Стойкость бензина к детонации сильно повышается (на 10—20 октановых единиц) при растворении в нем небольших количеств антидетонатора — тетраэтилсвинца (ТЭС) — РЬ (С2Н6)4, весьма ядовитого вещества. ТЭС вводится обычно в виде смеси (называемой этиловой жидкостью) с бромистым этилом и а-хлорнафталином, которые способствуют удалению из двигателя образующихся окислов свинца, переводя их в летучие галогениды.

Смесь содержит также краситель, окрашивающий бензин (называемый теперь этилированным) в красный цвет для обозначения его ядовитости. Этиловая жидкость добавляется в количестве 1,5—4 мл на 1 кг бензина. Бензин применяется также в качестве растворителя в резиновой промышленности, для извлечения растительных масел из семян и т. д. Применяемый в небольшом количестве для тракторных двигателей керосин должен иметь октановое число не менее 40. ТЭС в него не добавляется. Используемый для освещения и как бытовое топливо керосин должен иметь температуру вспышки 1 выше 40°.

В связи со все возрастающим распространением двигателей Дизеля (дизелей) в различных видах транспорта с каждым годом все большее значение приобретает дизельное топливо и выработка его быстро растет. Для быстроходных (тракторных, тепловозных и автомобильных) дизелей применяется продукт перегонки парафинистой нефти — газойль или смесь его или солярового масла с керосином — с т. кип. Ц 200—350°;-для тихоходных двигателей — с малым числом оборотов используются остатки от перегонки нефти и от крекинга в смеси с газойлем или соляровым маслом.

В двигателе Дизеля топливо впрыскивается в жидком состоянии и весьма мелкораспыленным в сжатый до 20—40 am и нагретый вследствие этого до 600—700° воздух, испаряется и сгорает благодаря окислению углеводородов и последующему самовоспламенению. Лучше всего воспламеняются нормальные парафины, медленнее — нафтены и труднее всего — ароматические углеводороды. Качество дизельного топлива оценивается цетановым числом — содержанием цетана в процентах в такой смеси его с а-метилнафталином, которая ведет себя в двигателе как испытуемое топливо. Для легко воспламеняющегося цетана, или, иначе, н-гексадекана — С1вН34 — оно принято равным 100, а для трудно воспламеняющегося а-метилнафталина — равным нулю. Дизельное топливо для быстроходных дизелей должно иметь цетановое число не ниже 40.

В качестве топлива для воздушно-реактивных авиационных двигателей применяют обычно полученный перегонкой нефти дистиллят (см. выше) с темп, кипения 150— 250° (топливо ТС-1) или 150—280° (топливо Т-1).

Http://djht. ru/12toplivo/4.html

Поделиться ссылкой: