Продукт переработки нефти сканворд

Установки от экстрасенса 700х170

Нефти разных месторождений неодинаковы по составу, но все они содержат в разных соотношениях четыре главных класса углеводородов: парафины, циклические углеводороды с пяти – и шестичленными циклами и ароматические углеводороды. Встречаются также углеводороды, содержащие различные сочетания двух циклов. В некоторых нефтях обнаружены в очень небольших количествах углеводороды с семичленным циклом. Олефины в нефтях почти никогда не содержатся. О присутствии в нефтях углеводородов каких-либо других классов пока нет данных. Однако надо иметь в виду, что природа компонентов нефти, кипящих выше 200° С, почти не изучена, а более низкокипящие фракции более или менее подробно исследованы лишь у нескольких десятков нефтей Кроме углеводородов, в нефти почти всегда присутствуют соединения, содержащие серу, кислород и азот, но главную массу любой нефти всегда составляют углеводороды.

Особенно много парафиновых углеводородов содержат некоторые нефти Второго Баку, возникшие в девонский геологический период. В очень большом количестве парафиновые углеводороды содержатся в пенсильванской (США) нефти. Из нее дробной перегонкой было выделено много жидких гомологов метана, причем обычно они представляют собой смеси изомеров; низшие гомологи (пентан — октан) имеют преимущественно нормальное строение. Низкокипящие фракции грозненской нефти также состоят главным образом из парафиновых углеводородов, тогда как бакинские нефти содержат много алицик-лических углеводородов, а некоторые уральские — также много» ароматических углеводородов.

Наиболее летучей частью нефти являются метан и его ближайшие гомологи: этан, пропан, бутан и пентаны. Все они используются как сырье для нефтехимической промышленности, а также в качестве газообразного горючего.

Легкокипящие погоны нефти (обыкновенно не выше 150— 170° С) носят название, бензина. Из них дробной перегонкой выделяют фракции, находящие различное практическое применение: как топливо, особенно для двигателей внутреннего сгорания (главное применение), в качестве растворителей и т. п.

Сорта бензина различают по плотности, пределам температуры кипения и количеству отгона до определенной температуры, антидетонационным свойствам и т. д.

Легкие бензины, с относительной плотностью 0,64—0,66 и температурой кипения главной части между 40 и 75° С, носят название петролейного эфира.

Средние бензины в зависимости от назначения весьма сильно различаются по плотности и температуре кипения. Их применяют также в качестве растворителей, причем особенно часто для этой цели применяется бензин с т. кип. 70—120° С и плотностью около 0,70. Для этой же цели применяются и Тяжелые бензины с плотностью, колеблющейся в пределах 0,73—0,77.

Ввиду огромного потребления бензина как горючего для автомобилей, самолетов и пр. большие количества его приготовляются из высших фракций нефти посредством крекинга. В Германии из-за недостатка нефтяных месторождений было организовано производство бензина из продуктов сулой перегонки бурых углей, а также из каменноугольной смолы, получаемой сухой перегонкой каменного угля при низких температурах (процесс полукоксования).

В настоящее время большое значение как горючее для автотракторных двигателей и для реактивной авиации имеет Керосин, содержащий фракции, кипящие в пределах 150—300° С (иногда с примесью несколько более низкокипящих фракций). Кроме того, керосин и до сих пор сохраняет некоторое значение в быту для освещения.

Фракции, перегоняющиеся без разложения при температурах кипения, высших, чем у керосина, носят название соляровых масел. Соляровые масла могут быть переработаны различными путями в бензин. После соляровых масел из нефти отгоняются различные Смазочные масла, обладающие тем большей вязкостью, чем выше температура их кипения.

Посредством перегонки с водяным паром фракций, кипящих выше 300° С, получают Вазелин, который представляет собой густую смесь жидких и твердых углеводородов. Из нефти выделяют, кроме того, воскообразную смесь твердых парафиновых углеводородов, называемую Парафином.

Массу твердых углеводородов, выкристаллизовавшуюся при охлаждении высших погонов, отделяют от жидкой части на фильтрпрессах. Для получения парафина с высокой температурой плавления полученный продукт подвергают дополнительному (горячему) прессованию.

Особенно много парафина содержит нефть некоторых месторождений СССР (нефть с острова Челекена на Каспийском море, грозненская нефть и др). Большие количества парафина получаются также сухой перегонкой битуминозных сланцев и бурых углей.

Не перегоняющаяся без разложения часть нефти носит название Мазута или «Нефтяных остатков». Мазут применяется в больших количествах как жидкое топливо и для приготовления смазочных масел.

В природе встречаются и отдельные залежи твердых парафиновых углеводородов в виде Горного воска, или Озокерита, применяемого в очищенном виде под названием Церезина. Церезин плавится при более высокой температуре, чем на-рафин.

По строению составляющих его углеводородов церезин отличается от твердого парафина, выделяемого из нефти. Парафин состоит в основном из алканов нормального строения с 16—30 углеродными атомами в молекуле, тогда как алканы, составляющие церезин, разветвлены. Средний молекулярный вес церезинов выше, чем у выделенных из нефти парафинов с такой же температурой плавления. По-видимому, алканы церезинов содержат в молекулах более 25 углеродных атомов.

Http://www. xumuk. ru/organika/51.html

Что же такое нефть? Теплотехник ответит, что это прекрасное, высококалорийное топливо. Но химик возразит: нет! Нефть – это сложная смесь жидких углеводородов, в которых растворены газообразные и другие вещества. И чтобы перечислить все продукты, получаемые из нефти, нужно потратить несколько листов, так как их уже несколько тысяч.

Еще Д. И. Менделеев заметил, что топить печь нефтью все равно, что топить ее ассигнациями.

Нефть (от перс. neft) – горючая маслянистая жидкость со специфическим запахом, распространенная в осадочной оболочке Земли и являющаяся важнейшим полезным ископаемым.

Залежи нефти находятся в недрах Земли на разной глубине, где нефть заполняет свободное пространство между некоторыми породами. Если она находится под давлением газов, то поднимается по скважине на поверхность Земли.

Цель нефтеразведки – выявление, геолого-экономическая оценка и подготовка к разработке залежей нефти. Нефтеразведка производится с помощью геологических, геофизических, геохимических и буровых работ в рациональном сочетании и последовательности.

На первой стадии поискового этапа в бассейнах с не установленной нефтегазоносностью либо для изучения слабо исследованных тектонических зон или нижних структурных этажей в бассейнах с установленной нефтегазоносностью проводятся региональные работы. Для этого осуществляются аэромагнитная, геологическая и гравиметрическая съемки, геохимические исследования вод и пород, профильное пересечение территории электро – и сейсморазведкой, бурение опорных и параметрических скважин. В результате устанавливаются районы для дальнейших поисковых работ.

На второй стадии производится более детальное изучение нефтегазоносных зон путем детальной гравиразведки, структурно-геологической съемки, электро и сейсморазведки, структурного бурения.

Производится сравнение снимков масштабов 1:100.000 – 1:25.000. уточняется оценка прогнозов нефтегазоносности, а для структур с доказанной нефтегазоносностью, подсчитываются перспективные запасы.

На третьей стадии производится бурение поисковых скважин с целью открытий месторождений. Первые поисковые скважины бурятся на максимальную глубину. Обычно первым разведуется верхний этаж, а затем более глубокие. В результате дается предварительная оценка запасов.

Разведывательный этап – завершающий в геологоразведочном процессе. Основная цель – подготовка к разработке. В процессе разведки должны быть оконтурены залежи, определены литологический состав, мощность, нефтегазонасыщенность. По завершению разведочных работ подсчитываются запасы и даются рекомендации о вводе месторождения в разработку. Эффективность поиска зависит от коэффициента открытий месторождений – отношением числа продуктивных площадей к общему числу разбуренных поисковым бурением площадей.

Почти вся добываемая в мире нефть, извлекается посредством буровых скважин, закрепленных стальными трубами высокого давления. Для подъема нефти и сопутствующих ей газа и воды на поверхность скважина имеет герметичную систему подъемных труб, механизмов и арматуры, рассчитанную на работу с давлениями, соизмеримыми с пластовыми. Добыче нефти при помощи буровых скважин предшествовали примитивные способы: сбор ее на поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, посредством колодцев.

Сбор нефти с поверхности водоемов – это, очевидно, первый по времени появления способ добычи, который до нашей эры применялся в Мидии, Вавилонии и Сирии. Сбор нефти в России, с поверхности реки Ухты начат Ф. С. Прядуновым в 1745 г. В 1858 на полуострове Челекен нефть собирали в канавах, по которым вода стекала из озера. В канаве делали запруду из досок с проходом воды в нижней части: нефть накапливалась на поверхности.

Разработка песчаника или известняка, пропитанного нефтью, и извлечение из него нефти, впервые описаны итальянским ученым

Ф. Ариосто в 15 веке. Недалеко от Модены в Италии такие нефтесодержащие грунты измельчались и подогревались в котлах. Затем нефть выжимали в мешках при помощи пресса. В 1833 –1845 г. г. нефть добывали из песка на берегу Азовского моря. Песок помещали в ямы с покатым дном и поливали водой. Вымытую из песка нефть собирали с поверхности воды пучками травы.

Добыча нефти из колодцев производилась в Киссии, древней области между Ассирией и Мидией в 5 веке до нашей эры при помощи коромысла, к которому привязывалось кожаное ведро. Подробное описание колодезной добычи нефти в Баку дал немецкий натуралист Э. Кемпфер. Глубина колодцев достигала 27 м, их стенки обкладывались камнем или укреплялись деревом.

Добыча нефти посредством скважин начала широко применяться с 60-х г. 19 века. Вначале наряду с открытыми фонтанами и сбором нефти в вырытые рядом со скважинами земляные амбары добыча нефти осуществлялась также с помощью цилиндрических ведер с клапаном в днище. Из механизированных способов эксплуатации впервые в 1865 в США была внедрена Глубоконасосная эксплуатация, которую в 1874 г применили на нефтепромыслах в Грузии, в 1876 в Баку. В 1886 г В. Г. Шухов предложил Компрессорную добычу нефти, которая была испытана в Баку в 1897г. Более совершенный способ подъема нефти из скважины – Газлифт – предложил в 1914 г М. М. Тихвинский.

Процесс добычи нефти, начиная от притока ее по пласту к забоям скважин и до внешней перекачки товарной нефти с промысла, можно разделить условно на 3 этапа.

Движение нефти по пласту к скважинам благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин.

Движение нефти от забоев скважин до их устьев на поверхности – эксплуатация нефтяных скважин.

Сбор нефти и сопровождающих ее газа и воды на поверхности, их разделение, удаление минеральных солей из нефти, обработка пластовой воды, сбор попутного нефтяного газа.

Под разработкой нефтяного месторождения понимается осуществление процесса перемещения жидкостей и газа в пластах к эксплуатационным скважинам. Управление процессом движения жидкостей и газа достигается размещением на месторождении нефтяных, нагнетательных и контрольных скважин, количеством и порядком ввода их в эксплуатацию, режимом работы скважин и балансом пластовой энергии. Принятая для конкретной залежи система разработки предопределяет технико-экономические показатели. Перед забуриванием залежи проводят проектирование системы разработки. На основании данных разведки и пробной эксплуатации устанавливают условия, при которых будет протекать эксплуатация: ее геологическое строение, коллекторские свойства пород (пористость, проницаемость, степень неоднородности), физические свойства жидкостей в пласте (вязкость, плотность), насыщенность пород нефти водой и газом, пластовые давления. Базируясь на этих данных, производят экономическую оценку системы, и выбирают оптимальную.

При глубоком залегании пластов для повышения нефтеотдачи в ряде случаев успешно применяется нагнетание в пласт газа с высоким давлением.

Извлечение нефти из скважин производится либо за счет естественного фонтанирования под действием пластовой энергии, либо путем использования одного из нескольких механизированных способов подъема жидкости. Обычно в начальной стадии разработки действует фонтанная добыча, а по мере ослабления фонтанирования скважину переводят на механизированный способ: газлифтный или эрлифтный, глубинонасосный (с помощью штанговых, гидропоршневых и винтовых насосов).

Газлифтный способ вносит существенные дополнения в обычную технологическую схему промысла, так как при нем необходима газлифтная компрессорная станция с газораспределителем и газосборными трубопроводами.

Нефтяным промыслом называется технологический комплекс, состоящий из скважин, трубопроводов, и установок различного назначения, с помощью которых на месторождении осуществляют извлечение нефти из недр Земли.

На месторождениях, разрабатываемых с помощью искусственного заводнения, сооружают систему водоснабжения с насосными станциями. Воду берут из естественных водоемов с помощью водозаборных сооружений.

В процессе добычи нефти важное место занимает внутрипромысловый транспорт продукции скважин, осуществляемый по трубопроводам. Применяются 2 системы внутрипромыслового транспорта: напорные и самотечные. При напорных системах достаточно собственного давления на устье скважин. При самотечных движение происходит за счет превышения отметки устья скважины над пометкой группового сборного пункта.

При разработке нефтяных месторождений, приуроченных к континентальным шельфам, создаются морские нефтепромыслы.

Главнейшим свойством нефти, принесшим им мировую славу исключительных энергоносителей, является их способность выделять при сгорании значительное количество теплоты. Нефть и ее производные обладают наивысшей среди всех видов топлив теплотой сгорания. Теплота сгорания нефти – 41 МДж/кг, бензина – 42 МДж/кг. Важным показателем для нефти является температура кипения, которая зависит от строения входящих в состав нефти углеводородов и колеблется от 50 до 550°С.

Нефть, как и любая жидкость, при определенной температуре закипает и переходит в газообразное состояние. Различные компоненты нефти переходят в газообразное состояние при различной температуре. Так, температура кипения метана –161,5°С, этана –88°С, бутана 0,5°С, пентана 36,1°С. Легкие нефти кипят при 50–100°С, тяжелые – при температуре более 100°С.

Различие температур кипения углеводородов используется для разделения нефти на температурные фракции. При нагревании нефти до 180–200°С выкипают углеводороды бензиновой фракции, при 200–250°С – лигроиновой, при 250–315°С – керосиново-газойлевой и при 315–350°С – масляной. Остаток представлен гудроном. В состав бензиновой и лигроиновой фракций входят углеводороды, содержащие 6–10 атомов углерода. Керосиновая фракция состоит из углеводородов с, газойлевая – и т. д.

Важным является свойство нефти растворять углеводородные газы. В 1 м 3 нефти может раствориться до 400 м 3 горючих газов. Большое значение имеет выяснение условий растворения нефти и природных газов в воде. Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности. Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 – средними, а с относительной плотностью свыше 0,90 – тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов, тем выше ее плотность. При добыче нефти важно знать ее вязкость. Различают динамическую и кинематическую вязкость. Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают. Кинематической вязкостью называется отношение динамической вязкости к плотности среды. Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны. Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти. Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые – бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.

Нефти состоят главным образом из углерода – 79,5 – 87,5 % и водорода – 11,0 – 14,5 % от массы нефти. Кроме них в нефти присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5 – 8 %. В незначительных концентрациях в нефти встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий и др. Их общее содержание не превышает 0,02 – 0,03 % от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти. Кислород и азот находятся в нефти только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Вначале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению. Основные фракции нефти следующие:

Фракция, собираемая от 40 0 до 200 0 С, – Газолиновая фракция бензинов – содержит углеводороды от С5Н12 до С11Н24. При дальнейшей перегонке выделенной фракции получают: Газолин (от 40 0 до 70 0 С), Бензин (от 70 0 до 120 0 С) – Авиационный, автомобильный и т. д.

Лигроиновая фракция, собираемая в пределах от 150 0 до 250 0 С, содержит углеводороды от С8Н18 до С14Н30. Лигроин применяется как горючее для тракторов.

Керосиновая фракция включает углеводороды от С12Н26 до С18Н38 с температурой кипения от 180 0 до 300 0 С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

Мазут – остаток от перегонки. Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции:

Из некоторых сортов нефти получают Парафин (для производства спичек, свечей и др.). После отгонки остается Гудрон. Его широко применяют в дорожном строительстве.

Http://xreferat. com/108/1781-1-neft-i-produkty-eie-pererabotki. html

    ГОСТ 12.2.044-80 – Система стандартов безопасности труда. Машины и оборудование для транспортирования нефти. Требования безопасности

ГОСТ 25091-82 – Кронблоки, блоки талевые, крюки и крюкоблоки. Основные параметры

ГОСТ 34233.10-2017 – Сосуды и аппараты. Нормы и методы расчета на прочность. Сосуды и аппараты, работающие с сероводородными средами

ГОСТ 34233.11-2017 – Сосуды и аппараты. Нормы и методы расчета на прочность. Метод расчета на прочность обечаек и днищ с учетом смещения кромок сварных соединений, угловатости и некруглости обечаек

ГОСТ 34233.9-2017 – Сосуды и аппараты. Нормы и методы расчета на прочность. Аппараты колонного типа

ГОСТ 34347-2017 – Сосуды и аппараты стальные сварные. Общие технические условия

ГОСТ 4.108-84 – Система показателей качества продукции. Продукция химического и нефтяного машиностроения. Линии технологические комплектные. Номенклатура показателей

ГОСТ 9.602-2016 – Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии

ГОСТ Р 52857.1-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требования

ГОСТ Р 52857.10-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Сосуды и аппараты, работающие с сероводородными средами

ГОСТ Р 52857.11-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Метод расчета на прочность обечаек и днищ с учетом смещения кромок сварных соединений, угловатости и некруглости обечаек

ГОСТ Р 52857.2-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек

ГОСТ Р 52857.3-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Укрепление отверстий в обечайках и днищах при внутреннем и внешнем давлениях. Расчет на прочность обечаек и днищ при внешних статических нагрузках на штуцер

ГОСТ Р 52857.4-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет на прочность и герметичность фланцевых соединений

ГОСТ Р 52857.5-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет обечаек и днищ от воздействия опорных нагрузок

ГОСТ Р 52857.6-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет на прочность при малоцикловых нагрузках

ГОСТ Р 52857.7-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Теплообменные аппараты

ГОСТ Р 52857.8-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Сосуды и аппараты с рубашками

ГОСТ Р 52857.9-2007 – Сосуды и аппараты. Нормы и методы расчета на прочность. Определение напряжений в местах пересечений штуцеров с обечайками и днищами при воздействии давления и внешних нагрузок на штуцер

ГОСТ Р ИСО 12176-3-2014 – Трубы и фитинги пластмассовые. Оборудование для сварки полиэтиленовых систем. Часть 3. Идентификация оператора

ГОСТ Р ИСО 12176-4-2014 – Трубы и фитинги пластмассовые. Оборудование для сварки полиэтиленовых систем. Часть 4. Кодирование трассируемости

Http://nrmbt. normacs. ru/Doclist/folder/752000005.html

«Нефть и её переработка» – Вывести формулу вещества. Относительная плотность вещества по воздуху равна 1,03. Однако полученного таким образом бензина совершенно недостаточно. Нефть перерабатывают перегонкой и крекингом. В жидкой фракции нефти растворены твердые и газообразные УВ. Сначала кипят и испаряются более легкие УВ, затем – более тяжелые. Высокотемпературный крекинг называется пиролизом. МОУ СОШ № 5 г. Светлого.

«Куда уходят деньги» – 3) Ежедневно ведутся записи расходов. У каждой семьи свой бюджет. Распределение финансовых средств, для семейного бюджета. Семейный бюджет – одна из важнейших составляющих каждой семьи. 2) Исследуются расходы из бюджета семьи. Вывод. Заключение. Доходная часть семьи: Куда уходят деньги? А, возможно, со временем у вас выработаются и свои подходы к планированию семейного бюджета.

«Производство строительных материалов» – Распространяются путем открытой подписки. Бизнес-план компании «Монолит» – производство строительных материалов. Организация деятельности компании. 1. При создании компании акционерное общество проводит эмиссию акций. Организационно-правовая форма предприятия – Акционерное общество открытого типа. Исследование ситуации на рынке товара. В результате чего значительно возросла себестоимость строящихся объектов. Проект по экономике и экономической географии ученика 10 «а» класса Гасфорда Александра. Актуальность проблемы. Открытое акционерное общество.

«Экономика и рынок» – Задание: Выявите положительные черты конкуренции. 1.1. Да 1.2. Нет 1.3. Нет 2.1. А 2.2. Г 2.3. А «5» – все правильно «4» – 1-2 ошибки «3» – 3-4 ошибки «2» – больше 4 ошибок. Заполните схему. Домашнее задание. Чистый капитализм. Наличие множества самостоятельно действующих покупателей и продавцов каждого товара. Ренессанс малого бизнеса.

«Нумизматика» – Средство обращения – способность выполнять роль посредника в движении товаров и услуг. Сравнительный анализ истории денег на территории Латвии и России. Как мы видим история денег в Латвии продолжает развиваться. Нумизматика. Эфиопские соляные бруски. На территории Латвии были и немецкие, и польские, и шведские, и российские деньги. Средство платежа – возникает, когда товары и услуги продаются в кредит. 1. Наука нумизматика. Раковины каури. Виды денег. На данный момент в Латвии используют латвийские деньги, а перспективой являются евро.

«Текстильная промышленность» – Страны-импортёры. Особенно выделяется Центральный район(1/2). Характеристика отрасли. Использует по преимуществу с/х сырье. Текстильная промышленность. Работу выполнила Ученица 10 «Б» класса Стрельникова Юлия Калининград, 2011. Значение отрасли в мировом хозяйстве. Основные проблемы отрасли. Страны-экспортёры. Главные страны экспорта и импорта продукции. Главные районы и центры производства. низкий уровень заработной платы.

Http://5klass. net/ekonomika-10-klass/Protsessy-pererabotki-nefti/025-Produkty-neftepererabotki. html

Государственное казенное образовательное учреждение Пермского края для детей-сирот и детей, оставшихся без попечения родителей, “Специальный (коррекционный) детский дом №10 для детей-сирот и детей, оставшихся без попечения родителей, с ограниченными возможностями здоровья” г. Перми 2. Поставка авиационного бензина и авиационного масла Санкт-Петербургскому государственному бюджетному учреждению «Социально-реабилитационный центр «Военно-патриотический центр «Дзержинец» в 2014 году

Санкт-Петербургское государственное бюджетное учреждение “Социально-реабилитационный центр для несовершеннолетних “Военно-патриотический центр “Дзержинец”

Вице-премьер правительства России Дмитрий Козак на пленарном заседании IV Ялтинского экономического форума заявил о необходимости продления федеральной целевой программы "Социально-экономическое развитие Республики Крым и Севастополя до 2020 года".

Рост цен на бензин в России носит сезонный характер и объясняется началом посевной кампании, заявил глава Федеральной антимонопольной службы (ФАС) Игорь Артемьев, комментируя рост цен на бензин.

Cправочник "ZakGo" — тендеры, госзакупки, госзаказы, конкурсные торги и электронные аукционы России в единой базе государственных и коммерческих тендеров с ежедневными обновлениями + удобные классификаторы тендеров и государственных закупок на основе кодов ОКВЭД и ОКДП.

© 2012-2018 Справочник "ZakGo", последнее обновление — апрель 2018 года.

Http://www. orenburg. zakgo. ru/okdp/5141290

Химическая промышленность доклад кратко расскажет много полезной информации об отрасли, которая обеспечивает другие виды промышленности исходными материалами и продуктами.

Химическая промышленность влияет на другие отрасли, такие как строительство, автомобилестроение, сельское хозяйство. Ее продукция и товары активно продаются на мировом рынке и находятся на одном уровне с машиностроением.

Стоит отметить, что комплекс химической промышленности характеризуется высокой наукоемкостью. Он употребляет большое количество сырья для того, чтобы изготовить свою продукцию. Особенно затратные это пластмассы, сода, каучуки, удобрения. Кроме сырья нужны вода, топливо и электричество. Кроме того, сектор химической промышленности владеет трудоемкостью, которая требует особых навыков и знаний квалифицированных специалистов.

Химические вещества делят на 2 класса – неорганические и органические. Органические соединения в своей основе имеют атомы углерода, которые связаны с водородными атомами и другими элементами. В производстве органических веществ основным источником (до 90%) являются природный газ и нефть, которые заменили уголь, а также сырье животного и растительного происхождения. Химические неорганические вещества в основном изготавливаются из минеральных источников. Например, серу получают из руд или из самородной серы, а хлор из поваренной соли.

Продукты, которые производит химическая промышленность можно поделить на 3 группы, которые соответствуют основным степеням и стадиям переработки:

    Основные продукты неорганического и органического синтеза, получаемые в больших объемах, перерабатываются в другую химическую продукцию. Субпродукты. Они получаются из тех химических продуктов, которые в дальнейшем перерабатываются или сами являются растворителями. Конечные химические продукты. Они получаются вследствие переработки полупродуктов. Некоторые из них используются для изготовления мыла, лекарственных препаратов, косметических средств, а другие используются как пластмасса, химические волокна, пигменты и красители, которые в дальнейшем подлежат обработке.

Исходные продукты органического синтеза для получения синтетических смол, пластмасс, синтетических каучуков и волокон. Сырье и растворители для моющих средств. Щелочи, соли и кислоты, газы (азот, кислород, ацетилен) которые активно используются в других отраслях. Пестициды и удобрения (фунгициды, гербициды, инсектициды). Синтетические смолы, пластмассы, синтетические и целлюлозные волокна, синтетический каучук. Лаки, эмали и краски. Медикаменты и лекарства. Мыло, косметические средства, духи, средства личной гигиены. Взрывчатые вещества, клеи, полировальные средства, фотопрепараты и чернила.

Химическая промышленность обеспечивает разработку и введение достижений НТП (научно-технического прогресса). Она способствует продвижению производства в стране. Ее особенность — нацеленность продукции и наукоемких производственных ключевых структур на обеспечение человеческих потребностей.

На эксплуатации химических процессов базируются цветная и черная металлургия, тепловая энергетика, строительство, пищевая область, фармацевтика и нефтепереработка. Продукция данной промышленности влияет на продвижение других индустрий.

Еще одна важная характеристика – это объемная сырьевая база, которая включает продукты горнохимического комплекса, например, соли, серу, фосфориты. Ее крупнейшими поставщиками исходных продуктов являются лесохимическая, коксохимическая, газохимическая и нефтехимическая отрасли. Главное достижение химической промышленности — переход на применение продуктов переработки нефти и газа, так как это сырье считается основной базой для изготовления продукции промышленности.

    Горнохимическая отрасль (добыча фосфоритов, солей, серы и иных горнохимических ресурсов). Производство полимерных продуктов – смолы, пластмассы, каучука и так далее. Базовая химическая сфера, которая производит неорганические вещества – соду, кислоты, удобрения и так далее.

Как видите, химический комплекс специализируется на производстве продуктов и материалов для всех отраслей хозяйства.

Надеемся, что доклад о химической промышленности помог Вам подготовиться к занятию. А рассказ о химической промышленности Вы можете дополнить через форму комментариев ниже.

Http://kratkoe. com/himicheskaya-promyishlennost-soobshhenie/

Нефть принадлежит к числу сложных органических веществ. Она представляет собой различные химические соединения углерода и водорода (углеводороды). В зависимости от количества атомов углерода и водорода в молекуле углеводороды могут быть газами, жидкостями или твердыми веществами. Углеводороды с числом атомов углерода, равным четырем (С4Н10), в нормальных условиях – газы. Углеводороды, содержащие от 5 до 15 атомов углерода (С5Н12-С15Н32), – жидкости, а углеводороды, содержащие в молекуле более 15 атомов углерода (С16Н32), – твердые вещества.

Нефть состоит преимущественно из трех основных групп углеводородов: парафиновых, нафтеновых и ароматических.

Парафиновые углеводороды, часто называемые метановыми, или алкановыми, в тех или иных количествах содержатся во всех нефтях. Эти углеводороды нормального строения. Их свойства во многом зависят от величины молекулярного веса. С ростом молекулярного веса парафиновых углеводородов повышается плотность, вязкость, температура плавления и кипения.

Все парафиновые углеводороды обладают наиболее высокой стойкостью против окисления, разложения, полимеризации и обеспечивают большую химическую стабильность нефтепродуктов при хранении и применении. Отрицательным свойством парафиновых углеводородов является высокая температура их застывания. При разгонке нефти твердые парафины попадают в топливные и масляные дистилляты, ухудшают их низкотемпературные свойства (повышается температура застывания). Для понижения температуры застывания топлива и масла требуется проводить депарафинизацию (удалениепарафина) или ограничивать возможность использования топлива и масла в холодное время года.

Нафтеновые углеводороды являются основной составной частью нефтей. В масляных дистиллятах нафтеновые углеводороды составляют 50-75%. Считается, что наиболее ценны нафтеновые углеводороды с длинными боковыми цепями, которые обеспечивают получение масел с хорошей химической стабильностью, низкой температурой застывания и большим индексом вязкости. Нафтеновые углеводороды были открыты русским ученым В. В. Морковниковым, который назвал их так потому, что он впервые обнаружил нафтены в нефти.

Ароматические углеводороды, содержащиеся в некотором количестве во всех фракциях нефти, наименее устойчивы против окисления кислородом воздуха. Они проявляют большую склонность к нагарооб-разованиям по сравнению с нафтеновыми и парафиновыми углеводородами. Поэтому при очистке масел все наименее стойкие ароматические углеводороды удаляются (такое ‘название они получили потому, что имеют специфический запах-аромат).

В нефти имеется небольшое количество кислородных соединений, так называемых асфальтосмолистых веществ и нафтеновых кислот. Последние представляют собой жидкие маслянистые, а иногда твердые вещества, плохо растворимые в воде, обладающие неприятным запахом. Присутствие нафтеновых кислот в нефтепродуктах нежелательно, так как они, реагируя с металлами, образуют соли, что приводит к коррозии деталей двигателя. Асфальтосмолистые-вещества относятся к сложным химическим соединениям, в молекулу которых, кроме углерода и водорода, может входить кислород и сера. Они легко изменяются на воздухе, а также при воздействии температуры. От наличия асфальтосмолистых веществ в нефтепродуктах увеличивается нагарооб-разование.

В нефти содержится небольшое количество серы. Она встречается в ней в свободном состоянии и в виде органических соединений, так называемых меркаптанов, сульфидов, дисульфидов и т. д. При определенных условиях сернистые соединения могут вызвать коррозию деталей двигателя и других узлов трения.

Кроме углеводородов, кислородных, сернистых и азотистых соединений, нефть содержит 0,1-0,3% минеральных примесей. В небольшом количестве в ней находится и вода. Однако при добыче нефти, а также во время ее транспортировки вода может попасть в большом количестве. Обычно основная масса воды легко осаждается при отстаивании нефти, но в некоторых случаях вода способна образовывать эмульсию, для отделения которой требуются специальные приемы.

Нефть залегает в недрах земли. Глубина ее залегания различна и колеблется от сотен до нескольких тысяч метров. Добывают ее из земли при помощи бурения скважин, откуда ее извлекают фонтанным, компрессорным, глубиннонасосным способами.

При фонтанном (естественном) способе нефть вытесняется из залежи пластовым давлением газов. Чем больше в ее составе газа, тем легче происходит естественное фонтанирование. По мере уменьшения давления в нефтеносном пласте фонтанирование прекращается, и тогда нефть добывают механическими способами, к которым относятся компрессорный и глубиннонасосный.

Компрессорный способ эксплуатации скважин носит также название газлифтного. Газ или воздух под давлением полается в скважину, из которой затем гонят нефть по трубам на поверхность.

Глубиннонасосный способ добычи нефти осуществляется при помощи специальных поршневых глубинных насосов, опускаемых в нижнюю часть скважины на штангах. Этот метод применяется тогда, когла естественной энергии пласта недостаточно для фонтанирования скважин, а компрессорная эксплуатация нецелесообразна вследствие высокого удельного расхода воздуха.

В 1964 г. исполнилось 100 лет отечественной нефтяной промышленности. За это время из недр земли на территории СССР извлечено 2 300 000 000 г нефти, в том числе за последние 10 лет – 1 300 000 000 т.

Для получения различных нефтепродуктов, в том числе дизельного топлива и минеральных смазочных масел, нефть подвергают перегонке. При этом способе переработки из общей смеси многочисленных углеводородов выделяются отдельные группы, которые называют фракциями.

Разделение на фракции основано на том, что углеводороды, входящие в состав нефти, имеют различную температуру кипения. Наиболее легкие фракции нефти выкипают при нагреве до температуры 40-50°С, а наиболее тяжелые – при температуре свыше 400°С*.

Перегоняют нефть в специальных ректификационных колоннах 4 (рис. 1). Технологический процесс перегонки заключается в следующем.

Сырую нефть (обезвоженную и обессоленную) в специальной установке 1 насосами прокачивают через теплообменник 2, подвергая дополнительному подогреву. Из теплообменника она поступает в трубчатую печь 3, где нагревается до температуры 320-330°С. При этой температуре большая часть ее превращается в пары. Пары и неиспарившийся остаток нефти непрерывно поступают в нижнюю часть ректификационной колонны 4. Затем пары поднимаются вверх, постепенно охлаждаются и начинают конденсироваться, а неиспарившийся остаток оседает на дно колонны. Ректификационная колонна имеет внутри ряд полок-тарелок с отверстиями, накрытыми специальными колпачками. Пары более легких углеводородов (бензина) поднимаются вверх колонны, а пары более тяжелых (лигроина, керосина и дизельного топлива) располагаются ниже в порядке возрастания температуры их кипения.

Выделившийся в парообразном состоянии бензин, лигроин, керосин и дизельное топливо конденсируются, т. е. превращаются в жидкость, которая на соответствующих уровнях отводится из колонны. На нижние тарелки стекает неиспарившийся остаток нефти – мазут, служащий для получения смазочных масел. Такой процесс испарения жидкости и конденсации ее паров называется прямой перегонкой, или дистилляцией, а продукт перегонки – дистиллятом. Бензин, лигроин, керосин и дизельное топливо получают из фракций, которые выкипают соответственно при температурах: 35-200, 125-230, 150-315 и 200-360°С.

Из нефти прямой перегонкой получают, как правило, высококачественное дизельное топливо, которое является в настоящее время как бы эталоном. К такому эталону относится прямогонное малосернистое дизельное топливо (содержащее серы не более 0,2%), вырабатываемое по ГОСТ 4749-49. При прямой перегонке выход бензина составляет 13-17%, а дизельного топлива 18-20%- Для получения из нефти большего процента бензина и дизельного топлива применяют крекинг-процесс (термический и каталитический).

Термический крекинг-процесс переработки нефти осуществляется в специальных трубчатых печах при высоких температурах (450-600°С) и высоких давлениях (50-80 кГ/см). Сырьем для крекинг-процесса служит мазут и другие тяжелые фракции, получаемые при прямой перегонке нефти. В основе этого процесса лежит расщепление (распад молекул с большим числом атомов под действием высоких температур) и образование новых молекул с меньшим числом углеродных атомов.

Дизельное топливо, полученное при термическом крекинг-процессе, содержит большое количество непредельных углеводородов. Это снижает цетановое число, вызывает повышенное лако – и нагарообразование в двигателях. Поэтому применение такого топлива для дизелей тепловозов нежелательно.

Каталитический крекинг-процесс в настоящее время получил широкое распространение. При этом процессе обеспечивается получение более высоких качеств бензина и легкого газойля. Каталитический крекинг в отличие от термического производится в присутствии катализатора (алюмосиликата), который ускоряет процесс расщепления тяжелых углеводородов. Сырьем для такого крекинга служат наиболее тяжелые фракции продуктов от прямой перегонки нефти (солярово-газой-левые и лигроиновые).

В применяемое на тепловозах дизельное топливо вводятся незначительные добавки (10-15%) продуктов каталитического крекинга, выкипающего в пределах температур дизельного прямогонного топлива. Полученное указанными способами дизельное топливо подвергают очистке от вредных примесей (сернистых и кислых соединений, смол и т. п.). Очистку производят серной кислотой, отбеливающими глинами и другими реагентами. Для удаления сернистых соединений применяютщелочную очистку, но такой метод не обеспечивает полного снижения сернистых соединений в топливе.

Наиболее совершенным способом удаления серы из дизельного топлива является г и д р о о ч и с т к а (т. е. обработка водородом или гидрирование в специальных стальных реакторах в присутствии алюмокобальт. молиб-денового катализатора) под давлением 50 кПсм2 и температуре 350-400°С. При этих условиях происходит разложение сернистых соединений и образование сероводорода, который затем путем сепарации (отделения) удаляется. Оставшийся после сепарации сероводород обрабатывают раствором едкого натра в щелочном смесителе, промывают водой и после соответствующих анализов сдают потребителям как готовый продукт.

Выход очищенного бессернистого товарного дизельного топлива составляет 96-98%.

Вырабатываемое из нефти топливо по преимущественному использованию классифицируется на следующие виды:

Карбюраторное (бензин), предназначенное для авиационных и автомобильных двигателей, работающих от искрового зажигания смеси в камере сгорания;

Авиационный керосин марок ТЭ-1, ТС-1, Т-2 и др., используемый в турбореактивных и турбовинтовых авиационных двигателях;

Дизельное, моторное и соляровое топливо, предназначенное для двигателей, работающих с воспламенением от сжатия;

Топочный мазут, иопользуемый в котельных установках, топках паровозов, судах и т. д.;

Кроме того, из нефти как смеси самых различных углеводородов вырабатывают масла различного ассортимента и самого разнообразного качества. Сырьем для получения масел служит мазут, который перегоняют в трубчатых вакуумных установках.

Во избежание крекинга (разложения углеводородов) перегонку мазута ведут под вакуумом. Вакуумная перегонка основана на законе физики: чем меньше давление, тем ниже температура кипения. Так, например, вода кипит под нормальным атмосферным давлением 760 ммрт. ст. при температуре 100°С, а под давлением примерно 20 мм рт. ст. – при температуре около 20°С. Это дает возможность перегонять мазут для смазочных масел при более низких температурах и избегать его разложения. При таком способе перегонки пары мазута в ректификационной колонне 6 (см. рис. 1) также разделяются на фракции, но только с той разницей, что здесь колонна работает не при атмосферном давлении, а под вакуумом.

При нагревании мазута в трубчатой печи 5 (см. рис. 1) и конденсации паров в колонне 6 вначале получают веретенный дистиллят, затем машинный, автоловый и цилиндровый. После перегонки мазута в остатке получается тяжелый масляный концентрат – гудрон или полугудрон. Последние являются полуфабрикатами для получения остаточных масел, к которым относятся авиационные, цилиндровое 52, брайтсток.

Остаточные авиационные масла имеют более высокие качества по сравнению с дистиллятными, поэтому они применяются для тяжело нагруженных и ответственных механизмов и машин. Кроме того, авиационные масла используются как присадки к некоторым дистил-лятным маслам. Из смеси индустриального (дистиллят-ного) и авиационного масел получают дизельные (Д-11, М-12, М-12Б и М-12В), компрессорные и другие масла, имеющие достаточно высокие смазочные свойства.

Полученные при вакуумной перегонке масляные дистилляты и остатки после их отгона – это еще не масла, а лишь полупродукты, которые содержат, кроме углеводородов, различные асфальтосмолистые вещества, органические кислоты и прочие вредные примеси, ухудшающие качество масла. Для удаления асфальтосмолистых и других вредных веществ из дистиллятных и остаточных масел применяют в основном сернокислотный и селективный способы очистки.

