Углеводороды | переработка нефтешлама путем центробежной сепарации

переработка нефтешлама путем центробежной сепарации

продукты от продувки пылеуловителей, масляных сепараторов и разделителей, отличающиеся достаточно однородным составом и высоким содержанием углеводородов, а также отработанные компрессорные и индустриальные масла.

Для сжигания нефтешламов широко применяются печи различных типов и конструкций: камерные, барботажные, многоподовые, вращающиеся и печи с кипящим слоем. Термический метод позволяет совместно с нефтешламами сжигать загрязненные фильтры, промасленную ветошь, твердые бытовые отходы. Образующиеся при этом вторичные отходы относятся к 4 классу опасности и подлежат вывозу на полигоны захоронения. Объем вторичных отходов по сравнению с первоначальным уменьшается до 10 раз.

Одним из перспективных направлений термического обезвреживания твердых нефтесодержащих отходов является использование принципа “кипящего слоя”. В печах “кипящего слоя” изменение кинетической энергии транспортирующего газового потока происходит в результате преодоления сопротивления газораспределительной решетки и слоя материала (песок), который переходит из спокойного состояния в состояние “кипения”. На печах с “кипящим” слоем легче решаются вопросы контроля загрязнения окружающей среды от вредных веществ, имеющихся в нефтесодержащих отходах.

Рисунок 1.1 – Схема реактора с псевдоожиженным слоем: 1 – воздух для псевдоожижения; 2 – твердый продукт; 3 – слой инертного носителя (песок) в твердой фазе; 4 – граница псевдоожиженного слоя; 5 – корпус; 6 – унос золы; 7 – поток загружаемых отходов; 8 – загрузка отходов; 9 – отходящие газы; 10 – сепаратор; 11 – возврат пыли; 12 – решетка.

Наибольшее распространение при утилизации нефтесодержащих отходов имеют установки для термической обработки с вращающейся барабанной печью. Такие печи требуют высокого качества сборки и монтажа футеровки. При этом не допускаются частые пуск и остановка печи, колебания температурного режима. Они требуют высоких капитальных и эксплуатационных затрат. Возможен выход из строя печи в результате резкой смены температуры при внезапной ее остановке. Принимаемые меры по устранению выявленных конструктивных недостатков вращающихся печей не решают задачу устойчивой, достаточно долговременной и безаварийной их работы. Исследования ВНИИнефтехима показали, что нефтяной шлам перед подачей во вращающуюся барабанную печь на термическое обезвреживание может быть глубоко обезвожен с утилизацией более 90% нефтепродуктов. При оборудовании узлов обезвоживания (гидроциклон, центрифуги) можно увеличить производительность установки в 9 раз.

Рисунок 1.2 – Вращающаяся барабанная печь для обезвреживания насыщенных влагой отходов: 1 – барабан; 2 – камера термической обработки; 3 – камера дожигания; 4, 5 – устройства для загрузки отходов.

Основными преимуществами способа сжигания нефтесодержащих отходов в печах различного типа и конструкций являются:

– значительное уменьшение количества отходов;

– объем образующейся золы в 10 раз меньше исходного продукта;

– при использовании в качестве наполнителя до 10% глины возможно получение вместо золы пористого гранулированного строительного материала – керамзита;

В качестве отрицательных факторов использования данного способа являются высокие энергозатраты на дополнительное топливо (газ, нефть); требуется больше капиталовложений в сооружения по очистке и нейтрализации дымовых газов.

Еще одним технологическим приемом термической переработки нефтешламов является процесс пиролиза, осуществляемый при 500-550 ˚C, в котором получаются горючие газы и твердый остаток. Данный процесс рекомендуется для переработки твердых нефтешламов, обладающих невысокой влажностью (не более 1-3%). Он наиболее приемлем в экономическом отношении, так как позволяет органическую часть отходов не превращать в токсичные продукты сгорания, а использовать как дополнительное топливо для сжигания отходов. Однако, данный способ требует высоких материальных и энергетических затрат.

Рисунок – 1.3 Схема реактора для сухого пиролиза твердых отходов:

1 – кирпичная шахта; 2 – металлическая реторта; 3 – газовые горелки; 4 – узел гашения и удаления твердого остатка.

Одна из разновидностей термического метода – сушка в сушилках различных конструкций. Положительными аспектами данного способа являются сохранение ценных компонентов; уменьшение объема в 2-3 раза; возможность комбинирования с другими природоохранными процессами. К отрицательным моментам можно отнести большие расходы топлива .

Рисунок – 1.4 Барабанная сушилка: 1 – горелка; 2 – топка; 3 – загрузочный желоб; 4 – уплотнение на входе; 5 – бандажи; 6 – зубчатый венец; 7 – уплотнение на выходе; 8 – разгрузочное отверстие; 9 – электродвигатель .

Эта сушилка имеет цилиндрический барабан, установленный с небольшим наклоном (1/15 – 1/50) и опирающийся с помощью бандажей на ролики. В отечественной практике используют сушилки диаметром 1 – 3,5 м и длиной 4 – 27 м. Барабан через зубчатый венец приводится во вращение, причем число оборотов барабана обычно не превышает 5 – 8 мин -1 . Материал подается в барабан через загрузочный желоб. В этой сушилке газы, образующиеся при работе горелки, и высушиваемый осадок движутся прямотоком, что позволяет избежать перегрева материала. Высушенный осадок удаляется из аппарата через разгрузочное отверстие в виде сыпучего полидисперсного материала. Влажность осадков после обработки в барабанных сушилках составляет 30 – 40%.

Физический метод утилизации характеризуется низкой эффективностью и образованием неутилизируемых остатков. Данный метод можно разделить на следующие разновидности:

Гравитационное остаивание. Достоинства – не требует больших капитальных и эксплуатационных затрат; может быть составной частью комбинированного метода. Недостатки – низкая эффективность разделения и длительность процесса; область применения ограничена; большой объем образуемых остатков.

Разделение в центробежном поле. В последние годы в Ярославле и Новокуйбышевске действуют установки фирмы “ALFA-LAVAL” (Швеция) по переработки нефтешламов, на которых путем центрифугирования шлам разделяется на три фазы: углеводородную, водную и механические примеси.

Первая зарубежная установка по переработке нефтешлама методом сепарации фирмы “Альфа-Лаваль” (Голландия) производительностью 15 м 3 /ч перерабатываемого нефтешлама была смонтирована и пущена в 1987г. на ПО “Ярославнефтеоргсинтез”. Установка работает стабильно. На сегодняшний день переработано 68500 м 3 нефтешлама и получено 14000 м 3 нефтепродукта, при этом среднемесячная производительность составляет 10000 м 3 .

В течение 1986-1993 годов установка фирмы “Альфа-Лаваль” были закуплены многими нефтеперерабатывающими и нефтедобывающими предприятиями.

Выделенные углеводороды направляют на вторичную переработку, воду – на очистку, механические же примеси, обогащенные углеводородами и содержащие воду, представляют собой новый отход, количество которого значительно меньше по сравнению с количеством первичного нефтешлама, но все еще велико.

Экологической программой ОАО “Татнефть” предусмотрена ликвидация всех шламовых амбаров, накопившихся за более чем полувековую историю добычи нефти в регионе. Первая установка по утилизации нефтесодержащих отходов, работающая по принципу разделения в центробежном поле, была разработана и введена в эксплуатацию в 1989 г. Нефтешламы в смеси с подогретой свежей нефтью подаются на трехфазные декандры, на которых за счет центробежной силы происходит разделение на три фазы: нефть, воду и механические примеси. Ввод в эксплуатацию второй установки позволил выполнять работы по утилизации во всем нефтедобывающем регионе.

Достоинства – возможность уменьшения количества отходов и повторное использование части отделившейся воды, нефти (нефтепродуктов); может быть составной частью комбинированного физико-химического метода. Недостатки – требуется специальное оборудование (гидроциклоны, сепараторы, центрифуги); проблему до конца не решает из-за неполноты отделения нефтепродуктов от образуемых осадков и сточных вод; область применения ограничена.

Достоинства – сравнительно низкие затраты; высокая степень надежности метода; может быть составной частью комбинированного физико-химического метода; более высокое качество целевых продуктов; менее требователен к качеству сырья. Недостатки – необходимость смены и регенерации фильтрующих материалов; введение специальных структурообразующих наполнителей; проблему экологии до конца не решает из-за больших объемов образуемых остатков.

Рисунок 1.6 – Схема установки экстракции периодического действия

ЭПД-3 – качающийся экстрактор периодического действия; Т – термопара.

Экстрактор периодического действия ЭПД-3, изображенный на рис.1.6, представляет собой пустотелый аппарат, обогреваемый паром. Снабжен люком для загрузки сырья и растворителя, манометром и вентилем для выгрузки получаемых продуктов. В качестве растворителя использовался прямогонный бензин (НК 28 – 30 °С, КК 62 – 70 °С).

Экстракция. Недостатки – требуется специальное оборудование, растворители; необходимость регенерации экстрагента; неполнота извлечения нефтепродуктов из отходов .

Сущность физико-химического метода заключается в применении специально подобранных поверхностно-активных веществ (деэмульгаторов, диспергаторов, смачивателей и т.д.), вспомогательных веществ, влияющих на изменение состояния (размер частиц) и коллоидно – дисперсной структуры взвешенных частиц в нефтяной и водной фазах. Достоинства – возможность интенсификации процесса при сравнительно небольших добавках вводимых веществ, хорошо сочетается с физическим и биологическим методами. Недостаток – высокая стоимость реагентов; требует применения специального дозирующего оборудования; перемешивающих устройств; может служить лишь частью другого метода.

Для разделения нефтесодержащих шламов применяют флокулянты – водорастворимые полимерные электролиты, вводимые перед центрифугированием или обработкой на фильтр-прессах. Эти реагенты вызывают десорбцию влаги с поверхности твердых частиц, усиливают коагуляционное взаимодействие между ними, способствуют быстрому и эффективному обезвоживанию шламов. Особенно эффективно их применение для очистки коммунальных стоков. Однако некоторые из флокулянтов практически не влияют на стабильность эмульсии нефти в воде. Положительный эффект зафиксирован при использовании флокулянтов одновременно с деэмульгаторами, традиционно используемыми в системах разделения водонефтяных эмульсий на стадиях добычи и транспорта нефти. Эффективность деэмульгаторов зависит от качественного и количественного состава природных стабилизаторов, технологических условий их применения: доз, места ввода, концентрации рабочего раствора, температуры, интенсивности перемешивания. Правильный выбор деэмульгаторов обеспечивает наиболее полное отделение нефти от воды с механическими примесями и солями. Сложный механизм стабилизации эмульсионных систем обусловливает применение не индивидуальных веществ, а деэмульгирующих композиций.

Как в отечественной, так и в зарубежной практике накоплен большой опыт физико-химической обработки нефтесодержащих отходов, на основе которого налажено производство необходимых установок. Одной из таких установок является установка по переработке нефтешламов фирмы “KHD HUMBOLDT VEDAG AG” (ФРГ). Особенность технологической схемы установки производительностью 15 м 3 /ч заключается в двухступенчатой сепарации водной фазы после декантора и дозировки деэмульгаторов в узле обезвоживания и извлечения нефти. На первой ступени сепарации получается водная фаза требуемой чистоты (0,5% нефтяной фазы). Если количество исходного нефтешлама не позволяет этого, предусмотрена возможность применения деэмульгаторов на первой ступени. Нефтяная фаза, поступающая с первой ступени сепарации воды, разделяется во второй с помощью деэмульгатора на фазы: нефтяную и шламовый осадок. Предварительная подготовка шлама, проводимая на узле извлечения и подачи, осуществляется путем перемешивания и нагрева шлама (с целью понижения его вязкости) для свободной воды и грубых мехпримесей в отстойнике. Для откачки нефтешламов из шламохранилищ в зависимости от их доступности и удаленности предлагаются двухцилиндровые поршневые насосы или эксцентриковые шнековые насосы. Установка размещается в двух сорокафутовых контейнерах, которые транспортируются на трейлере. Недостатком установки является отсутствие заборного устройства, позволяющего готовить сырье стабильного состава, что сказывалось на качестве конечных продуктов.

Компанией Альфа-Лаваль была предлложена технология переработки нефтешлама, основанная на методе центробежного сепарирования. Характерной особенностью нефтешламов является их высокая вязкость, а также наличие в них нефти и воды, образующих эмульсионный состав, стабилизируемый мельчайшими примесями, которые достаточно трудно отделить. Таким образом, нефтешламы являются сырьем трудно поддающимся переработке. Центробежное сепарирование представляет собой ускоренную форму гравитационного сепарирования, в основе которого лежит принцип замены естественной гравитационной силы другой силой, превышающей ее в тысячи раз. Результатом этого является значительное повышение скорости оседания частиц в жидкости. Даже мельчайшие частицы, не оседающие под воздействием гравитации, при их движении в потоке мгновенно оседают в поле центробежных сил. Тот же метод применяется для сепарирования нефти от воды, когда даже плотно связанные эмульсии расщепляются под воздействием высоких гравитационных сил. Сепарирование нефтешлама обычно осуществляется в две стадии. На первой стадии основная масса твердых частиц отделяется в деканторной центрифуге. Этот декантер производит довольно сухой остаток, содержащий минимум чистой нефти. Вытекающий поток, состоящий из нефти и воды (и минимального количества примесей), поступает на вторую стадию разделения. Здесь трехфазная тарельчатая центрифуга разделяет смесь на очень чистую фазу нефти, фазу чистой воды и небольшое количество твердых частиц. Если требуется фаза очень чистой воды, необходимо применение третьей сепаративной ступени. В зависимости от состава нефтешлама в технологическую схему может быть включен также блок химической обработки.

В целом процесс переработки нефтешлама состоит из следующих технологических блоков:

– заборная система для забора сырья из нефтешламового бассейна или резервуара для хранения;

– подготовительный блок для нагревания и фильтрования сырья и последующее перекачивание насосом в питательный резервуар;

– сепарирующая установка, перерабатывающая нефтешлам из питательного резервуара;

Производительность установок от 5 м 3 /ч и выше.

Двухфазная деканторная центрифуга применяется на первой стадии сепарации процесса переработки нефтешлама по технологии Альфа-Лаваль.

Деканторная центрифуга предназначена для сепарирования большого количества примесей из потока нефтешлама. Применяется двухфазная версия (жидкость-примеси) декантера. Данный тип машины является менее чувствительным к колебаниям в составе исходного сырья по сравнению с трех фазным декантором (жидкость-жидкость-примеси).

Двухфазный декантор, кроме того, выдает более сухой остаток, что означает меньшие потери нефти. Деканторная центрифуга представляет собой цилиндрический/конический барабан с достаточно большим соотношением длины к диаметру.

Характерной особенностью является наличие винтового конвейера, помещенного внутри барабана для непрерывного удаления отсепарированных примесей. Нефтешлам подается в цилиндрическую секцию, где он формирует слой – отстойник – вокруг стенки.

Примеси, будучи тяжелее жидкости, собираются на стенке барабана, с которой они непрерывно удаляются при помощи винтового конвейера и подаются вверх, в коническую секцию – сборник – и наружу через разгрузочные выходы и узкий конец.

Результат сепарирования – выделение примесей, высушивание примесей и очищение жидкости – оптимизируется для последующей обработки в трехфазной тарельчатой центрифуге – трехфазная тарельчатая центрифуга. Примеси через равные интервалы времени выбрасываются посредством центробежных сил из сепарирующего участка барабана. Установка работает с такой скоростью, что нефть не может выбрасываться вместе с примесями.

В зависимости от состава сырья, машины удаляют мельчайшие частицы, величиной 1 мкм и всю воду из нефти. Основными узлами тарельчатой центрифуги являются насосы с напорным диском и сепарирующий барабан с набором тарелок. Переработанная нефть может быть использована как топливо или как основное сырье для нефтеочистительных предприятий.

Пример эффективности переработки нефтешлама с использованием центрифуг Альфа-Лаваль приведен в табл. 11.4.

Таблица 11.4 – Эффективность использования центрифуг Альфа-Лаваль

Джураев К. А., Аминова А. С., Гайбуллаев С. А. Основные методы обезвреживания и утилизации нефтеотходов // Молодой ученый. — 2014. — №10. — С. 136-137. — URL https://moluch.ru/archive/69/11942/ (дата обращения: 14.10.2018).

Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратились из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений

По происхождению нефтешламы подразделяются на группы, различающиеся по физико-химическим свойствам (таблица 1.1):

– сбросы при зачистке нефтяных резервуаров;

– аварийные разливы при добыче и транспортировке нефти;

Физико-химические свойства и состав нефтешламов

Массовая доля фракций, выкипающих до температуры:

Нефтешлам из-за значительного содержания в нем нефтепродуктов можно отнести к вторичным материальным ресурсам. Использование его в качестве сырья является одним из рациональных способов его утилизации, так как при этом достигается определенный экологический и экономический эффект. Одна из областей применения нефтешлама — дорожное строительство, где он используется как добавка к связующим, повышающая качество асфальтобетонной смеси за счет повышения прочности, снижения водопоглощения и уменьшения стоимости дорожного покрытия. Другой областью по объему использования нефтешлама в качестве сырья является изготовление строительных материалов. Так, предлагается применять нефтешлам для производства гидроизоляционного материала. Также нефтешлам можно использовать в качестве компонента котельного топлива и товарной нефти.

Выбор метода переработки и обезвреживания нефтяных шламов, в основном, зависит от количества содержащихся в шламе нефтепродуктов. В качестве основных методов обезвреживания и утилизации нефтеотходов практически используются:

химические методы обезвреживания (затвердение путем диспергирования с гидрофобными реагентами на основе негашеной извести или других материалов);

методы биологической переработки (биоразложение путем внесения нефтесодержащих отходов в пахотный слой земли; биоразложение с применением специальных штаммов бактерий, биогенных добавок и подачи воздуха);

термические методы переработки (сжигание в открытых амбарах; сжигание в печах различного типа и конструкций; обезвоживание или сушка нефтяных шламов с возвратом нефтепродуктов в производство, а сточных вод в оборотную циркуляцию и последующим захоронением твердых остатков; пиролиз; газификация);

физические методы переработки (гравитационное отстаивание; разделение в центробежном поле; фильтрование; экстракция);

физико-химические методы переработки (разделение нефтяного шлама с применением специально подобранных ПАВ, деэмульгаторов, смачивателей, растворители и др. на составляющие фазы с последующим использованием).

Среди существующих методов разделения нефтешламов с целью утилизации (центрифугирование, экстракция, гравитационное уплотнение, вакуум-фильтрация, фильтрпрессование, замораживание и др.) — наиболее перспективным является центрифугирование с использованием флокулянтов. Центрифугированием можно достичь эффекта извлечения нефтепродуктов на 85 %, механических примесей — на 95 %. При реагентной обработке нефтешламов изменяются их свойства: повышается водоотдача, облегчается выделение нефтепродуктов.

1. Баширов В. В. и др. Техника и технология поэтапного удаления и переработки амбарных шламов. — М.: Высш. шк., 1992–120с. -1–16–7687800–6.

2. Баширов В. В., Бриль Д. М., Фердман В. М., Тухбатуллин Р. Г., Харланов Г. П. Способы переработки нефтешламов // Защита от коррозии и охрана окружающей среды. — 1994

3. Дытнерский Ю. И. Процессы и аппараты химической технологии част. — Москва: Изд-во «Химия», 1995.

Дмитрий Громаковский
Доктор технических наук, профессор Самарского государственного технического университета

Евгений Крышень
Начальник отдела новой техники АО «Авиаагрегат», руководитель секции «Организация НИР» Минпром и технологий Самарской области

Сергей Шигин
Ведущий инженер Самарского государственного технического университета

Проблема переработки и утилизации нефтяных шламов является одной из наиболее сложных и нерешенных в нефтедобывающей практике. В настоящее время применяется несколько методов утилизации шламов, использующих различные технологии. Им на смену приходит новый метод низкотемпературного пиролиза. На его основе предлагается более производительный и простой способ переработки нефтяных шламов, основанный на использовании низкочастотной кавитации.

В регионах, связанных с добычей и переработкой нефти, накоплены огромные запасы нефтешламов. Многие предприятия осуществляют консервацию нефтешламов. Специально предназначенные для этого контейнеры помещают под землю или на дно водоемов. Однако с течением времени происходит разгерметизация данных контейнеров вследствие их коррозии и природного износа и их содержимое попадает в окружающую природную среду, оказывая на нее негативное воздействие. Иногда нефтешламы выбрасываются бессистемно, что способствует их проникновению в почву и грунтовые воды, которые в результате становятся непригодными для дальнейшего использования.

Для переработки нефтешламов в настоящее время в промышленности проводится разработка очистного оборудования. При помощи центрифуг, сепараторов и декантеров, имеющих ускорение до нескольких тысяч G, реализуется отделение воды и механических примесей от переработанных нефтепродуктов, после которого углеводородную фазу можно вернуть для дальнейшего использования. При этом вода может быть очищена и возвращена в водоемы или в землю.

Наиболее часто для утилизации шламов используют термические, химические (адсорбирование нефтесодержащих отходов гидрофобными реагентами), биологические (применение углеводородокисляющих бактерий), физические (отстаивание, центрофугирование, экстракция, прессование) и физико-химические методы (введение в шлам активных реагентов для отделения нефтепродуктов и жидких топлив, разделения фаз и разрушения водонефтяных эмульсий) [1–5] и др.

Указанные методы, например, успешно использованы в установках фирм «ALFA-LAVAL», «Гумбольдт-Ведаг» (Германия), MTV-530 (США), «FLOTTWEG», «Andritz-CPF» (Австрия), ЗАО «Экотехнология» (Россия) и др.

Устройства и технология переработки шламов могут быть проиллюстрированы на следующих примерах.

Российская установка ООО «Эко-Пресс» для переработки застарелых шламов из шламонакопителей использует метод фильтрации. Переработке подлежат застарелые нефтешламы, которые представляют собой нефтяную эмульсию обратного типа, состоящую из подвижного слоя нефтесодержащего продукта: свободной эмульсионной воды и механических примесей в виде рыхлого осадка.

При ликвидации аварий перерабатывают жидкий нефтешлам с содержанием нефти до – 48%, воды до – 92%, механических примесей – до 1,5%, или замазученный грунт с содержанием нефти 12–36%, воды 14–32%, механических примесей – 32–74% и др. разновидности шлама.

В одном из вариантов установок ООО «Эко-Пресс» реализован процесс переработки шлама после гидродинамической промывки. В этом случае обработка фильтрационной нефти или плавающего нефтешлама предполагает:

  • предварительное обезвоживание нефтешламов;
  • диспергирование в поток нефтешламов широкой фракции легких углеводородов;
  • отстаивание отсепарированной смеси;
  • дополнительный отстой выделенной нефти и вывод ее для переработки на установках УКПН-1,2 ЦПНГ и др.

Фильтрат и плавающий нефтешлам после предварительного обезвоживания компаундируется, отбирается насосом Н-3/1,2,3 и подается в блок диспергирования, который обеспечивает создание маловязкой газонасыщенной системы.

Композиции реагентов предварительно смешивают в статическом смесителе с нефтепродуктами диспергированием через барботажную насадку при перепаде давления 1,2 – 1,3 кг/см2. Обработанное в диспергаторе сырье приобретает устойчивость однородной газонасыщенной системы. Переработка композиции реагентов устанавливается в пределах 200 – 250 г/т нефти (до 4 л/час).

Окончательное расслоение обработанной водонефтяной смеси и ее отстой производят в резервуаре РВС-9 объемом 5000 м3 при температуре 50–55 ºС.

Фильтрационная установка производства «Машиненфабрик Андриц А.Г.» (Австрия) предназначена для переработки нефтяных шламов из прудов отстойников и шламонакопителей, жидких нефтешламов и замазученный смет с территории и т.п. с целью отделения нефти от воды и механических примесей.

Метод переработки в данном случае – гравитационное фильтрование с предварительной обработкой нефтешлама флокулянтами и последующим отжимом на ленточных фильтрпрессах, в результате чего происходит разделение нефтешлама на фильтрат и гидрофобный твердый остаток (кек).

Процесс переработки состоит из следующих основных стадий:

  • загрузка, подогрев и кондиционирование нефтешлама;
  • приготовление и подача реагентов на фильтр-пресс;
  • фильтрация и отжим нефтешлама на фильтр-прессе с последующей промывкой фильтрованных лент водой;
  • сбор и транспортировка фильтрата и промывочных вод;
  • сепарация водонефтяной эмульсии путем отстаивания;
  • транспортировка фильтра и сточной воды;
  • сбор и транспортировка кека в кекохранилище.

Из шламосборника исходное сырье через емкость подогрева подается в башенную мешалку вместе с приготовленным на автоматической станции флокулянтом. Из башенной мешалки сырье поступает на ленточный фильтр-пресс…

Добавить комментарий