При сернокислотной очистке масло обрабатывают серной кислотой, при этом асфальтосмолистые и другие вредные вещества, вступая в химическую реакцию с серной кислотой, образуют смолистую густую массу, называемую кислым гудроном, которая осаждается на дно мешалки, а затем удаляется.

Селективная очистка масел заключается в обработке их специальными растворителями (пропаном, фенолом форфуролом и другими), которые обладают свойствами извлекать вредные примеси, не уничтожая ценных составных частей масла. Такой способ все более находит широкое применение, так как, обрабатывая масло селективными растворителями, удается значительно улучшить его качество.

Http://www. dieselloc. ru/books/oil/oil2.html

АО Шаньдунский завод горного машиностроения Синьхай ( тикер: 836079) был основан в 1997 году, и он был известным как ООО Яньтайский завод горного машиностроения Синьхай, занимается выполнением проекта по обогащению руд под ключ, включая ислледование и проектирование, изготовление оборудования, закупки оборудования, услуги по управлению и эксплуатации рудника, управление закупки расходных материалов и объединение префессиональных ресурсов. Основные продукты включают:”Концентратор завод отбор проб”. До сих бор Синьхай уже выполнил более 200 проектов по обогащению под ключ и накопил богатый опыт по добыче и обогащению больше 70 видов руд, мы обладаем 20 патентов. На данный момент Синьхай уже открыл оффисы за границей в Судане, Зимбабве, Танзании, Перу и Индонезии, и оборудование уже экспортировалось в более 20 стран.

1.1 Настоящий стандарт устанавливает методы ручного отбора представительных проб нефти и нефтепродуктов в жидком, полужидком или твердом состоянии, давление паров которых при отборе менее 101 кПа (14,7 фунт/дюйм ГОСТ 31873 2012 Нефть и нефтепродукты. Методы ручного отбора проб.

Характеристика нефти и нефтепродуктов. Хранилище, транспортное средство, тара. Аппаратура и инструмент для отбора проб. Нефтепродукты с давлением насыщенных паров 100 кПа (750 мм рт. ст.) и выше по ГОСТ 1756. Резервуары для хранения нефтепродуктов с повышенным давлением.

ГОСТ 26313 2014. Группа Н69. МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ. ПРОДУКТЫ ПЕРЕРАБОТКИ ФРУКТОВ И ОВОЩЕЙ. Правила приемки и методы отбора проб. Fruit and vegetable products. Acceptance rules and methods of sampling.

Назначение. Холодильник двухточечный для отбора проб пара и воды предназначен для охлаждения отбираемых для химического анализа проб пара или воды до температуры 40 °C.

Компетентность и обширный опыт компании FL в предоставлении комплексных решений системы отбора проб для предприятий цементной и горнодобывающей промышленности были приобретены в ходе выполнения нескольких сотен проектов по анализу технологических потоков.

Трубки которыми производится отбор пробы 1/32 дюйма (0,8 мм). . Можно, в конце концов, стукнуть по выходу трубки молотком, пережимая ее на выходе (вот только не на нашем заводе; если я увижу такое, буду стучать молотком по башке. Первый нюанс я бы не стал концентратор.

Аспиратор А 01 применяется для отбора проб воздуха с целью анализа содержащихся в нем примесей. . Достаточно распространенным способом контроля загрязнения среды является отбор газовой пробы в резервуар или концентратор с дальнейшим её анализом на стационарном оборудовании в.

Затем отрабатывался вариант постоянного отбора концентрата из чаши в процессе работы концентратора. Были изготовлены и. ИТОМАК получил на исследование пробу, провел исследования показал, что там низкое содержание золота извлекается гравитацией плохо. Изучена размерность золота.

Http://kaz. hotelolimporesort. com/2018-04-17/12063.html

На практику в ОАО «Нафтан», а также на свое первое рабочее место, пришли студенты выпускного курса Полоцкого государственного университета. Будущие инженеры-­химики­-технологи рассказали о первых впечатлениях о нашем предприятии и о своих планах на будущее.

В марте-­апреле преддипломную практику на «Нафтане» проходят 43 выпускника дневного и заочного отделений специальности «Химическая технология природных энергоносителей и углеродных материалов» ПГУ. Молодые специалисты работают над своими дипломными проектами на разных установках нашего предприятия. А 13 лучших студентов уже получили свою первую запись в трудовой книжке и параллельно с практикой работают на технологических объектах. Уже третий год «Нафтан» и ПГУ в сотрудничестве дают студентам возможность не только теоретически ознакомиться с работой нефтехимического комплекса, но и параллельно пройти реальную подготовку на производстве.

Для выпускников Дмитрия ЮХНО, Екатерины СТЕЛЬМАХ и Анастасии КОЛЯГО это уже третья практика на «Нафтане». Ребята успешно учатся по специальности «Химическая технология природных энергоносителей и углеродных материалов» в группе 14­-ХТ.

Золотой медалист Дмитрий Юхно проходит преддипломную практику на установке «Юникрекинг». Здесь он черпает информацию для комплексного дипломного проекта «Гидрокрекинг нефтяных остатков. Блок гидроподготовки сырья», который пишет под руководством преподавателя ПГУ и инженера-­технолога нашего предприятия Антона БУЛАХА. Работает Дмитрий на установке каталитического риформинга № 5.

Недавно молодой специалист получил диплом I степени на всероссийском конкурсе научно­-исследовательских работ «Техносферная безопасность и защита окружающей среды». Там парень представил программу по профессиональной оценке пригодности операторов технологических установок. Также участвовал во II международной молодежной конференции TatarstanUpExPro — 2018 в Казани и уже приглашен на 72­-ю Международную молодежную научную конференцию «Нефть и газ — 2018», которая пройдет в Российском госуниверситете имени Губкина в Москве.

– Меня всегда интересовали химические превращения веществ, впечатляло разнообразие продуктов нефтепереработки, — делится Дмитрий. — Полоцкий госуниверситет готовит специалистов именно в этом направлении, а разработки его выпускников ценятся и в крупнейших российских вузах. Учиться на нашей специальности, конечно же, непросто. Но всё, что требовали преподаватели, оказалось реально необходимым на производстве.

После распределения я хочу поработать оператором технологических установок. На мой взгляд, необходимо не только знать, но и понимать, видеть, как всё работает. Сейчас под присмотром старшего оператора разрешают контролировать параметры блока гидроочистки и качество выпускаемой продукции. А в будущем хотел бы связать жизнь с топливным направлением.

Сергей КАЛИНИЧЕНКО, начальник установки «Риформинг № 5» рад появлению молодого и перспективного работника в коллективе.

– Практикант на месте обучается на оператора технологических установок 4­го разряда, проходит теоретическую и производственную подготовку, — рассказывает Сергей Иванович. — Дмитрий изучает все локально­нормативные акты, в том числе технологический регламент, инструкцию по охране труда. Вместе со старшим оператором молодой специалист управляет аппаратурным оснащением установки. Пытается вникать, активно интересуется и задает вопросы.

Екатерина Стельмах работает в газокаталитической лаборатории. Коллектив радушно принял новоиспеченного работника. Начальник подразделения Ирина ­СТАРОДУБОВА рассказала о том, чем занимается студентка.

– Всё начинается с экскурсии по рабочим местам, знакомства с испытаниями и методами, с анализируемыми пробами и продуктами, получаемыми в процессе нефтепереработки и отбираемыми с установок, — отметила Ирина Петровна. — В обязательном порядке изучают инструкцию по охране труда. Для выпускников университета крайне важно поработать руками и закрепить теорию. Екатерину обучают опытные специалисты, и она старается не отставать. Параллельно с этим девушка изучает техническую документацию. Конечно, начала Катя с самых простых анализов, но уже сейчас рвется в бой и хочет научиться более сложным процедурам.

Екатерина готовит дипломный проект «Реконструкция установки гидроочистки и мягкого гидрокрекинга с целью повышения низкотемпературных свойств дизельного топлива и уменьшения энергозатрат». Руководит им инженер-­конструктор Илья СОСИНОВСКИЙ, также преподаватель ПГУ. Преддипломную практику девушка проходит на установке гидроочистки и мягкого гидрокрекинга у заместителя начальника производства НТиА Владимира ГЛЕБКО. С теоретической подготовкой на первом рабочем месте в газокаталитической лаборатории Екатерине помогает инженер­-лаборант Надежда ЗДАНОВИЧ, а с практической частью — лаборант химического анализа Наталья МАМЯКО.

– Нефтепереработка всегда была престижным и сложным направлением, — рассказывает молодой специалист. — В школьные годы мне нравилось проводить анализы, и всегда хотелось посмотреть, как выглядит нефть и производные продукты, изучить технологии переработки сырья.

Здесь, в лаборатории мне очень нравится. Конечно, совмещать работу, написание диплома и подготовку к госэкзамену непросто. Но интерес к науке и производству, а еще и поддержка коллектива помогают справиться со сложностями.

Интересуется девушка каталитической депарафинизацией, с увлечением говорит о реконструкции установки и возможности построить дополнительный реактор, который позволит получить дизтопливо с низкотемпературными свойствами.

– Я люблю проводить лабораторные опыты, привлекает и работа в проектно­конструкторской службе, — признается студентка. — Меня не пугают сложные расчеты. Хочется заниматься модернизацией завода, чтобы он работал лучше и эффективнее.

К работе в исследовательской лаборатории приступила выпускница Анастасия КОЛЯГО. Начальник подразделения Светлана КУНЦЕВИЧ поделилась впечатлениями о работе молодых перспективных практикантов.

– В исследовательскую лабораторию студентов трудоустраивают впервые, — отметила Светлана Викторовна. — Но я считаю, что это замечательный опыт для молодых. После распределения они уже будут готовы к труду на производстве. Юным работникам важно ознакомиться со спецификой исследований в лаборатории, организацией труда в коллективе.

Анастасия проявляет отличные способности, внимательно наблюдает за работой опытных специалистов на различных приборах, интересуется особенностями исследований. Освоить азы работы в лаборатории в теории и на практике помогают инженер­-лаборант Елена ­ФРОЛОВА и лаборант химанализа Татьяна ­ПОДГАЙСКАЯ.

Перспективная студентка проходит практику на установке «Фракционирование» комплекса «Гидрокрекинг» под руководством Вадима БАХИРА. Научные интересы молодого специалиста подкрепляет работа над комплексным дипломом «Проект установки гидрокрекинга остаточного сырья для ОАО «Нафтан». Руководит исследованиями ассистент кафедры Антон БУЛАХ.

– На преддипломной практике мы более детально изучаем технологическую схему установки, обсуждаем, как реализовать идеи нашего проекта, — рассказывает Анастасия. — Общаемся с начальником установки, операторами — и они с радостью отвечают на наши вопросы. Отталкиваясь от уже существующего на заводе, мы создаем свои наработки, и довольно успешно.

В дальнейшем планирую связать свою жизнь с нефтехимией. Для Беларуси сейчас перспективно получать инновационную продукцию, особенно если она уникальна и ценна на рынке. Мне очень нравится работать в исследовательской лаборатории. И я была бы рада остаться в Новополоцке, городе молодых.

Заведующая кафедрой технологии и оборудования переработки нефти и газа Ирина БУРАЯ рассказала о преимуществах соглашения между «Нафтаном» и ПГУ.

– Между университетом и нефтехимическим комплексом действует договор, согласно которому ОАО «Нафтан» является базовым предприятием для первоочередного распределения студентов специальности «Химическая технология природных энергоносителей и углеродных материалов», — отметила Ирина Владимировна. — Преддипломная практика и одновременное трудоустройство выпускников на «Нафтан» — на сегодня уникальное в республике явление. Оно позволяет предприятию обратить внимание на сильных ребят и заранее обучить молодых работников, которые позже придут по распределению.

Наиболее перспективные и самостоятельные студенты получили возможность готовить свои дипломные проекты не только у преподавателей вуза, но и непосредственно под руководством заводских профессионалов.

Мы благодарны кадровым службам и руководству ОАО «Нафтан» за такое сотрудничество. Формирование и практическая подготовка грамотного специалиста — наше общее дело.

Http://gazeta. naftan. by/svyazat-zhizn-s-neftepererabotkoj-na-proizvodstve-rabotayut-luchshie-studenty

Что же такое нефть? Теплотехник ответит, что это прекрасное, высококалорийное топливо. Но химик возразит: нет! Нефть – это сложная смесь жидких углеводородов, в которых растворены газообразные и другие вещества.

И чтобы перечислить все продукты, получаемые из нефти, нужно потратить несколько листов, так как их уже несколько тысяч.

Еще Д. И. Менделеев заметил, что топить печь нефтью все равно, что топить ее ассигнациями.

Нефть (от перс. neft) – горючая маслянистая жидкость со специфическим запахом, распространенная в осадочной оболочке Земли и являющаяся важнейшим полезным ископаемым.

Залежи нефти находятся в недрах Земли на разной глубине, где нефть заполняет свободное пространство между некоторыми породами. Если она находится под давлением газов, то поднимается по скважине на поверхность Земли.

Цель нефтеразведки – выявление, геолого-экономическая оценка и подготовка к разработке залежей нефти. Нефтеразведка производится с помощью геологических, геофизических, геохимических и буровых работ в рациональном сочетании и последовательности.

На первой стадии поискового этапа в бассейнах с не установленной нефтегазоносностью либо для изучения слабо исследованных тектонических зон или нижних структурных этажей в бассейнах с установленной нефтегазоносностью проводятся региональные работы. Для этого осуществляются аэромагнитная, геологическая и гравиметрическая съемки, геохимические исследования вод и пород, профильное пересечение территории электро – и сейсморазведкой, бурение опорных и параметрических скважин. В результате устанавливаются районы для дальнейших поисковых работ.

На второй стадии производится более детальное изучение нефтегазоносных зон путем детальной гравиразведки, структурно-геологической съемки, электро – и сейсморазведки, структурного бурения.

Производится сравнение снимков масштабов 1: 100.000 – 1: 25.000. уточняется оценка прогнозов нефтегазоносности, а для структур с доказанной нефтегазоносностью, подсчитываются перспективные запасы.

На третьей стадии производится бурение поисковых скважин с целью открытий месторождений. Первые поисковые скважины бурятся на максимальную глубину. Обычно первым разведуется верхний этаж, а затем более глубокие. В результате дается предварительная оценка запасов.

Разведывательный этап – завершающий в геологоразведочном процессе.

Основная цель – подготовка к разработке. В процессе разведки должны быть оконтурены залежи, определены литологический состав, мощность, нефтегазонасыщенность. По завершению разведочных работ подсчитываются запасы и даются рекомендации о вводе месторождения в разработку.

Эффективность поиска зависит от коэффициента открытий месторождений – отношением числа продуктивных площадей к общему числу разбуренных поисковым бурением площадей.

Почти вся добываемая в мире нефть, извлекается посредством буровых скважин, закрепленных стальными трубами высокого давления. Для подъема нефти и сопутствующих ей газа и воды на поверхность скважина имеет герметичную систему подъемных труб, механизмов и арматуры, рассчитанную на работу с давлениями, соизмеримыми с пластовыми. Добыче нефти при помощи буровых скважин предшествовали примитивные способы: сбор ее на поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, посредством колодцев.

Сбор нефти с поверхности водоемов – это, очевидно, первый по времени появления способ добычи, который до нашей эры применялся в Мидии, Вавилонии и Сирии. Сбор нефти в России, с поверхности реки Ухты начат Ф. С. Прядуновым в 1745 г. В 1858 на полуострове Челекен нефть собирали в канавах, по которым вода стекала из озера. В канаве делали запруду из досок с проходом воды в нижней части: нефть накапливалась на поверхности.

Разработка песчаника или известняка, пропитанного нефтью, и извлечение из него нефти, впервые описаны итальянским ученым Ф. Ариосто в 15 веке. Недалеко от Модены в Италии такие нефтесодержащие грунты измельчались и подогревались в котлах. Затем нефть выжимали в мешках при помощи пресса. В 1833 -1845 г. г. нефть добывали из песка на берегу Азовского моря. Песок помещали в ямы с покатым дном и поливали водой.

Вымытую из песка нефть собирали с поверхности воды пучками травы.

Добыча нефти из колодцев производилась в Киссии, древней области между Ассирией и Мидией в 5 веке до нашей эры при помощи коромысла, к которому привязывалось кожаное ведро. Подробное описание колодезной добычи нефти в Баку дал немецкий натуралист Э. Кемпфер. Глубина колодцев достигала 27 м, их стенки обкладывались камнем или укреплялись деревом.

Добыча нефти посредством скважин начала широко применяться с 60-х г. 19 века. Вначале наряду с открытыми фонтанами и сбором нефти в вырытые рядом со скважинами земляные амбары добыча нефти осуществлялась также с помощью цилиндрических ведер с клапаном в днище. Из механизированных способов эксплуатации впервые в 1865 в США была внедрена глубоконасосная эксплуатация, которую в 1874 г применили на нефтепромыслах в Грузии, в 1876 в Баку. В 1886 г В. Г. Шухов предложил компрессорную добычу нефти, которая была испытана в Баку в 1897г. Более совершенный способ подъема нефти из скважины – газлифт – предложил в 1914 г М. М. Тихвинский.

Процесс добычи нефти, начиная от притока ее по пласту к забоям скважин и до внешней перекачки товарной нефти с промысла, можно разделить условно на 3 этапа.

[pic] Движение нефти по пласту к скважинам благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин.

[pic] Движение нефти от забоев скважин до их устьев на поверхности – эксплуатация нефтяных скважин.

[pic] Сбор нефти и сопровождающих ее газа и воды на поверхности, их разделение, удаление минеральных солей из нефти, обработка пластовой воды, сбор попутного нефтяного газа.

Под разработкой нефтяного месторождения понимается осуществление процесса перемещения жидкостей и газа в пластах к эксплуатационным скважинам.

Управление процессом движения жидкостей и газа достигается размещением на месторождении нефтяных, нагнетательных и контрольных скважин, количеством и порядком ввода их в эксплуатацию, режимом работы скважин и балансом пластовой энергии. Принятая для конкретной залежи система разработки предопределяет технико-экономические показатели. Перед забуриванием залежи проводят проектирование системы разработки. На основании данных разведки и пробной эксплуатации устанавливают условия, при которых будет протекать эксплуатация: ее геологическое строение, коллекторские свойства пород (пористость, проницаемость, степень неоднородности), физические свойства жидкостей в пласте (вязкость, плотность), насыщенность пород нефти водой и газом, пластовые давления. Базируясь на этих данных, производят экономическую оценку системы, и выбирают оптимальную.

При глубоком залегании пластов для повышения нефтеотдачи в ряде случаев успешно применяется нагнетание в пласт газа с высоким давлением.

Извлечение нефти из скважин производится либо за счет естественного фонтанирования под действием пластовой энергии, либо путем использования одного из нескольких механизированных способов подъема жидкости. Обычно в начальной стадии разработки действует фонтанная добыча, а по мере ослабления фонтанирования скважину переводят на механизированный способ: газлифтный или эрлифтный, глубинонасосный (с помощью штанговых, гидропоршневых и винтовых насосов).

Газлифтный способ вносит существенные дополнения в обычную технологическую схему промысла, так как при нем необходима газлифтная компрессорная станция с газораспределителем и газосборными трубопроводами.

Нефтяным промыслом называется технологический комплекс, состоящий из скважин, трубопроводов, и установок различного назначения, с помощью которых на месторождении осуществляют извлечение нефти из недр Земли.

На месторождениях, разрабатываемых с помощью искусственного заводнения, сооружают систему водоснабжения с насосными станциями. Воду берут из естественных водоемов с помощью водозаборных сооружений.

В процессе добычи нефти важное место занимает внутрипромысловый транспорт продукции скважин, осуществляемый по трубопроводам. Применяются 2 системы внутрипромыслового транспорта: напорные и самотечные. При напорных системах достаточно собственного давления на устье скважин. При самотечных движение происходит за счет превышения отметки устья скважины над пометкой группового сборного пункта.

При разработке нефтяных месторождений, приуроченных к континентальным шельфам, создаются морские нефтепромыслы.

Главнейшим свойством нефти, принесшим им мировую славу исключительных энергоносителей, является их способность выделять при сгорании значительное количество теплоты. Нефть и ее производные обладают наивысшей среди всех видов топлив теплотой сгорания. Теплота сгорания нефти – 41 МДж/кг, бензина – 42 МДж/кг. Важным показателем для нефти является температура кипения, которая зависит от строения входящих в состав нефти углеводородов и колеблется от 50 до 550°С.

Нефть, как и любая жидкость, при определенной температуре закипает и переходит в газообразное состояние. Различные компоненты нефти переходят в газообразное состояние при различной температуре. Так, температура кипения метана -161,5°С, этана -88°С, бутана 0,5°С, пентана 36,1°С. Легкие нефти кипят при 50-100°С, тяжелые – при температуре более 100°С.

Различие температур кипения углеводородов используется для разделения нефти на температурные фракции. При нагревании нефти до 180-200°С выкипают углеводороды бензиновой фракции, при 200-250°С – лигроиновой, при 250-315°С – керосиново-газойлевой и при 315-350°С – масляной. Остаток представлен гудроном. В состав бензиновой и лигроиновой фракций входят углеводороды, содержащие 6-10 атомов углерода. Керосиновая фракция состоит из углеводородов с [pic], газойлевая – [pic] и т. д.

Важным является свойство нефти растворять углеводородные газы. В 1 м3 нефти может раствориться до 400 м3 горючих газов. Большое значение имеет выяснение условий растворения нефти и природных газов в воде. Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности. Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 – средними, а с относительной плотностью свыше 0,90 – тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов, тем выше ее плотность. При добыче нефти важно знать ее вязкость. Различают динамическую и кинематическую вязкость. Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают. Кинематической вязкостью называется отношение динамической вязкости к плотности среды. Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны.

Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти. Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые – бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.

Нефти состоят главным образом из углерода – 79,5 – 87,5% и водорода – 11,0 – 14,5% от массы нефти. Кроме них в нефти присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5 – 8%. В незначительных концентрациях в нефти встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий и др. Их общее содержание не превышает 0,02 – 0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти.

Кислород и азот находятся в нефти только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Вначале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению. Основные фракции нефти следующие:

1. Фракция, собираемая от 400 до 2000 С, – газолиновая фракция бензинов

Содержит углеводороды от С5Н12 до С11Н24. При дальнейшей перегонке выделенной фракции получают: газолин (от 400 до 700 С), бензин (от 700 до 1200 С) – авиационный, автомобильный и т. д.

2. Лигроиновая фракция, собираемая в пределах от 1500 до 2500 С, содержит углеводороды от С8Н18 до С14Н30. Лигроин применяется как горючее для тракторов.

3. Керосиновая фракция включает углеводороды от С12Н26 до С18Н38 с температурой кипения от 1800 до 3000С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

5. Мазут – остаток от перегонки. Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции: a) Соляровые масла – дизельное топливо, b) Смазочные масла (авиатракторные, авиационные, индустриальные и др.), c) Вазелин (основа для косметических средств и лекарств).

Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки остается гудрон. Его широко применяют в дорожном строительстве.

1) Судо М. М. Нефть и горючие газы в современном мире. – М. Недра, 1984.

3) “Книга для чтения по химии (часть вторая) ” Авторы: К. Я. Парменов, Л. М. Сморгонский, Л. А. Цветков.

Http://www. coolreferat. com/%D0%9D%D0%B5%D1%84%D1%82%D1%8C_%D0%B8_%D0%BF%D1%80%D0%BE%D0%B4%D1%83%D0%BA%D1%82%D1%8B_%D0%B5%D1%91_%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B8

Поделиться ссылкой: