Устройство нефтеперерабатывающего завода

Установки от экстрасенса 700х170

Современные химические, нефтеперерабатывающие предприятия – это сложные комплексы машин и аппаратов, оснащенные оборудованием, способные функционировать в условиях низких температур и высоких давлений, в глубоком вакууме и в агрессивных средах. Процесс нефтепереработки постоянно совершенствуется, происходит техническое перевооружение на уровне технологий и аппаратной конфигурации, разрабатываются и внедряются высокоинтенсивные энерго – и ресурсосберегающие технологии, цель которых – решение вопросов, связанных с углублением переработки нефти и оптимизации качества получаемых нефтепродуктов.

В учебном пособии приводится описание нефтеперерабатывающего завода (НПЗ), на котором в большинстве случаев осуществляется деятельность выпускников вузов данной специальности; дается обоснование выбора в качестве реальных объектов и описание четырех наиболее распространенных типов оборудования НПЗ: колонного массообменного аппарата, теплообменного аппарата, центробежного насоса и трубчатой печи.

Учебное пособие предназначено в помощь при выполнении курсовых и квалификационных работ для студентов всех форм подготовки, обучающихся по направлению 151000 «Технологические машины и оборудование»

Пособие является иллюстративным материалом к таким учебным дисциплинам, как «Основы профессиональной деятельности», «Основные технологии и технологические комплексы нефтегазового производства», «Тепло – и массообменные процессы и аппараты технологических систем», «Основы конструирования и расчета технологического оборудования», «Технологическое оборудование».

На нефтеперерабатывающих заводах осуществляется большое число разнообразных процессов, предназначенных для получения из исходного сырья (нефти или газа) целевых продуктов: бензина, керосина, дизельного топлива, масла, парафина, битумов, сульфокислот, деэмульгаторов, кокса, сажи и др., включая сырье для химической промышленности. Такими процессами являются: транспортирование газов, жидкостей и твердых материалов; нагревание, охлаждение, перемешивание и сушка веществ; разделение жидких и газовых неоднородных смесей; измельчение и классификация твердых материалов и другие физические и физико-химические процессы. В последние годы в нефтеперерабатывающей промышленности все больший объем занимают химические процессы как основа глубокой переработки нефтяного сырья.

Однотипные физические, физико-химические и химические процессы характеризуются общими закономерностями и в различных производствах осуществляются в машинах и аппаратах, работающих по одному принципу.

Общие для различных производств нефтепереработки процессы в зависимости от основных законов, определяющих их, подразделяют на [1, 2, 3]:

– гидромеханические процессы (перемещение жидкостей и газов, разделение жидких и газовых неоднородных систем, перемешивание жидкостей);

– тепловые процессы (нагревание, охлаждение, выпаривание, конденсация);

– массообменные процессы (они объединены законами массопередачи и включают перегонку, ректификацию, абсорбцию, адсорбцию, экстракцию, кристаллизацию и сушку);

– механические процессы (измельчение, транспортирование, сортировка и смешение твердых веществ);

– химические процессы (они объединены законами химической кинетики и включают разнообразные химические реакции).

Все названные процессы осуществляются в соответствующих аппаратах и машинах, конструкция которых определяется наиболее целесообразным способом и конкретными условиями осуществления данного процесса.

Оборудование нефтеперерабатывающих заводов разнообразно как по назначению, так и по конструктивному оформлению. Далее рассмотрены только четыре наиболее распространенных типа оборудования, выбранных в качестве реальных объектов для разработки различных видов СРС, в которых обеспечивается преемственность в изучении дисциплин: колонные аппараты, теплообменные аппараты, центробежные насосы и печи.

Нефтеперерабатывающий завод (НПЗ) (рисунок 1.1) представляет собой совокупность основных нефтетехнологических процессов, состоящих из цехов, установок (рисунок 1.2), блоков, а также вспомогательных и обслуживающих служб, обеспечивающих нормальное функционирование промышленного предприятия (товарно-сырьевые, ремонтно-механические цеха, цеха КИПиА, паро-, водо – и электроснабжения, цеховые и заводские лаборатории, транспортные, пожаро – и газоспасательные подразделения, медпункты, столовые, диспетчерская, дирекция, отделы кадров, финансов, снабжения, бухгалтерия и т. д.). [1]

Целевое назначение НПЗ – производство в требуемых объеме и ассортименте высококачественных нефтепродуктов и сырья для нефтехимии (в последние годы – и товаров народного потребления) [2].

Технологические процессы, при помощи которых осуществляется переработка нефти на НПЗ, условно можно разделить на ПервичныеИ Вторичные.

К Первичным относится первичная переработка нефти: обессоливание и обезвоживание, атмосферная и атмосферно-вакуумная перегонка; вторичная перегонка бензинов, дизельных и масляных фракций.

1) термические процессы (термический крекинг, висбрекинг, коксование, пирполиз);

2) термокаталитические процессы (каталитический крекинг и риформинг, гидроочистка, гидрокрегинг, селектоформинг);

3) процессы переработки нефтяных газов (алкилирование, полимеризация, изомеризация);

4) процессы производства масел и парафинов (деасфальтизация, депарафинизация, селективная очистка, адсорбционная и гидрогенизационная доочистка);

5) процессы производства битумов, пластических смазок, присадок, нефтяных кислот, сырья для получения технического углерода;

6) процессы производства ароматических углеводородов (экстракция, гидроалкелирование, диспропорционирование) [2].

Современные нефтеперерабатывающие предприятия характеризуются большой мощностью как НПЗ (исчисляемой миллионами тонн в год), так и составляющих их технологических процессов.

Http://studopedia. ru/4_115782_vvedenie. html

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1 апреля1938 г. На Московском крекинг-заводе была введена в эксплуатацию первая крекинг-установка со щелочной очисткой.

1 этап: увеличение объема переработки нефти, организация системы подготовки нефти к переработке, разработка конструкции сферических электродегидраторов.

2 этап: внедрение современных вторичных технологических процессов с одновременным увеличением мощности по переработке нефти, развитие нефтехимических процессов.

3 этап: осваивались и усовершенствовались вторичные процессы, разработка и освоение отечественного производства полипропилена и других пластмасс.

30 мая 1939 г. Была введена в эксплуатацию вторая крекинг-установка.

5 июня 1941 года принят в эксплуатацию специальный цех, который состоял из газофракционирующей установки N 45 и установки полимеризации N 29.

С ноября 1942 года Московский государственный крекинг-завод стал заводом N 91 села Капотня Ухтомского района Московской области.

В 1948 году пущена в эксплуатацию установка по алкилированию бензола пропиленом на фосфорном катализаторе.

В сентябре 1952 года завод N 413 Миннефтехимпрома СССР был переименован в Московский нефтеперерабатывающий завод.

В 1955 году вводят в эксплуатацию новую обессоливающую установку с шаровым электродегидратором.

К 1956 году мощность завода была увеличена на 88%. Внедрялась автоматизация технологических процессов.

В 1957 году первая промышелнная печь беспламенного горения была пострена и пущена в эксплуатацию на АВТ-3.

В 1963 году вступление в строй нефтепровода Ярославль – Москва, ввод которого обеспечивал перекачку нефти до 7 млн. т. Нефти. Мощность предприятия была доведена до 5 млн. т. нефти в год.

В 1968 году на базе собственного полипропилена на заводе создали цех по его переработке в изделия.

В 1967 году внедрен процесс каталитического риформинга и получен неэтилированный бензин АИ-93.

В 1972 году реконструкция завода, в результате которой должно быть достигнуто полное обеспечение светлыми нефтепродуктами, битумом и котельным топливом.

С 1976 года после реконструкции завода введены установки ЭЛОУ-АВТ-6, каталитического крекирования Г-43-107, риформирования бензинов.

В 1997 году ОАО «Московский НПЗ» вошел в состав «Центральной топливной компании» (ЦТК).

Московский НПЗ выпускает нефтяного топлива, битумы, нефтехимическую продукцию, включая серу, полипропилен и изделия из полипропилена. Около 80%вырабатываемой продукции реализуется в Москве и области,10-15% экспортируется,5-10% отгружается в другие страны и районы СНГ.

В настоящее время Московский НПЗ обеспечивает на 70% потребности Москвы и области в высокооктановом бензине, удовлетворяет около 40% потребности вреактивном топливе и на 100% в малосернистом дизельном топливе, мазуте и битуме.

В годы Великой отечественной войны, не перебазируя и не приостанавливая производство, работая в условиях прифронтового города, обеспечивал выпуск топлива для нужд фронта. За героический труд во время войны коллективу 14 раз присуждалось переходящее Красное знамя Государственного комитета обороны, переданное впоследствии заводу на вечное хранение, а к 40-летию победы завод был награжден орденом войны 1-ой степени.

Высокий уровень технологии, опыт и квалификация персонала обеспечивают безопасность производства, что подтверждается лицензиями Гостехнадзора России, на право осуществления 5 видов деятельности повышенной опасности:эксплуатация, проектирование и ремонт оборудования, подготовка кадров для взрывоопасных производств.

Московский НПЗ имеет самую высокую в России долю высокооктановых бензинов, при этом не используя свинецсодержащие добавки, единственный в России выпускает все автобензины и до 70% дизельного топлива на уровне европейских норм по экологическим показателям.

За свои 60 лет завод ни разу не останавливался, работая круглосуточно, и переработал более 350 миллионов тонн нефти.

Доля гидрогенизационных процессов очистки бензиновых, средних и вакуумных дистсллятов-55%,деструктивных процессов-25%.

-Доля специалистов с высшим и средним специальным образованием-44% от общего числа работающих

Ассортимент выпускаемой продукции более 190 наименований, в том числе:

_Неэтилированные автомобильные бензины с улучшенными экологическими характеристиками

-Летние и зимние дизельные топлива с улучшенными экологическими характеристиками

-Экологически чистые полипропилен, изделия из полипропилена и полиэтилена 150 наименований.

Комбинированная установка атмосферно – вакуумнойпереработки нефти с пердварительным обессоливанием и вторичной перегонкой бензина предназначена для переработки сырой нефти с целью получения продуктов первичной перегонки и полуфабрикатов-сырья установок каталитического риформинга, газофракционирования, битумной, гидроочисток, дизельного топлива, авиакеросина, каталитического крекинга.

Атмосферно-вакуумная установка АВТ-3 предназначена для переработки обезвоженной и обессолинной нефти с целью получения продуктов первичной перегонки: компонента прямогонного автомобиля, бензина, компонентов дизельного тооплива «летнего» и «зимнего», тяжелого вакуумног газойля, гудрона, компонента топочного мазута, авиакеросина и вакуумного дистилята для каталитического крекинга.

Блок висбрекинга предназначен для привращения гудрона в котельное топливо с низкой вязкостью и температурой застывания. Внедрения процесса виброкрекинга показало высокую работоспособность принятой схемы глубокой переработки нефтяного сырья. Дистиллятные фракции вовлекаются в производство светлых нефтепродуктов, а остаток используется для производства котельного топлива стабильного качества. При этом надлежащее оформление технологического процесса позволяет свести к минимуму коксообразование на стенках реакционной аппаратуры.

На АО «Московский НПЗ» эксплатируются 2 установки каталитического риформинга Л-35-11/300 и Л4-35-11/1000, работающие на жестком режиме с периодической регенерацией катализатора. Внедрение эффективных катализаторов является наименьшим затратным способом повышения качества продуктов, эксплуатационных показателей и рентабельности установки, поэтому при очередных перегрузках отечественные катализаторы были заменены на зарубежные(R-56 фирмы ЮОПи).Достигнутые результаты по выходу и качеству риформата позволили Московскому НПЗ освоить производство товаарных неэтилкрованных «городских» бензиновАИ-80эк, АИ-92эк, АИ-95эк с улучшенными экологическими свойствами, отвечающими европейским нормам EN-228.

Установки производили малозернистое дизельное топливо с содержанием серы не выше 0.2%.Для перехода на выпуск моторных топлив сулучшенными экологическими показателями ( содержание серы не более 0.05% масс) катализаторы ГО-70 заменены на более эффективные Ketjenfine-752-1.30 и Kenjenfine-840-30 фирмы «AKZO NOBEL», обеспечивающие глубину обессеривания дизельного топлива более 95% масс.

Битумное производство предназначено для получения дорожных вязких и строительных битумов. В основу технологии положен метод непрерывного окисления сырья в трехсекционных аппаратах колонного типа. Соответствующим подбором сырья можно получить окисленные битумы различных марок. Завод производит:

В состав производства входят также котел-утилизатор и компрессорное хозяйство для получения технического и КИПовского воздуха, эстакада для налива битумов в железнодорожные бункеры и цистерны для наливки битумов в автоцистерны.

Г-43-107 введена в экспулатацию в 1938 году. Принятый в основу технологии набор процессов определяется следующим составом установки:

Содержание солей в нефтях, поступающих на нефтеперерабатывающие заводы, обычносоставляет 500 мг/л, а воды – в пределах 1% (масс.). На переработку же допускают нефти, в которых содержание солей не превышает 20 мг/л и воды 0,1% (масс.). Требования к ограничению содержания солей и воды в нефтях постоянно возрастают, так как только снижение солей с 20 до 5 мг/л дает значительнуюэкономию: примерно вдвое увеличивается межремонтный пробег атмосферно-вакуумных установок, сокращается расход топлива, уменьшается коррозия аппаратуры, снижаются расходы катализаторов, улучшается качество газотурбинных и котельных топлив, коксов и битумов.

Большая часть воды в поступающих на НПЗ нефтях находится в виде эмульсии, образованной капельками воды с преобладающим диаметром 2 – 5 мкм. На поверхности капелек из нефтяной среды адсорбируются смолистые вещества, асфальтены, органические кислоты и их соли, растворимые в нефти, а также высокодисперсные частицы тугоплавких парафинов, ила и глины, хорошо смачиваемых нефтью. С течением времени толщина адсорбционной пленки увеличивается, возрастает ее механическая прочность, происходит старение эмульсии. Для предотвращения этого явления на многих промыслах в нефть вводят деэмульгаторы. Деэмульгаторы используют и при термохимическом, и при электрохимическом обезвоживании нефтей. Расход деэмульгаторов для каждой нефти определяется экспериментально – колеблется от 0,002 до 0,005% (масс.) на 1 т нефти.

Разрушая поверхнустную адсорбционную пленку, деэмульгаторы способствуют слиянию (коалесценции) капелек воды в более крупные капли, которые при отстое эмульсии отделяются быстрее. Этот процесс ускоряется при повышенных температурах (обычно 80-1200С), так как при этом размягчается адсорбционная пленка и повышается ее растворимость в нефти, увеличивается скорость движения капелек и снижается вязкость нефти, т. е. улучшаются условия для слияния и оседания капель. Следует отметить, что при температурах более 1200С вязкость нефти меняется мало, поэтому эффект действия деэмульгаторов увеличивается незначительно.

Наиболее стойкие мелкодисперсные нефтяные эмульсии разрушаются с помощью электрического тока. При воздействии электрического поля капельки воды, находящиеся в неполярной жидкости, поляризуются, вытягиваются в эллипсы с противоположно заряженными концами и притягиваются друг к другу. При сближении капелек силы притяжения вырастают до величины, позволяющей сдавить и разорвать разделяющую их пленку. На практике используют переменный электрический ток частотой 50Гц и напряжением 25-35 кВ. Процессу электрообезвоживания способствуют деэмульгаторы и повышенная температура. Во избежании испарения воды, а также в целях снижения газообразования электродегидраторы – аппараты, в которых проводится электрическое обезвоживание и обессоливание нефтей – работают при повышенном давлении. На НПЗ эксплуатируются электродегидраторы трех типов:

Цилиндрические вертикальные с круглыми горизонтальными электродами и подачей нефти в межэлектродное пространство; такие аппараты установлены на электрообессоливающих установках ЭЛОУ 10/2;

Шаровые с кольцевыми электродами и подачей нефти между ними; они нашли применение на установках ЭЛОУ 10/6 (производительностью 2 млн. т нефти в год);

Горизонтальные с прямоугольными электродами и подачей нефти в низ аппарата под слой отсоявшейся воды.

Http://revolution. allbest. ru/manufacture/00652743_0.html

Изобретение относится, преимущественно, к нефтяной промышленности. Нефтеперерабатывающий завод содержит образующие гидравлическую систему резервуарный парк для приема и хранения сырой нефти, связанный с ним посредством имеющих запорную и/или запорно-регулировочную арматуру с запирающим элементом образующих обвязку технологических трубопроводов, снабженных насосным оборудованием, преимущественно, в виде насосов с электроприводом, технологический комплекс установок по очистке и разделению нефти на фракции, получению коммерческих нефтепродуктов с возможным, по меньшей мере, частичным компаундированием, котельную и/или установки и агрегаты по выработке тепловой или электрической и тепловой энергии, соединенные соответственно сетью или сетями трубопроводов с источником холодного и/или горячего водоснабжения и с внутренними и/или внешними потребителями тепловой энергии, по меньшей мере, одна система утилизации горючих отходов, а также снабженный обвязкой технологических трубопроводов, предпочтительно, связанный с упомянутыми основными технологическими установками с образованием части основной гидравлической системы завода резервуарный парк для хранения разделенных фракций и коммерческих нефтепродуктов. По меньшей мере, один выполненный напорным и снабженный соответственно не менее чем одним напорным насосом с электроприводом технологический трубопровод и/или трубопровод сети холодного и/или горячего водоснабжения оборудован гидромеханическим устройством для плавной нагрузки гидравлической системы, подключенным, по меньшей мере, к одному напорному трубопроводу, преимущественно, с напорной стороны на участке между создающим напор в трубопроводе насосом или насосной группой и ближайшей запорной и/или запорно-регулировочной арматурой, сообщенным с трубопроводом по рабочему телу, преимущественно, по перекачиваемой жидкости и смонтированным с возможностью автоматического пролонгированного включения и выключения запорной и/или запорно-регулировочной арматуры. Гидромеханическое устройство включает последовательно соединенные между собой входной патрубок, регулятор скорости открытия запорной и/или запорно-регулировочной арматуры и передачи нагрузки на гидравлическую систему и гидромеханический привод, включающий силовую камеру с корпусом, содержащим, по меньшей мере, один отсек с изменяющимся рабочим объемом, регулируемо возвратно наполняемым жидким рабочим телом при возрастании давления в трубопроводе, и передаточный механизм. Подключение к трубопроводу гидромеханического устройства выполнено двойным: на входе входным патрубком оно сообщено с трубопроводом по рабочему телу, а на выходе – кинематически гидромеханическим приводом с запирающим элементом упомянутой арматуры, причем передаточный механизм выполнен подвижным, соединенным с силовой камерой по типу «поршень-шток» или «мембрана-шток». Техническим результатом изобретения является обеспечение возможности включать насосы и осуществлять набор оборотов, близких к рабочим при закрытой арматуре, что снижает энергозатраты при запуске электродвигателей насосов, а также автоматически достигаемую плавность открытия задвижек и включения гидравлических систем и обеспечение быстрого сброса давления в устройстве и отключение систем при выключении двигателей. 19 з. п. ф-лы, 11 ил.

Изобретение относится, преимущественно, к нефтяной промышленности и может быть реализовано на нефтеперерабатывающих заводах и предприятиях химической промышленности.

Из существующего уровня техники (RU 17004 U1, 10.03.2001) известна нефтеперерабатывающая станция для разгонки многокомпонентных смесей, содержащая линию подвода нефтяной смеси и линии отвода жидких фракций, а также последовательно соединенные трубопроводами две ступени разгонки нефтяной смеси, каждая из которых включает конденсатор и подогреватель нефтяной смеси, одну или несколько ступеней разгонки нефтяной смеси и последовательно установленные на линии подвода нефтяной смеси теплообменники, представляющие собой комбинированные рекуперативные подогреватели нефтяной смеси и охладители, а также насос и печь для подогрева нефтяной смеси, причем каждая ступень разгонки нефтяной смеси снабжена испарителем со встроенным подогревателем нефтяной смеси, выполненным в виде топочного устройства для сжигания жидкого или газообразного топлива, верхняя часть испарителя соединена трубопроводом с конденсатором, а нижняя часть испарителя каждой ступени через клапанное устройство сообщена трубопроводом с соответствующим теплообменником. Недостатком данного технического решения является отсутствие защиты от гидроударов.

Также из уровня техники известно устройство управления приводом клапана для гашения гидроударов SU 1245792 A1, 23.07.1986, в том числе для использования в нефтехимической промышленности, содержащее две сообщенные между собой через обратный клапан с дросселем и с приводом клапана емкости с гибкими разделителями, одна из которых подключена к магистрали до обратного клапана, а другая – после него, с целью повышения эффективности устройства путем обеспечения возможности его неоднократного срабатывания устройство дополнительно снабжено дифференциальным цилиндром с двумя сильфонными разделителями различного диаметра, причем полость сильфонного разделителя большего диаметра сообщена с приводом клапана и емкостями, полость меньшего диаметра – через дополнительно установленный обратный клапан с дросселем с емкостью, подключенной после обратного клапана, а полость дифференциального цилиндра между сильфонными разделителями – с атмосферой. Недостатками данного технического решения является его усложненность, наличие большого количества элементов и, как следствие, недостаточная надежность устройства в целом.

Технической задачей, на решение которой направлено настоящее изобретение, является обеспечение необходимого уровня безопасности и снижение энергозатрат при эксплуатации как отдельных гидравлических и/или насосных систем нефтеперерабатывающего завода, содержащих несжимаемые жидкости или смеси, так и нефтеперерабатывающего завода в целом, а также значительное снижение затрат на ремонт и обслуживание оборудования.

Поставленная задача решается за счет того, что нефтеперерабатывающий завод согласно изобретению содержит образующие гидравлическую систему резервуарный парк для приема и хранения сырой нефти, связанный с ним посредством имеющих запорную и/или запорно-регулировочную арматуру с запирающим элементом образующих обвязку технологических трубопроводов, снабженных насосным оборудованием, преимущественно, в виде насосов с электроприводом, технологический комплекс установок по очистке и разделению нефти на фракции, получению коммерческих нефтепродуктов с возможным, по меньшей мере, частичным компаундированием, котельную и/или установки и агрегаты по выработке тепловой или электрической и тепловой энергии, соединенные соответственно сетью или сетями трубопроводов с источником холодного и/или горячего водоснабжения и с внутренними и/или внешними потребителями тепловой энергии, по меньшей мере, одна система утилизации горючих отходов, а также снабженный обвязкой технологических трубопроводов, предпочтительно, связанный с упомянутыми основными технологическим установками с образованием части основной гидравлической системы завода резервуарный парк для хранения разделенных фракций и коммерческих нефтепродуктов, при этом, по меньшей мере, один выполненный напорным и снабженный соответственно не менее чем одним напорным насосом с электроприводом технологический трубопровод и/или трубопровод сети холодного и/или горячего водоснабжения оборудован гидромеханическим устройством для плавной нагрузки гидравлической системы, подключенным, по меньшей мере, к одному напорному трубопроводу, преимущественно, с напорной стороны на участке между создающим напор в трубопроводе насосом или насосной группой и ближайшей запорной и/или запорно-регулировочной арматурой, сообщенным с трубопроводом по рабочему телу, преимущественно, по перекачиваемой жидкости и смонтированным с возможностью автоматического пролонгированного включения и выключения запорной и/или запорно-регулировочной арматуры, при этом гидромеханическое устройство включает последовательно соединенные между собой входной патрубок, имеющий корпус регулятор скорости открытия запорной и/или запорно-регулировочной арматуры и передачи нагрузки на гидравлическую систему, снабженный обратным клапаном и жиклером, и гидромеханический привод, включающий силовую камеру с корпусом, содержащим, по меньшей мере, один отсек с изменяющимся рабочим объемом, регулируемо возвратно наполняемым жидким рабочим телом при возрастании давления в трубопроводе, и передаточный механизм, при этом подключение к трубопроводу гидромеханического устройства выполнено двойным: на входе входным патрубком оно сообщено с трубопроводом по рабочему телу, а на выходе – кинематически гидромеханическим приводом с запирающим элементом упомянутой арматуры, причем передаточный механизм выполнен подвижным, соединенным с силовой камерой по типу «поршень-шток» или «мембрана-шток», при этом шток, в свою очередь, подвижно связан с образованием привода с запирающим элементом упомянутой арматуры с возможностью автоматических перемещений запирающего элемента в диапазоне от полного перекрытия до полностью открытого на проток трубопровода и наоборот.

При этом технологический комплекс установок по очистке и разделению нефти на фракции может содержать, по меньшей мере, одну колонну атмосферно-вакуумной перегонки нефти, снабженную образующей гидравлическую систему обвязкой и внутризаводской коммуникационной сетью или сетями технологических трубопроводов, а также, по меньшей мере, дополнительными гидравлическими системами, образованными из внутризаводских сетей трубопроводов холодного и/или горячего водоснабжения и паропроводов, причем каждая из упомянутых систем снабжена насосным оборудованием, включающим не менее одного напорного насоса, преимущественно, с электроприводом, и запорную и/или запорно-регулировочную арматуру с запирающим элементом и выполнены с возможностью подключения в зоне между упомянутым насосом и арматурой упомянутого гидромеханического устройства для плавной нагрузки гидравлической системы.

Нефтеперерабатывающий завод может быть снабжен комплексом технологических установок, преимущественно, в который входят гидравлически связанные с колонной атмосферно-вакуумной перегонки нефти, по меньшей мере, по одной установке вторичной перегонки нефти, газофракционирования, каталитического крекинга с гидроочисткой сырья и газофракционированием, гидроочистки легких фракций первичной перегонки нефти, включая гидроочистку дизельного топлива и керосина, образующие технологические цепочки установка висбрекинга гудрона и гидравлически связанная с ней и с упомянутой установкой каталитического крекинга гидроочисткой сырья и газофракционирования по промежуточным преобразованиям и синтезу продуктов установка котельного топлива; и, кроме того, установка по технологической доводке наиболее тяжелой фракции первичной переработки нефти, а именно, производства нефтебитума и выработки, по меньшей мере, таких коммерческих продуктов, как битум дорожный и битум строительный.

По меньшей мере, одна колонна атмосферно-вакуумной перегонки нефти может быть выполнена с возможностью получения высокооктанового прямогонного бензина высокого качества, например экспортного, непосредственно из колонны и путем смешения-компаундирования легкоиспаряемых фракций из упомянутой колонны и аналогичных фракций, полученных в результате прохождения в упомянутой колонне первичной перегонки нефти и последующего разделения в установке гидроочистки дизельного топлива и керосина, при этом для получения товарного продукта из относительно тяжелой фракции с температурой кипения, соответствующей например, температурному диапазону кипения дизельного топлива упомянутая установка гидроочистки дизельного топлива и керосина гидравлически соединена, преимущественно, с емкостью для введения в упомянутую технологическую фракцию депрессорных присадок для получения товарных вариантов дизельного топлива, при этом технологические трубопроводы упомянутой гидравлической системы оснащены необходимой запорной и/или запорно-регулировочной арматурой и, по крайней мере, часть из них подключена к насосному оборудованию, а, по меньшей мере, один из трубопроводов, соединяющих упомянутые технологические установки, выполнен напорным и смонтирован с возможностью подключения упомянутого гидромеханического устройства для плавной нагрузки гидравлической системы.

Гидравлически связанные между собой и, по меньшей мере, объединенные по продукту в группы технологические установки могут образовывать технологический комплекс по первичной перегонке нефти и последующей обработке, выделению и/или смешению выделенных фракций, введению присадок, утилизации отходов, включая попутные и сопутствующие газы, при этом для получения дополнительного выхода и получения товарной продукции из светлых фракций, в первую очередь, автомобильных бензинов с октановым числом от 80 до 95 марок АИ-80-ЭК, АИ-92-ЭК, регуляр Евро-92, АИ-95-ЭК, премиум Евро-95 завод оснащен, по меньшей мере, одной установкой каталитического риформинга, на входе гидравлически связанной с образованием технологической цепочки через установку вторичной перегонки нефти с колонной атмосферно-ваккумной перегонки нефти, а на выходе дважды связана с установкой получения бензинов упомянутых товарных марок, в том числе непосредственно, по меньшей мере, одним трубопроводом, оснащенным, по крайней мере, запорной и/или запорно-регулировочной арматурой с ручным и/или электроприводом и опосредственно через упомянутую установку газофракционирования и отдельным трубопроводом установка каталитического риформинга связана с факельной установкой и с блоком утилизации попутных и сопутствующих газов.

Технологический комплекс нефтеперерабатывающего завода может включать установку производства водорода, гидравлически связанную по продукту с установкой каталитического крекинга с гидроочисткой сырья – темных фракций первичной перегонки нефти в колонне атмосферно-вакуумной перегонки нефти, при этом упомянутая установка каталитического крекинга на выходе технологически связана по вязкотекучей фракции с установкой для получения котельного топлива, а по другим выделенным фракциям с технологическими установками по производству серы для утилизации отхода переработки сернистых и высокосернистых нефтей и/или с установками по производству и переработке, например, полипропилена, причем практически каждая из упомянутых установок и/или технологических цепочек оснащена дополнительной обвязкой либо обвязками или подведенным к ним не менее чем одним трубопроводом гидравлических сетей холодного и/или горячего водоснабжения, оснащенных запорной и/или запорно-регулировочной арматурой, подключенных не менее чем к одному напорному насосу, преимущественно, с электроприводом и содержит в своем составе или подключена не менее чем к одному трубопроводу, аналогично оснащенному упомянутой арматурой и насосным оборудованием, который в свою очередь выполнен с возможностью подключения к нему упомянутого гидромеханического устройства для плавной нагрузки соответствующей из упомянутых гидравлических систем.

В корпусе регулятора скорости открытия упомянутой арматуры могут быть размещены вышеупомянутые обратный клапан и жиклер, причем жиклер и обратный клапан выполнены конструктивно совмещенными.

Обратный клапан регулятора скорости открытия упомянутой арматуры может содержать имеющий пропускной канал с выходными отверстиями шток с выполненной на одном его конце заслонкой, а на другом – жиклером, включающим регулирующий, предпочтительно, винтовой элемент, введенный в пропускной канал штока обратного клапана с возможностью, по крайней мере, частичного перекрытия проходного сечения пропускного канала – пропускного отверстия для его калибровки с помощью иглы жиклера, которой снабжен винтовой элемент, путем изменения ее положения относительно пропускного канала.

Регулятор скорости открытия упомянутой арматуры может быть снабжен возвратным устройством, связанным с обратным клапаном и/или жиклером и выполненным, например, в виде пружины.

Регулятор скорости открытия упомянутой арматуры может быть снабжен возвратным устройством, установленным на винтовом элементе жиклера и выполненным, например, в виде пружины.

Корпус регулятора скорости открытия запорной и/или запорно-регулировочной арматуры может содержать, по меньшей мере, три отсека, в первом отсеке расположена заслонка обратного клапана с выполненным в ней входным отверстием пропускного канала, во втором отсеке расположен, по крайней мере частично, шток обратного клапана и, по меньшей мере, одно выходное отверстие пропускного канала, выполненное в штоке, в третьем отсеке расположен винтовой элемент жиклера и возвратное устройство регулятора скорости открытия, при этом второй отсек соединен по рабочему телу с силовой камерой, а в корпусе регулятора скорости открытия в области третьего отсека выполнено отверстие, закрытое винтовой заглушкой для обеспечения регулировки проходного сечения пропускного канала посредством винтового элемента.

Для изменения положения иглы жиклера относительно пропускного отверстия жиклер может быть снабжен устройством калибровки, выполненным с возможностью его регулировки вручную с внешней стороны корпуса регулятора скорости открытия запорной и/или запорно-регулировочной арматуры.

Силовая камера может быть снабжена герметичной упругой мембраной, разделяющей корпус силовой камеры на упомянутый заполняемый рабочим телом отсек с изменяющимся рабочим объемом и незаполняемый им отсек, причем мембрана выполнена с возможностью знакопеременной деформации, направленной в зависимости от давления как в сторону заполняемого отсека, так и в сторону незаполняемого отсека силовой камеры, причем в незаполняемом отсеке силовой камеры выполнено отверстие с закрепленной в нем направляющей втулкой, обеспечивающей поступательное движение передаточного механизма.

Гидромеханическое устройство может быть снабжено возвратным устройством гидромеханического привода, связанным с передаточным механизмом и/или мембраной привода и выполненным, например, в виде пружины.

Силовая камера может быть снабжена поршнем, разделяющим корпус силовой камеры на упомянутый заполняемый рабочим телом отсек с изменяющимся рабочим объемом и незаполняемый им отсек и выполненным с возможностью перемещения в силовой камере в зависимости от изменения давления, причем в незаполняемом отсеке силовой камеры выполнено отверстие с закрепленной в нем направляющей втулкой, обеспечивающей поступательное движение передаточного механизма.

Запорная и/или запорно-регулировочная арматура может быть выполнена с имеющим шпиндель запорным органом, а передаточный механизм состоит, по меньшей мере, из двух элементов, при этом первый элемент – шток передаточного механизма через предохранительную накладку соединен с мембраной силовой камеры, а второй элемент соединен с запорным органом запорно-регулировочной арматуры, предпочтительно, через шпиндель с возможностью поворотного перемещения последней.

Первый и второй элементы передаточного механизма могут быть выполнены прямолинейными и соединены между собой подвижно, например шарнирно, причем во втором элементе в месте соединения его с первым выполнено отверстие, внутри которого расположен штифт, соединяющий оба указанных элемента, причем второй элемент передаточного механизма выполнен с возможностью поворота от 0 до 90 градусов от исходного положения, при этом 0 градусов соответствует, например, полностью закрытой арматуре, а значение 90 градусов – полностью открытой.

Запорная и/или запорно-регулировочная арматура может представлять собой кран, например шаровой.

Передаточный механизм, взаимодействующий с запорной и/или запорно-регулировочной арматурой, может быть выполнен в виде рычага или кривошипного механизма, или зубчатой рейки.

Максимальная пропускная способность обратного клапана регулятора скорости открывания упомянутой арматуры, по меньшей мере, в два раза может превышать максимальную пропускную способность жиклера.

Техническим результатом, достигаемым при использовании заявленного изобретения, является обеспечение безопасности и снижение энергозатрат при эксплуатации гидравлических систем, обеспечивающих работу систем нефтеперерабатывающего завода, содержащих несжимаемые жидкости, а также повышение долговечности и надежности работы всего комплекса нефтеперерабатывающего завода, снижение затрат на ремонт и обслуживание оборудования вследствие снижения нагрузки на элементы гидравлической системы – запорную и/или запорно-регулировочную арматуру, трубопроводы и на насосное оборудование, что достигается разработанным в изобретении сочетанием существенных признаков, создающих совокупный положительный эффект, превышающий сумму входящих эффектов от отдельных элементов изобретения, а именно принятое в изобретении расположение сообщенных с трубопроводами по рабочим телам или рабочей среде на участках между насосами и запорной и/или запорно-регулировочной арматурой, позволяет включать насосы и осуществлять набор оборотов, близких к рабочим, при закрытой арматуре, что снижает энергозатраты при запуске электродвигателей насосов, а последовательность расположения и предложенные конструктивные решения регулятора скорости открытия и гидромеханического привода арматуры обеспечивают, с одной стороны, автоматически достигаемую плавность открытия задвижек и включения гидравлических систем, а, с другой стороны, обеспечивают быстрый сброс давления в устройстве и отключение систем при выключении двигателей. Последнее достигается за счет предложенного в изобретении регулируемого соотношения пропускной способности впускного жиклера и обратного клапана, а также за счет выполнения разделительной мембраны упругоподатливой, установленной в жесткой силовой камере, что обеспечивает плавное движение передаточного механизма гидромеханического привода в режиме открывания задвижки и более быстрое, но также плавное закрывание, усиленное срабатывающей в режиме обратного хода за счет дополнительной энергии пружинного усилителя хода. Это создает в совокупности необходимую плавность и регулируемую быстроту работы устройства, а также экономичность, возможность как автономной, так и совместной с другими устройствами работы в гидравлических системах.

Техническое решение иллюстрируется чертежами, на которых представлен частный случай выполнения гидромеханического устройства, не охватывающий и тем более не ограничивающий весь объем притязаний данного решения, где:

На фиг.1 изображено соединенное с трубопроводом гидромеханическое устройство с силовой камерой, снабженной герметичной упругой мембраной (рабочее тело или рабочая среда не показаны);

На фиг.2 – соединенное с трубопроводом гидромеханическое устройство с силовой камерой, снабженной поршнем (рабочее тело или рабочая среда не показаны);

На фиг.3 – регулятор скорости открытия запорной и/или запорно-регулировочной арматуры с выкрученной заглушкой;

На фиг.5 – гидромеханическое устройство в начале процесса открытия упомянутой арматуры – двигатель насоса в фазе выхода с холостого хода на рабочие обороты;

На фиг.6 – гидромеханическое устройство с полностью открытой упомянутой арматурой – двигатель в фазе работы на полную мощность;

На фиг.7 – гидромеханическое устройство после окончания воздействия давления при выключенном двигателе;

На фиг.8 – гидромеханическое устройство в варианте выполнения с промежуточным (дополнительным) рабочим телом;

На фиг.9 – гидромеханическое устройство в варианте выполнения с несколькими промежуточными (дополнительными) рабочими телами;

На фиг.10 – вариант выполнения гидромеханического устройства с передаточным механизмом в виде зубчатых рейки и колеса;

На фиг.11 – схема гидравлической системы для перекачивания жидкости с гидромеханическим устройством.

Нефтеперерабатывающий завод (на чертежах не показано) содержит образующие гидравлическую систему 1 резервуарный парк для приема и хранения сырой нефти, связанный с ним посредством имеющих запорную и/или запорно-регулировочную арматуру 2 с запирающим элементом (на чертежах не показано) образующих обвязку технологических трубопроводов, снабженных насосным оборудованием, преимущественно, в виде насосов 3 с электроприводом, технологический комплекс (на чертежах не показано) установок по очистке и разделению нефти на фракции, получению коммерческих нефтепродуктов с возможным, по меньшей мере частичным, компаундированием, котельную и/или установки и агрегаты (на чертежах не показано) по выработке тепловой или электрической и тепловой энергии, соединенные соответственно сетью или сетями трубопроводов с источником холодного и/или горячего водоснабжения и с внутренними и/или внешними потребителями тепловой энергии, по меньшей мере, одна система утилизации горючих отходов (на чертежах не показано), а также снабженный обвязкой технологических трубопроводов, предпочтительно, связанный с упомянутыми основными технологическим установками с образованием части основной гидравлической системы завода резервуарный парк (на чертежах не показано) для хранения разделенных фракций и коммерческих нефтепродуктов.

По меньшей мере, один выполненный напорным и снабженный соответственно не менее чем одним напорным насосом 4 с электроприводом технологический трубопровод 3 и/или трубопровод сети холодного и/или горячего водоснабжения оборудован гидромеханическим устройством 5 для плавной нагрузки гидравлической системы 1, подключенным, по меньшей мере, к одному напорному трубопроводу 3, преимущественно, с напорной стороны на участке между создающим напор в трубопроводе 3 насосом 4 или насосной группой и ближайшей запорной и/или запорно-регулировочной арматурой 2, сообщенным с трубопроводом по рабочему телу 6, преимущественно, по перекачиваемой жидкости и смонтированным с возможностью автоматического пролонгированного включения и выключения запорной и/или запорно-регулировочной арматуры 2.

Упомянутое гидромеханическое устройство 5 включает последовательно соединенные между собой входной патрубок 7, имеющий корпус 8 регулятор скорости открытия 9 запорной и/или запорно-регулировочной арматуры 2 и передачи нагрузки на гидравлическую систему 1, снабженный обратным клапаном 10 и жиклером 11, и гидромеханический привод 12, включающий силовую камеру 13 с корпусом 14, содержащим, по меньшей мере, один отсек 15 с изменяющимся рабочим объемом, регулируемо возвратно наполняемым жидким рабочим телом 6 при возрастании давления в трубопроводе 3, и передаточный механизм 16. Подключение к трубопроводу 3 гидромеханического устройства 5 выполнено двойным: на входе входным патрубком 7 оно сообщено с трубопроводом 3 по рабочему телу 6, а на выходе – кинематически гидромеханическим приводом 12 с запирающим элементом упомянутой арматуры 2.

Передаточный механизм 16 выполнен подвижным, соединенным с силовой камерой 13 по типу «поршень-шток» или «мембрана-шток». Шток 17, в свою очередь, подвижно связан с образованием привода с запирающим элементом запорной и/или запорно-регулировочной арматурой 2 с возможностью автоматических перемещений запирающего элемента в диапазоне от полного перекрытия до полностью открытого на проток трубопровода 3 и наоборот.

Технологический комплекс установок по очистке и разделению нефти на фракции содержит, по меньшей мере, одну колонну атмосферно-вакуумной перегонки нефти (на чертежах не показано), снабженную образующей гидравлическую систему 1 обвязкой и внутризаводской коммуникационной сетью или сетями технологических трубопроводов 3, а также, по меньшей мере, дополнительными гидравлическими системами, образованными из внутризаводских сетей трубопроводов холодного и/или горячего водоснабжения и паропроводов, причем каждая из упомянутых систем 1 снабжена насосным оборудованием, включающим не менее одного напорного насоса 4, преимущественно, с электроприводом, и запорную и/или запорно-регулировочную арматуру 2 с запирающим элементом и выполнена с возможностью подключения в зоне между упомянутым насосом 3 и арматурой 2 упомянутого гидромеханического устройства 5 для плавной нагрузки гидравлической системы.

Нефтеперерабатывающий завод снабжен комплексом технологических установок (на чертежах не показано), преимущественно, в который входят гидравлически связанные с колонной атмосферно-вакуумной перегонки нефти, по меньшей мере, по одной установке вторичной перегонки нефти, газофракционирования, каталитического крекинга с гидроочисткой сырья и газофракционированием, гидроочистки легких фракций первичной перегонки нефти, включая гидроочистку дизельного топлива и керосина, образующие технологические цепочки установка висбрекинга гудрона и гидравлически связанная с ней и с упомянутой установкой каталитического крекинга гидроочисткой сырья и газофракционирования по промежуточным преобразованиям и синтезу продуктов установка котельного топлива и, кроме того, установка по технологической доводке наиболее тяжелой фракции первичной переработки нефти, а именно производства нефтебитума и выработки, по меньшей мере, таких коммерческих продуктов, как битум дорожный и битум строительный.

По меньшей мере, одна колонна атмосферно-вакуумной перегонки нефти выполнена с возможностью получения высокооктанового прямогонного бензина высокого качества, например экспортного, непосредственно из колонны и путем смешения-компаундирования легкоиспаряемых фракций из упомянутой колонны и аналогичных фракций, полученных в результате прохождения в упомянутой колонне первичной перегонки нефти и последующего разделения в установке гидроочистки дизельного топлива и керосина, при этом для получения товарного продукта из относительно тяжелой фракции с температурой кипения, соответствующей, например, температурному диапазону кипения дизельного топлива упомянутая установка гидроочистки дизельного топлива и керосина гидравлически соединена, преимущественно, с емкостью для введения в упомянутую технологическую фракцию депрессорных присадок для получения товарных вариантов дизельного топлива, при этом технологические трубопроводы упомянутой гидравлической системы оснащены необходимой запорной и/или запорно-регулировочной арматурой и, по крайней мере, часть из них подключена к насосному оборудованию, а, по меньшей мере, один из трубопроводов, соединяющих упомянутые технологические установки, выполнен напорным и смонтирован с возможностью подключения упомянутого гидромеханического устройства для плавной нагрузки гидравлической системы.

Гидравлически связанные между собой и, по меньшей мере, объединенные по продукту в группы технологические установки образуют технологический комплекс (на чертежах не показано) по первичной перегонке нефти и последующей обработке, выделению и/или смешению выделенных фракций, введению присадок, утилизации отходов, включая попутные и сопутствующие газы, при этом для получения дополнительного выхода и получения товарной продукции из светлых фракций, в первую очередь, автомобильных бензинов с октановым числом от 80 до 95 марок АИ-80-ЭК, АИ-92-ЭК, регуляр Евро-92, АИ-95-ЭК, премиум Евро-95 завод оснащен, по меньшей мере, одной установкой каталитического риформинга, на входе гидравлически связанной с образованием технологической цепочки через установку вторичной перегонки нефти с колонной атмосферно-ваккумной перегонки нефти, а на выходе дважды связана с установкой получения бензинов упомянутых товарных марок, в том числе непосредственно, по меньшей мере, одним трубопроводом, оснащенным, по крайней мере, запорной и/или запорно-регулировочной арматурой с ручным и/или электроприводом, и опосредственно через упомянутую установку газофракционирования и отдельным трубопроводом установка каталитического риформинга связана с факельной установкой и с блоком утилизации попутных и сопутствующих газов.

Технологический комплекс нефтеперерабатывающего завода включает установку производства водорода (на чертежах не показано), гидравлически связанную по продукту с установкой каталитического крекинга с гидроочисткой сырья – темных фракций первичной перегонки нефти в колонне атмосферно-вакуумной перегонки нефти, при этом упомянутая установка каталитического крекинга на выходе технологически связана по вязкотекучей фракции с установкой для получения котельного топлива, а по другим выделенным фракциям с технологическими установками по производству серы для утилизации отхода переработки сернистых и высокосернистых нефтей и/или с установками по производству и переработке, например, полипропилена, причем практически каждая из упомянутых установок и/или технологических цепочек оснащена дополнительной обвязкой либо обвязками или подведенным к ним не менее, чем одним трубопроводом гидравлических сетей холодного и/или горячего водоснабжения, оснащенных запорной и/или запорно-регулировочной арматурой, подключенных не менее чем к одному напорному насосу, преимущественно, с электроприводом, и содержит в своем составе или подключена не менее чем к одному трубопроводу, аналогично оснащенному упомянутой арматурой и насосным оборудованием, который в свою очередь выполнен с возможностью подключения к нему упомянутого гидромеханического устройства для плавной нагрузки соответствующей из упомянутых гидравлических систем.

В гидромеханическом устройстве 6 в корпусе 8 регулятора скорости открытия 9 запорной и/или запорно-регулировочной арматуры 2 размещены вышеупомянутые обратный клапан 10 и жиклер 11, причем жиклер 11 и обратный клапан 10 выполнены конструктивно совмещенными. Обратный клапан 10 регулятора скорости открытия 9 упомянутой арматуры 2 содержит имеющий пропускной канал 18 с выходными отверстиями 19, 20 шток 21 с выполненной на одном его конце заслонкой 22, а на другом – жиклером 11, включающим регулирующий, предпочтительно винтовой, элемент 23, введенный в пропускной канал 18 штока 21 обратного клапана 10 с возможностью, по крайней мере частичного, перекрытия проходного сечения пропускного канала – пропускного отверстия для его калибровки – частичного перекрытия с помощью иглы 24 жиклера, которой снабжен винтовой элемент 23, путем изменения ее положения относительно пропускного канала, кроме того, регулятор скорости открытия 9 упомянутой арматуры снабжен возвратным устройством 25, связанным с обратным клапаном 10 и/или жиклером 11 и выполненным, например, в виде пружины.

Корпус 8 регулятора скорости открытия 9 запорной и/или запорно-регулировочной арматуры 2 содержит, по меньшей мере, три отсека. В первом отсеке 26 расположена заслонка 22 обратного клапана 10 с выполненным в ней входным отверстием 27 пропускного канала 18. Во втором отсеке 28 расположен, по крайней мере частично, шток 21 обратного клапана 10 и, по меньшей мере, одно выходное отверстие 19 или 20 пропускного канала 18, выполненное в штоке 21. В третьем отсеке 29 расположен винтовой элемент 23 жиклера 11 и возвратное устройство 25 регулятора скорости открытия 9 арматуры 2. Второй отсек 28 соединен по рабочему телу 6 с силовой камерой 13, а в корпусе 8 регулятора скорости открытия 9 упомянутой арматуры 2 в области третьего отсека 29 выполнено отверстие 30, закрытое винтовой заглушкой 31 для обеспечения регулировки проходного сечения калибруемого отверстия 32 пропускного канала 18 посредством винтового элемента.

Для изменения положения иглы 24 жиклера 11 относительно калибруемого отверстия 32 жиклер 11 снабжен устройством калибровки, например винтовым элементом 23, выполненным с возможностью его регулировки вручную с внешней стороны корпуса 8 регулятора скорости открытия 9 запорной и/или запорно-регулировочной арматуры 2.

Силовая камера 13 снабжена герметичной упругой мембраной 33, разделяющей корпус 14 силовой камеры 13 на упомянутый заполняемый рабочим телом 6 отсек 15 с изменяющимся рабочим объемом и не заполняемый им отсек 34. Мембрана 33 выполнена с возможностью знакопеременной деформации, направленной в зависимости от давления как в сторону заполняемого отсека 15, так и в сторону незаполняемого отсека 34 силовой камеры 13, при этом в незаполняемом отсеке 34 силовой камеры 13 выполнено отверстие 35 с закрепленной в нем направляющей втулкой 36, обеспечивающей поступательное движение передаточного механизма 16.

Гидромеханическое устройство 5 снабжено возвратным устройством 37 гидромеханического привода, связанным с передаточным механизмом 16 и/или мембраной привода и выполненным, например, в виде пружины.

Силовая камера 13 снабжена поршнем 38, разделяющим корпус 14 силовой камеры 14 на упомянутый заполняемый рабочим телом 6 отсек 15 с изменяющимся рабочим объемом и незаполняемый им отсек 34 и выполненным с возможностью перемещения в силовой камере в зависимости от изменения давления, причем в незаполняемом отсеке 34 силовой камеры 13 выполнено отверстие 35 с закрепленной в нем направляющей втулкой 36, обеспечивающей поступательное движение передаточного механизма 16.

Запорная и/или запорно-регулировочная арматура 2 выполнена с имеющим шпиндель запорным органом (на чертежах не показано), а передаточный механизм 16 состоит, по меньшей мере, из двух элементов. Первый элемент передаточного механизма – шток 17 через предохранительную накладку 39 соединен с мембраной 33 силовой камеры 13, а второй элемент 40 соединен с запорным органом запорной и/или запорно-регулировочной арматуры 2, предпочтительно, через шпиндель с возможностью поворотного перемещения последней. Первый и второй элементы 17 и 40 соответственно передаточного механизма 16 выполнены прямолинейными и соединены между собой подвижно, например шарнирно, причем во втором элементе 40 в месте соединения его с первым выполнено отверстие 41, например продолговатая прорезь, внутри которого расположен штифт 42, соединяющий оба указанных элемента. Второй элемент 40 передаточного механизма 16 выполнен с возможностью поворота от 0 до 90 градусов от исходного положения, при этом 0 градусов соответствует, например, полностью закрытой арматуре, а значение 90 градусов – полностью открытой.

Запорная и/или запорно-регулировочная арматура 2 может представлять собой кран, например шаровой.

Передаточный механизм 16, взаимодействующий с запорной и/или запорно-регулировочной арматурой 2, может быть выполнен в виде рычага или кривошипного механизма, или зубчатой рейки 43, или зубчатого колеса 44.

Максимальная пропускная способность обратного клапана 10 регулятора скорости открытия 9 упомянутой арматуры 2, по меньшей мере, в два раза превышает максимальную пропускную способность жиклера 11.

Рассмотрим работу нефтеперерабатывающего завода при перекачке нефти на участке прохождения нефтепродуктов от колонны атмосферно-вакуумной перегонки нефти до установки гидроочистки дизельного топлива и керосина. При прохождении в упомянутой колонне первичной перегонки нефти и последующего разделения в установке гидроочистки дизельного топлива и керосина для получения товарного продукта из относительно тяжелой фракции с температурой кипения, соответствующей, например, температурному диапазону кипения дизельного топлива, упомянутая установка гидроочистки дизельного топлива и керосина гидравлически соединена, преимущественно, с емкостью для введения в упомянутую технологическую фракцию депрессорных присадок для получения товарных вариантов дизельного топлива. Технологические трубопроводы упомянутой гидравлической системы 1 оснащены необходимой запорной и/или запорно-регулировочной арматурой 2 и, по крайней мере, часть из них подключена к насосному оборудованию, а, по меньшей мере, один из трубопроводов 3, соединяющих упомянутые технологические установки, выполнен напорным и смонтирован с возможностью подключения упомянутого гидромеханического устройства 5 для плавной нагрузки гидравлической системы.

В качестве рабочего тела 6 может быть использована, например, несжимаемая жидкость, циркулирующая в гидравлической системе 1 и/или перемещаемая по трубопроводу 3 гидравлической системы 1. Регулятор скорости открытия 9 запорной и/или запорно-регулировочной арматуры 2 может быть сообщен с силовой камерой 13 по другому – промежуточному (дополнительному) рабочему телу 45 или нескольким телам, жидким и/или газообразным. В качестве рабочего тела 6 и/или промежуточного (дополнительного) рабочего тела 45 может быть использован гель. При использовании нескольких рабочих тел на участке между регулятором скорости открытия 9 упомянутой арматуры и силовой камерой 13 может быть использовано устройство или устройства известной конструкций, препятствующие смешению рабочих тел между собой.

В начале процесса перекачивания при включении, по крайней мере, одного насоса 4, предпочтительно, с электродвигателем 46, сообщенного с одной стороны с источником жидкости, а с другой – с автоматическим гидромеханическим устройством 5, при этом пуск двигателя насоса 4 осуществляют в два этапа: на первом – при закрытой запорной и/или запорно-регулировочной арматуре 2 гидромеханического устройства 5, после чего двигатель работает, предпочтительно, на холостых или близких к ним оборотах, не перекачивая объем рабочей среды гидравлической системы, предпочтительно, жидкости по гидравлической системе, а нагнетая ее в регулятор скорости открытия 9 упомянутой арматуры 2, который присоединен к трубопроводу 3 на участке между насосом 4 и запорно-регулировочной арматурой 2 гидромеханического устройства 5. Жидкость – рабочее тело 6, проходя через жиклер 11 регулятора скорости открытия 9 запорной и/или запорно-регулировочной арматуры 2, попадает в силовую камеру 13. После наполнения силовой камеры 13 рабочее тело 6 – жидкость начинает воздействовать на мембрану 33, постепенно деформируя ее. Мембрана 33, деформируясь, приводит в движение первый элемент (шток) 17 передаточного механизма 16, движущийся поступательно пропорционально деформации мембраны 33, преодолевая при этом усилие возвратного устройства 37 привода – пружины. Поступательное движение с помощью первого элемента 17 гидромеханического привода 12, связанного со вторым элементом 40, преобразуется в движение запорного органа запорной и/или запорно-регулировочной арматуры 2, направленное на ее постепенное открытие в течение некоторого определенного промежутка времени. Перед эксплуатацией трубопровода 3 жиклер 11 регулятора скорости открытия 9 упомянутой арматуры 2 настраивают таким образом, чтобы обеспечить необходимый временной интервал от начала пуска двигателя насоса 4 при закрытой запорной и/или запорно-регулировочной арматуре 2 до полного ее открытия. После остановки двигателя и уменьшения давления в трубопроводе 3 жидкость вытесняют из силовой камеры 13 через открываемый под действием давления возвратного устройства 37 гидромеханического привода 12 обратный клапан 10 регулятора скорости открытия 9 упомянутой арматуры 2 усилием, создаваемым пружиной гидромеханического привода 12, которое превосходит усилие, создаваемое возвратным устройством 25 обратного клапана 10, причем максимальная пропускная способность обратного клапана 10, по меньшей мере, в два раза превышает максимальную пропускную способность жиклера 11.

1. Нефтеперерабатывающий завод, характеризующийся тем, что он содержит образующие гидравлическую систему резервуарный парк для приема и хранения сырой нефти, связанный с ним посредством имеющих запорную и/или запорно-регулировочную арматуру с запирающим элементом образующих обвязку технологических трубопроводов, снабженных насосным оборудованием, преимущественно в виде насосов с электроприводом, технологический комплекс установок по очистке и разделению нефти на фракции, получению коммерческих нефтепродуктов с возможным, по меньшей мере, частичным компаундированием, котельную и/или установки и агрегаты по выработке тепловой или электрической и тепловой энергии, соединенные соответственно сетью или сетями трубопроводов с источником холодного и/или горячего водоснабжения и с внутренними и/или внешними потребителями тепловой энергии, по меньшей мере, одна система утилизации горючих отходов, а также снабженный обвязкой технологических трубопроводов, предпочтительно связанный с упомянутыми основными технологическим установками с образованием части основной гидравлической системы завода резервуарный парк для хранения разделенных фракций и коммерческих нефтепродуктов, при этом, по меньшей мере, один выполненный напорным и снабженный соответственно не менее чем одним напорным насосом с электроприводом технологический трубопровод и/или трубопровод сети холодного и/или горячего водоснабжения оборудован гидромеханическим устройством для плавной нагрузки гидравлической системы, подключенным, по меньшей мере, к одному напорному трубопроводу преимущественно с напорной стороны на участке между создающим напор в трубопроводе насосом или насосной группой и ближайшей запорной и/или запорно-регулировочной арматурой, сообщенным с трубопроводом по рабочему телу преимущественно по перекачиваемой жидкости и смонтированным с возможностью автоматического пролонгированного включения и выключения запорной и/или запорно-регулировочной арматуры, при этом гидромеханическое устройство включает последовательно соединенные между собой входной патрубок, имеющий корпус, регулятор скорости открытия запорной и/или запорно-регулировочной арматуры и передачи нагрузки на гидравлическую систему, снабженный обратным клапаном и жиклером, и гидромеханический привод, включающий силовую камеру с корпусом, содержащим, по меньшей мере, один отсек с изменяющимся рабочим объемом, регулируемо возвратно наполняемым жидким рабочим телом при возрастании давления в трубопроводе, и передаточный механизм, при этом подключение к трубопроводу гидромеханического устройства выполнено двойным: на входе – входным патрубком оно сообщено с трубопроводом по рабочему телу, а на выходе – кинематически гидромеханическим приводом с запирающим элементом упомянутой арматуры, причем передаточный механизм выполнен подвижным, соединенным с силовой камерой по типу «поршень-шток» или «мембрана-шток», при этом шток, в свою очередь, подвижно связан с образованием привода с запирающим элементом упомянутой арматуры с возможностью автоматических перемещений запирающего элемента в диапазоне от полного перекрытия до полностью открытого на проток трубопровода и наоборот.

2. Нефтеперерабатывающий завод по п.1, отличающийся тем, что технологический комплекс установок по очистке и разделению нефти на фракции содержит, по меньшей мере, одну колонну атмосферно-вакуумной перегонки нефти, снабженную образующей гидравлическую систему обвязкой и внутризаводской коммуникационной сетью или сетями технологических трубопроводов, а также, по меньшей мере, дополнительными гидравлическими системами, образованными из внутризаводских сетей трубопроводов холодного и/или горячего водоснабжения и паропроводов, причем каждая из упомянутых систем снабжена насосным оборудованием, включающим не менее одного напорного насоса, преимущественно с электроприводом, и запорную и/или запорно-регулировочную арматуру с запирающим элементом и выполнены с возможностью подключения в зоне между упомянутым насосом и арматурой упомянутого гидромеханического устройства для плавной нагрузки гидравлической системы.

3. Нефтеперерабатывающий завод по п.2, отличающийся тем, что он снабжен комплексом технологических установок, преимущественно в который входят гидравлически связанные с колонной атмосферно-вакуумной перегонки нефти, по меньшей мере, по одной установке вторичной перегонки нефти, газофракционирования, каталитического крекинга с гидроочисткой сырья и газофракционированием, гидроочистки легких фракций первичной перегонки нефти, включая гидроочистку дизельного топлива и керосина, образующие технологические цепочки установка висбкрекинга гудрона и гидравлически связанная с ней и с упомянутой установкой каталитического крекинга гидроочисткой сырья и газофракционирования по промежуточным преобразованиям и синтезу продуктов установка котельного топлива; и кроме того, установка по технологической доводке наиболее тяжелой фракции первичной переработки нефти, а именно производства нефтебитума и выработки, по меньшей мере, таких коммерческих продуктов, как битум дорожный и битум строительный.

4. Нефтеперерабатывающий завод по п.2, отличающийся тем, что, по меньшей мере, одна колонна атмосферно-вакуумной перегонки нефти выполнена с возможностью получения высокооктанового прямогонного бензина высокого качества, например экспортного, непосредственно из колонны и путем смешения – компаундирования легкоиспаряемых фракций из упомянутой колонны и аналогичных фракций, полученных в результате прохождения в упомянутой колонне первичной перегонки нефти и последующего разделения в установке гидроочистки дизельного топлива и керосина, при этом для получения товарного продукта – из относительно тяжелой фракции с температурой кипения, соответствующей, например, температурному диапазону кипения дизельного топлива – упомянутая установка гидроочистки дизельного топлива и керосина гидравлически соединена преимущественно с емкостью для введения в упомянутую технологическую фракцию депрессорных присадок для получения товарных вариантов дизельного топлива, при этом технологические трубопроводы упомянутой гидравлической системы оснащены необходимой запорной и/или запорно-регулировочной арматурой и, по крайней мере, часть из них подключена к насосному оборудованию, а, по меньшей мере, один из трубопроводов, соединяющих упомянутые технологические установки, выполнен напорным и смонтирован с возможностью подключения упомянутого гидромеханического устройства для плавной нагрузки гидравлической системы.

5. Нефтеперерабатывающий завод по п.2, отличающийся тем, что гидравлически связанные между собой и, по меньшей мере, объединенные по продукту в группы технологические установки образуют технологический комплекс по первичной перегонке нефти и последующей обработке, выделению и/или смешению, выделенных фракций, введению присадок, утилизации отходов, включая попутные и сопутствующие газы, при этом для получения дополнительного выхода и получения товарной продукции из светлых фракций, в первую очередь, автомобильных бензинов с октановым числом от 80 до 95 марок АИ-80-ЭК, АИ-92-ЭК, регуляр Евро-92, АИ-95-ЭК, премиум Евро-95, завод оснащен, по меньшей мере, одной установкой каталитического риформинга, на входе гидравлически связанной с образованием технологической цепочки через установку вторичной перегонки нефти с колонной атмосферно-ваккумной перегонки нефти, а на выходе дважды связана с установкой получения бензинов упомянутых товарных марок, в том числе непосредственно, по меньшей мере, одним трубопроводом оснащенным, по крайней мере, запорной и/или запорно-регулировочной арматурой с ручным и/или электроприводом и опосредственно через упомянутую установку газофракционирования и отдельным трубопроводом установка каталитического риформинга связана с факельной установкой и с блоком утилизации попутных и сопутствующих газов.

6. Нефтеперерабатывающий завод по п.3, отличающийся тем, что технологический комплекс нефтеперерабатывающего завода включает установку производства водорода, гидравлически связанную по продукту с установкой каталитического крекинга с гидроочисткой сырья – темных фракций первичной перегонки нефти в колонне атмосферно-вакуумной перегонки нефти, при этом упомянутая установка каталитического крекинга на выходе технологически связана по вязко-текучей фракции с установкой для получения котельного топлива, а по другим выделенным фракциям с технологическими установками по производству серы для утилизации отхода переработки сернистых и высокосернистых нефтей и/или с установками по производству и переработке, например, полипропилена, причем практически каждая из упомянутых установок и/или технологических цепочек оснащена дополнительной обвязкой, либо обвязками или подведенным к ним не менее чем одним трубопроводом гидравлических сетей холодного и/или горячего водоснабжения, оснащенных запорной и/или запорно-регулировочной арматурой подключенных не менее чем к одному напорному насосу преимущественно с электроприводом и содержит в своем составе или подключена не менее чем к одному трубопроводу, аналогично оснащенному упомянутой арматурой и насосным оборудованием, который, в свою очередь, выполнен с возможностью подключения к нему упомянутого гидромеханического устройства для плавной нагрузки соответствующей из упомянутых гидравлических систем.

7. Нефтеперерабатывающий завод по п.1, отличающийся тем, что в корпусе регулятора скорости открытия упомянутой арматуры размещены вышеупомянутые обратный клапан и жиклер, причем жиклер и обратный клапан выполнены конструктивно совмещенными.

8. Нефтеперерабатывающий завод по п.1, отличающийся тем, что обратный клапан регулятора скорости открытия упомянутой арматуры содержит имеющий пропускной канал с выходными отверстиями, шток с выполненной на одном его конце заслонкой, а на другом – жиклером, включающим регулирующий, предпочтительно винтовой элемент, введенный в пропускной канал штока обратного клапана с возможностью, по крайней мере, частичного перекрытия проходного сечения пропускного канала – пропускного отверстия для его калибровки с помощью иглы жиклера, которой снабжен винтовой элемент, путем изменения ее положения относительно пропускного канала.

9. Нефтеперерабатывающий завод по п.1, отличающийся тем, что регулятор скорости открытия упомянутой арматуры снабжен возвратным устройством, связанным с обратным клапаном и/или жиклером и выполненным, например, в виде пружины.

10. Нефтеперерабатывающий завод по п.8, отличающийся тем, что регулятор скорости открытия упомянутой арматуры снабжен возвратным устройством, установленным на винтовом элементе жиклера и выполненным, например, в виде пружины.

11. Нефтеперерабатывающий завод по п.7, отличающийся тем, что корпус регулятора скорости открытия запорной и/или запорно-регулировочной арматуры содержит, по меньшей мере, три отсека, в первом отсеке расположена заслонка обратного клапана с выполненным в ней входным отверстием пропускного канала, во втором отсеке расположен, по крайней мере, частично шток обратного клапана и, по меньшей мере, одно выходное отверстие пропускного канала, выполненное в штоке, в третьем отсеке расположен винтовой элемент жиклера и возвратное устройство регулятора скорости открытия, при этом второй отсек соединен по рабочему телу с силовой камерой, а в корпусе регулятора скорости открытия в области третьего отсека выполнено отверстие, закрытое винтовой заглушкой для обеспечения регулировки проходного сечения пропускного канала посредством винтового элемента.

12. Нефтеперерабатывающий завод по п.8, отличающийся тем, что для изменения положения иглы жиклера относительно пропускного отверстия жиклер снабжен устройством калибровки, выполненным с возможностью его регулировки вручную с внешней стороны корпуса регулятора скорости открытия запорной и/или запорно-регулировочной арматуры.

13. Нефтеперерабатывающий завод по п.1, отличающийся тем, что силовая камера снабжена герметичной упругой мембраной, разделяющей корпус силовой камеры на упомянутый заполняемый рабочим телом отсек с изменяющимся рабочим объемом и незаполняемый им отсек, причем мембрана выполнена с возможностью знакопеременной деформации, направленной в зависимости от давления, как в сторону заполняемого отсека, так и в сторону незаполняемого отсека силовой камеры, причем в незаполняемом отсеке силовой камеры выполнено отверстие с закрепленной в нем направляющей втулкой, обеспечивающей поступательное движение передаточного механизма.

14. Нефтеперерабатывающий завод по п.1, отличающийся тем, что гидромеханическое устройство снабжено возвратным устройством гидромеханического привода, связанным с передаточным механизмом и/или мембраной привода и выполненным, например, в виде пружины.

15. Нефтеперерабатывающий завод по п.1, отличающийся тем, что силовая камера снабжена поршнем, разделяющим корпус силовой камеры на упомянутый заполняемый рабочим телом отсек с изменяющимся рабочим объемом и незаполняемый им отсек и выполненным с возможностью перемещения в силовой камере в зависимости от изменения давления, причем в незаполняемом отсеке силовой камеры выполнено отверстие с закрепленной в нем направляющей втулкой, обеспечивающей поступательное движение передаточного механизма.

16. Нефтеперерабатывающий завод по п.14, отличающийся тем, что запорная и/или запорно-регулировочная арматура выполнена с имеющим шпиндель запорным органом, а передаточный механизм состоит, по меньшей мере, из двух элементов, при этом первый элемент – шток передаточного механизма через предохранительную накладку соединен с мембраной силовой камеры, а второй элемент соединен с запорным органом запорно-регулировочной арматуры, предпочтительно через шпиндель, с возможностью поворотного перемещения последней.

17. Нефтеперерабатывающий завод по п.16, отличающийся тем, что первый и второй элементы передаточного механизма выполнены прямолинейными и соединены между собой подвижно, например шарнирно, причем во втором элементе в месте соединения его с первым выполнено отверстие, внутри которого расположен штифт, соединяющий оба указанных элемента, причем второй элемент передаточного механизма выполнен с возможностью поворота от 0 до 90° от исходного положения, при этом 0° соответствует, например, полностью закрытой арматуре, а значение 90° – полностью открытой.

18. Нефтеперерабатывающий завод по п.1, отличающийся тем, что запорная и/или запорно-регулировочная арматура представляет собой кран, например шаровой.

19. Нефтеперерабатывающий завод по п.1, отличающийся тем, что передаточный механизм, взаимодействующий с запорной и/или запорно-регулировочной арматурой, выполнен в виде рычага или кривошипного механизма, или зубчатой рейки.

20. Нефтеперерабатывающий завод по п.1, отличающийся тем, что максимальная пропускная способность обратного клапана регулятора скорости открывания упомянутой арматуры, по меньшей мере, в два раза превышает максимальную пропускную способность жиклера.

Http://www. findpatent. ru/patent/234/2347800.html

Занятие № 7.1. Рулевое управление и его привод УСТРОЙСТВО И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ Преподаватель автошколы Заключение Таким образом, на данном занятии были рассмотрены вопросы: назначения, устройства и принципа работы СРДВШ, лебёдки. [читать подробнее].

Занятие № 11.1. Характерные неисправности и способы их устранения. Тема № 11. Характерные неисправности и способы УСТРОЙСТВО И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ Преподаватель автошколы Заключение Выводы по вопросу. Таким. [читать подробнее].

Занятие № 4.4. Коробка передач УСТРОЙСТВО И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ Преподаватель автошколы Заключение Выводы по вопросу. Таким образом, на данном занятии были рассмотрены следующие вопросы: система питания дизельного. [читать подробнее].

Москва 2007 г. По предмету Курс лекций У ч е б н о – п р о и з в о д с т в е н н ы й ц е н т р Г У П М о с к о в с к и й м е т р о п о л и т е н Применение Свойства и методы получения Нефтяные битумы Битумы твёрдых горючих. [читать подробнее].

Лекция № 1 1.1 Введение, цель, задачи, содержание дисциплины. 1.2 Сущность |сущность| и эффективность автосервиса. 1.3 Этапы и концепции развития. 1.4 Особенности|особенность| развития автосервиса в Европе. 1.5 Особенности|особенность| автосервиса США. В настоящее время. [читать подробнее].

В 2002 году Мытишинский машиностроительный завод начал испытания, а в 2003 году – серийный выпуск вагонов 81-740(741) «Русич». Данный тип подвижного состава имеет принципиальные конструкционные отличия от всех ранее эксплуатируемых серий: ü двухсекционная конструкция. [читать подробнее].

К. А. Яковлев В. А. Иванников В. О. Никонов И. Е. Поляков ОСНОВЫ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ И РЕМОНТА ПОДВИЖНОГО СОСТАВА Лабораторный практикум Воронеж 2014 УДК 656.13 + 629.33.004.67 Я 47 Печатается по решению учебно-методического совета ФГБОУ ВПО «ВГЛТА». [читать подробнее].

ISBN 5-94664-088-7 ©Издательство Мичуринского государственного аграрного университета, 2006 Чтобы различные технические устройства выполняли требуемые функции, необходимо организовать тот или иной процесс управления. Процесс управления может быть реализо­ван. [читать подробнее].

Лекция 7. Авторское право 7.1 Понятие, субъекты и объекты авторского права Основным документом, регулирующим общественные отношения по поводу использования произведений, является Гражданский кодекс РФ (часть четвертая). Необходимо отметить, что рассматриваемые. [читать подробнее].

Методика обучения грамматике Этапы формирования грамматических навыков: 1 этап (ориентировочно-подготовительный) – введение и семантизация грамматического материала. Пути введения: индуктивный (от речевого образца) и дедуктивный (от правила). Путь. [читать подробнее].

Http://referatwork. ru/category/tehnologii/view/497560_vvedenie

1 Химическая технология нефти и газа Лекция 7 Нефтеперерабатывающий завод. Первичная перегонка нефти. Лектор – к. т.н., доцент кафедры ХТТ Юрьев Е. М.

2 Основные понятия В нефтеперерабатывающей промышленности выделяют три типа профиля нефтеперерабатывающего завода, в зависимости от схемы переработки нефти: 1.Топливный 2.Топливно-масляный 3.Топливно-нефтехимический Топливный профиль На НПЗ топливного профиля основной продукцией являются различные виды топлива и углеродных материалов: моторное топливо, мазуты, горючие газы, битумы, нефтяной кокс и т. д. Набор установок включает в себя: обязательно – перегонку нефти, риформинг, гидроочистку; дополнительно вакуумную дистилляцию, каталитический крекинг, изомеризацию, гидрокрекинг, коксование и т. д. Примеры НПЗ: МНПЗ, Ачинский НПЗ и т. д. Глубокая переработка – если есть процессы каткрекинга или гидрокрекинга; Неглубокая переработка – если отсутствуют процессы превращения темных дистиллятов в светлые.

3 Основные понятия Топливно-масляный профиль На НПЗ топливно-масляного профиля помимо различных видов топлив и углеродных материалов производятся смазочные материалы: нефтяные масла, смазки, твердые парафины и т. д. Набор установок включает в себя: установки для производства топлив и установки для производства масел и смазок (деасфальтизации гудрона, селективной очистки, депарафинизации ). Примеры: Омский нефтеперерабатывающий завод, Ярославнефтеоргсинтез, Лукойл-Нижегороднефтеоргсинтез и т. д.

4 Основные понятия Топливно-нефтехимический профиль На НПЗ топливно-нефтехимического профиля помимо различных видов топлива и углеродных материалов производится нефтехимическая продукция: полимеры, реагенты и т. д. Набор установок включает в себя: установки для производства топлив и установки для производства нефтехимической продукции (пиролиз, производство полиэтилена, полипропилена, полистирола, риформинг направленный на производство индивидуальных ароматических углеводородов и т. д.). Примеры: Салаватнефтеоргсинтез; Уфанефтехим.

5 Назначение первичной переработки нефти Из нефти, поступающей с установок промысловой подготовки на нефтеперерабатывающий завод, получают широкий спектр различной продукции (высокооктановые бензины, дизельные топлива, авиационные керосины, битумы, масла, котельные топлива и многое другое). Но предварительно нефть должна быть разделена на фракции – составляющие, различающиеся по температурам кипения (дистилляты). Для этого на НПЗ существуют установки первичной переработки нефти. Нефть Первичная переработка нефти Фракции нефти Облагораживающий или углубляющий процесс переработки Товарные продукты

6 Общие сведения о первичной переработке нефти Установки первичной переработки нефти составляют основу всех нефтеперерабатывающих заводов, от работы этих установок зависят качество и выходы получаемых компонентов топлив, а также сырья для вторичных и других процессов переработки нефти. На Омском НПЗ действуют установки первичной переработки нефти АВТ-6, АВТ-7, АВТ-8, АТ-9, АВТ-10 Общий вид установки первичной переработки нефти

8 Перегонка нефти Перегонка нефти начальный процесс переработки нефти на нефтеперерабатывающих заводах, основанный на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости. Компоненты жидких смесей, имеют при одинаковом внешнем давлении различные температуры кипения. Благодаря этому в процессе испарения жидкой смеси ее компоненты проявляют различное стремление к переходу в парообразное состояние, т. е. обладают различной летучестью. Наиболее летучим является компонент с наиболее низкой индивидуальной температурой кипения (низкокипящий компонент, НКК). Наименее летучим является высококипящий компонент (ВКК). Следовательно, при испарении жидкой смеси концентрация низкокипящего компонента в образующихся парах больше, чем в жидкой фазе (закон Kоновалова). В паре больше НКК, чем ВКК В жидкости больше ВКК, чем НКК

9 Перегонка нефти Перегонка нефти осуществляется методами однократного испарения (равновесная дистилляция – испарение нефти в испарителе + ввод нефтегазовой смеси в сепаратор) или постепенного испарения (простая перегонка, или фракционная дистилляция); с ректификацией и без неё; в присутствии перегретого водяного пара испаряющего агента; при атмосферном давлении и под вакуумом. В лабораторной практике в основном применяется простая перегонка нефти, иногда с ректификацией паровой фазы на установках периодического действия.

10 Фракционный состав нефти Фракционный состав является важным показателем качества нефти. В процессе перегонки при постепенно повышающейся температуре из нефти отгоняют части фракции, отличающиеся друг от друга пределами выкипания. «Разгонка» нефти на фракции осуществляется в ректификационной колонне. Общий вид ректификационной колонны

11 Фракционный состав нефти Температуры кипения, ºС Фракция Менее 32Углеводородные газы Бензиновая Керосиновая Дизельная Мазут Выше 500Гудрон

12 Нефть «разгоняют» до температур 300–350 о С при атмосферном давлении (атмосферная перегонка) и до 500 – 550 о С под вакуумом(вакуумная перегонка). Все фракции, выкипающие до 300–350 о С, называют светлыми. Остаток после отбора светлых дистиллятов (выше 350 о С) называют мазутом. Мазут разгоняют под вакуумом. Фракционный состав нефти Внешний вид различных фракций нефти: чем выше температура кипения фракции, тем темнее цвет.

13 Фракционный состав нефти Наименование фракции Где отбираетсяГде используется БензиноваяАтмосферная перегонка Используется после очистки как компонент товарного автобензина и как сырьё каталитического риформинга (получение высокооктановых бензинов), пиролиза (получение олефинов, ароматики) и др. КеросиноваяАтмосферная перегонка После очистки используется как топливо реактивных авиационных двигателей, для освещения и технических целей ДизельнаяАтмосферная перегонка После очистки используется как топливо для дизельных двигателей МазутАтмосферная перегонка (остаток) Используется в качестве котельного топлива или как сырьё для термического крекинга; для получения масел. Вакуумный газойль Вакуумная перегонкаСырье процессов каталитического крекинга, гидрокрекинга, компонент товарных мазутов ГудронВакуумная перегонка (остаток) Сырье процессов коксования, гидрокрекинга

14 В промышленности используется перегонка нефти с однократным испарением в сочетании с ректификацией паровой и жидкой фаз. Такое сочетание позволяет проводить перегонку нефти на установках непрерывного действия и добиваться высокой чёткости разделения нефти на фракции, экономного расходования топлива на её нагрев. Перегонка нефти в промышленных условиях Основные термины: Шлем (голова) колонны – верх колонны, где расход газа выше, чем расход жидкости; Куб колонны – низ колонны, где расход жидкости выше чем расход газа. Дистиллят – верхний продукт колонны, обогащенный НКК; Кубовый остаток – нижний продукт колонны, обогащенный ВКК. Флегма – часть дистиллята, возвращаемая в шлем колонны в виде жидкости. Боковой отбор (боковой дистиллят) – дистиллят определённых пределов выкипания, отбираемый из средней части колонны. Питательная секция – участок в колонне, куда подводится свежее сырье. Концентрационная (укрепляющая) секция – часть колонны выше тарелки питания. Отгонная (исчерпывающая) секция – часть колонны ниже тарелки питания.

15 Перегонка нефти в промышленных условиях Основные термины на производстве: АВТ – атмосферно-вакуумная «трубчатка» – комбинированная установка, сочетающая нагрев в трубчатой печи, ректификацию при атмосферном давлении и ректификацию при пониженном давлении (вакууме). АТ – атмосферная «трубчатка», ВТ – вакуумная «трубчатка»; ЭЛОУ – электрообессоливающая установка; ЭЛОУ-АВТ – комбинированная установка, сочетающая обезвоживание/обессоливание нефти и ее ректификацию. ЭЛОУ может присутствовать как на НПЗ, получающем нефть из нефтепровода, так и на НПЗ, получающего нефть с куста НМ; ЭЛОУ обеспечивает: – Содержание воды в нефти до 0,1 % масс. (диаметр остаточных капель воды менее 4,3 мкм); – Содержание солей – 3-5 мг/л; – Снижение содержания солей Ni и V в 2-3 раза.

16 Физико-химические основы процесса ректификации Разделение процесса на фракции происходит посредством процесса ректификации. Ректификацией называется массообменнный процесс разделения жидких смесей на чистые компоненты, различающиеся по температурам кипения, за счет противоточного многократного контактирования паров и жидкости.

17 Физико-химические основы процесса ректификации Ректификацию можно проводить периодически или непрерывно. Ректификацию проводят в башенных колонных аппаратах (до 60 м высотой), снабженных контактными устройствами (тарелками или насадкой) ректификационных колоннах. Расположение тарелок внутри ректификационных колоннах Внешний вид насадки: насадка, заполняющая колонну, может представлять собой металлические, керамические, стеклянные и другие элементы различной формы

18 Принцип работы ректификационной колонны Место ввода в ректификационную колонну нагретого перегоняемого сырья называют питательной секцией (зоной), где осуществляется однократное испарение. Часть колонны, расположенная выше питательной секции, служит для ректификации парового потока и называется концентрационной (укрепляющей), а другая – нижняя часть, в которой осуществляется ректификация жидкого потока, – отгонной (или исчерпывающей) секцией. Укрепляющая часть колонны Отгонная (исчерпывающая, кубовая) часть колонны Питательная секция

19 Исходная смесь (нефть), нагретая до температуры питания в паровой, парожидкостной или жидкой фазе поступает в колонну в качестве питания. Зона, в которую подаётся питание называют эвапарационной, так как там происходит процесс эвапарации – однократного отделения пара от жидкости. Эвапарационная зона Принцип работы ректификационной колонны

20 Пары поднимаются в верхнюю часть колонны, охлаждаются и конденсируются в холодильнике – конденсаторе и подаются обратно на верхнюю тарелку колонны в качестве орошения. Таким образом в верхней части колонны (укрепляющей) противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз). Холодильник – конденсатор Принцип работы ректификационной колонны

21 Стекая вниз по тарелкам жидкость обогащается высококипящим (высококипящими) компонентами, а пары, чем выше поднимаются в верх колонны, тем более обогащаются легкокипящими компонентами. Таким образом, отводимый с верха колонны продукт обогащен легкокипящим компонентом. Продукт, отводимый с верха колонны, называют дистиллятом. Часть дистиллята, сконденсированного в холодильнике и возвращенного обратно в колонну, называют орошением или флегмой. Дистиллят Флегма (орошение) Принцип работы ректификационной колонны

22 Для создания восходящего потока паров в кубовой (нижней, отгонной) части ректификационной колонны часть кубовой жидкости направляют в теплообменник, образовавшиеся пары подают обратно под нижнюю тарелку колонны. Кубовая часть колонны Теплообменник (подогреватель ) Принцип работы ректификационной колонны

23 В работающей ректификационной колонне через каждую тарелку проходят 4 потока: 1) жидкость – флегма, стекающая с вышележащей тарелки; 2) пары, поступающие с нижележащей тарелки; 3) жидкость – флегма, уходящая на нижележащую тарелку; 4) пары, поднимающиеся на вышележащую тарелку. Пары Жидкость Светлые фракции Остаток (мазут) Принцип работы ректификационной колонны

24 При установившемся режиме работы колонны уравнение материального баланса представляется в следующем виде: F=D+W, тогда для низкокипящего компонента F·x F = D·x D + W·x W.

25 Флегмовое число (R) соотношение жидкого и парового потоков в концентрационной части колонны (R = L/D; L и D – количество флегмы и ректификата).

26 Паровое число (П) отношение контактируемых потоков пара и жидкости в отгонной секции колонны (П = G / W; G и W – количество соответственно паров и кубового остатка).

27 Теоретическая тарелка При количественном рассмотрении работы ректификационных колонн обычно используется концепция теоретической тарелки. Под такой тарелкой понимается гипотетическое контактное устройство, в котором устанавливается термодинамическое равновесие между покидающими его потоками пара и жидкости.

28 Число тарелок определяется числом теоретических тарелок, обеспечивающим заданную четкость разделения при принятом флегмовом (и паровом) числе, а также эффективностью контактных устройств (обычно КПД реальных тарелок или удельной высотой насадки, соответствующей одной теоретической тарелке).

29 Четкость погоноразделения В нефтепереработке в качестве достаточно высокой разделительной способности колонны перегонки нефти на топливные фракции считается налегание температур кипения соседних фракций в пределах 10–30 °С (косвенный показатель четкости разделения). Бензиновая фракция: температура кипения °C Масляная фракция: температура кипения °C

30 20-40°С Трубчатая печь Ректификационная колонна (давление 0,14-0,16 МПа) Конденсатор ВКК НКК Процессы на тарелках ректификационной колонны Кипятильник 365°С 146°С 342°С 30-70°С 350°С 116°С Бензин °С 206°С Керосин °С 292°С Дизельное топливо °С Мазут >350°С Легкий бензин 350°С Легкий бензин “>

31 Исторически при промышленной перегонке нефти получали: – Конец 19-начало 20 вв. – керосин (осветительный, готовое топливо); – Первая половина 20 вв. – бензин, керосин, дизельное топливо – как готовые топлива; – Вторая половина 20 вв. – дистилляты различного состава, не менее 5 фракций; Сейчас АВТ играет роль диспетчера на НПЗ. АВТ – головной процесс, первичный процесс (первичная перегонка). ВСЕ получаемые дистилляты далее идут на вторичную переработку: – ДТ – очистка от серы, депарафинизация; – Бенз. Фр. – повышение октанового числа (облагораживание); – Керосин – очистка от серы; – Мазут – снижение вязкости (висбрекинг). Мощность современных АВТ – 3-8 млн. т в год. Энергоемкость – кг топлива (получаемого из нефти) на 1 т нефти. На заводе может быть несколько установок АВТ или ЭЛОУ-АВТ (например, на Киришском НПЗ 4 шт.: 1 – АВТ-3, 3 – АВТ-6, общая мощность НПЗ по нефти 21 млн. т. В год) При переходе к укруп­ненной установке взамен двух или нескольких уста­ новок меньшей пропускной способности эксплуата­ционные расходы и первоначальные затраты на 1 т перерабатываемой нефти уменьшаются, а производи­тельность труда увеличивается

32 Перегонка нефти в промышленных условиях Прямую перегонку осуществляют при атмосферном или несколько повышенном давлении, а остатков под вакуумом. AT и ВТ строят отдельно друг от друга или комбинируют в составе одной установки (АВТ). AT подраз­деляют в зависимости от технологической схемы на следующие группы: 1) установки с однократным испарением нефти; 2) установки с двукратным испарением нефти; 3) установки с предварительным испарением в эвапораторе легких фракций и последующей ректификацией. ВТ подразде­ляют на две группы: 1) установки с однократным испарением мазута;. 2) установки с двукратным, испарением мазута (двухступенчатые). Широко распростра­нены установки с предварительной отбензинивающей колонной и основной ректификационной атмосфер­ной колонной, работоспособные при значительном изменении содержания в нефтях бензиновых фракций и растворенных газов. Процесс первичной переработки нефти наиболее часто комбинируют с процессами обезвоживания и обессоливания, вторичной перегонки и стабилизации бензиновой фракции: ЭЛОУАТ, ЭЛОУАВТ, ЭЛОУАВТ вторичная перегонка, АВТ вто­ричная перегонка.

33 Ректификационные колонны Простые колонны используются для разделения исходной смеси (сырья) на два продукта. Сложные колонны разделяют исходную смесь больше, чем на два продукта: 1-я – ректификационная колонна с отбором дополнительной фракции непосредственно из колонны в виде боковых погонов (1,2,3); 2-я – ректификационная колонна, у которой дополнительные продукты отбираются из специальных отпарных колонн (стриппингов). Сложные колонны ректификации стриппинги 2 1 3

35 Установки первичной переработки нефти Ректификационные установки по принципу действия делятся на периодические и непрерывные. В установках непрерывного действия разделяемая сырая смесь поступает в колонну и продукты разделения выводятся из нее непрерывно. В установках периодического действия разделяемую смесь загружают в куб одновременно и ректификацию проводят до получения продуктов заданного конечного состава.

36 Способы регулирования температурного режима ректификационных колонн Регулирование теплового режима – отвод тепла в концентрационной (укрепляющей) зоне, подвод тепла в отгонной (исчерпывающей) секции колонн и нагрев сырья до оптимальной температуры.

37 Отвод тепла использование парциального конденсатора (кожухотрубчатый теплообменный аппарат; применяется в малотоннажных установках; трудность монтажа) Цилиндрические теплообменники

38 Отвод тепла организация испаряющегося (холодного) орошения (наиболее распространенного в нефтепереработке)

39 Отвод тепла организация неиспаряющегося (циркуляционного) орошения, используемого широко и не только для регулирования температуры наверху, но и в средних сечениях сложных колонн.

40 Подвод тепла в отгонной секции нагрев остатка ректификации в кипятильнике с паровым пространством

41 Подвод тепла в отгонной секции циркуляция части остатка, нагретого в трубчатой печи

42 Установки первичной переработки нефти Ректификацию осуществляют на трубчатых установках: атмосферная трубчатая установка (АТ); вакуумная трубчатая установка (ВТ); атмосферно-вакуумная трубчатая установка (АВТ). Внешний вид установки первичной переработки нефти на Московском НПЗ

43 Установки первичной переработки нефти. Атмосферная трубчатая установка (АТ) Является наипростейшей схемой первичной перегонки нефти. На установках АТ осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракций и мазута. Внешний вид атмосферной трубчатой установки

44 Установки первичной переработки нефти. Принципиальная схема АТ трубчатая печь для нагрева куба колонны Для перегонки легких нефтей и фракций до 350 ºС (I) применяют АТ: установки с предварительной отбензинивающей колонной (1) и сложной ректификационной колонной (2) с боковыми отпарными секциями (3) для разделения частично отбензиненной нефти на топливные фракции (III, IV, V, VI) и мазут (VII). конденсатор – холодильник

45 Материальный баланс АТ Поступило, % Нефть100 Получено, % на нефть Газ и нестабильный бензин (н. к.-180 ºС) 19,1 Фракции ºС7, ºС11, ºС10,5 Мазут52,0 Технологический режим Колонна частичного отбензинивания нефти Атмосферная колонна Температура питания 205ºСТемпература питания 365ºС Температура верха 155 ºСТемпература верха 146ºС Температура низа 240ºСТемпература низа 342ºС Давление 0,5 МПаДавление 0,25 МПа

46 Установки первичной переработки нефти. Вакуумные трубчатые установки (ВТ) Установки ВТ предназначены для перегонки мазута. При вакуумной перегонке из мазута получают вакуумные дистилляты, масляные фракции и тяжелый остаток – гудрон. Полученный материал используется в качестве сырья для получения масел, парафина, битумов. Остаток (концентрат, гудрон) после окисления может быть использован в качестве дорожного и строительного битума или в качестве компонента котельного топлива. Внешний вид вакуумной трубчатой установки

47 Установки первичной переработки нефти. Принципиальная схема ВТ Мазут, отбираемый с низа атмосферной колонны блока АТ прокачивается параллельными потоками через печь 2 в вакуумную колонну 1. Смесь нефтяных и водяных паров поступают в вакуумсоздающую систему. После конденсации и охлаждения в конденсаторе-холодильнике она разделяется в газосепараторе на газ и жидкость. Газы отсасываются вакуумным насосом 3, а конденсат поступает в отстойник для отделения нефтепродуктов от водяного конденсата. Верхним боковым погоном отбирают фракцию легкого вакуумного газойля (соляра) (II), вторым боковым погоном – широкую газойлевую фракцию (масляную) (III), с низа колонны отбирается гудрон (V).

48 Материальный баланс ВТ Поступило, % Поступило, % на нефть Мазут52 Получено, % на нефть Легкий вакуумный газойль1,2 Вакуумный газойль22,0 Гудрон28,8 Технологический режим в вакуумной колонне Температура питания, ºС395 Температура верха, ºС125 Температура низа, ºС352 Давление наверху абс., кПа8,0 Характеристика вакуумной колонны Диаметр, мЧисло тарелок Верхняя часть6,44 Средняя часть9,010 Нижняя часть4,54

49 Установки первичной переработки нефти. Атмосферно-вакуумная трубчатая установка (АВТ) Атмосферные и вакуум­ные трубчатые установки (AT и ВТ) строят отдельно друг от друга или комбинируют в составе одной установки (АВТ). АВТ состоит из следующих блоков: блок обессоливания и обезвоживания нефти; блок атмосферной и вакуумной перегонки нефти; блок стабилизации бензина; блок вторичной перегонки бензина на узкие фракции.

50 Принципиальная схема блока стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6 Прямогонные бензины после стабилизации сначала разделяются на 2 промежуточные фракции н. к.-150 ºС и ºС, каждая из которых в дальнейшем направляется на последующее разделение на узкие целевые фракции. Нестабильный бензин из блока АТ поступает в колонну стабилизации. С верха колонны 1 отбираются сжиженные газы. Из стабильного бензина в колонне 2 отбирают фракцию н. к.-105 ºС. В колонне 3 происходит разделение на фракции н. к.-62 ºС и ºС. В колонне 4 происходит дальнейшее разделение на фракции ºС (бензольная) и ºС (толуольная). Остаток колонны 2 направляют на разделение в колонну 5 на фракции ºС и ºС.

51 Технологический режим и характеристика ректификационных колонн блока стабилизации и вторичной перегонки ПоказательНомер колонны Температура, ºС Питания Верха Низа Давление, МПа1,10,450,350,200,13 Число тарелок4060

52 Материальный баланс блока стабилизации и вторичной перегонки бензина Поступило, % на нефть: Нестабильный бензин19,1 Получено, % на нефть Сухой газ (С 1 – С 2 )0,2 Сжиженный газ (С 2 – С 4 )1,13 Фракция С ºС2,67 Фракция ºС6,28 Фракция ºС4,61 Фракция ºС4,21

53 Расходные показатели установки ЭЛОУ-АВТ-6 На 1 тонну перерабатываемой нефти: Топливо жидкое, кг33,4 Электроэнергия, кВт·час10,4 Вода оборотная, м 3 4,3 Водяной пар (1 МПа), кг1,1

54 Материальный баланс перегонки нефти и использование дистиллятов Общий материальный баланс: выход (% мас.) всех конечных продуктов перегонки от исходной нефти, количество которой принимают за 100 %. Поступенчатый баланс: за 100 % принимают выход (% мас.) продуктов перегонки на данной ступени (продукты могут быть промежуточные).

55 Принципиальная технологическая схема ЭЛОУ-АВТ блок обессоливания и обезвоживания нефти вакуумная колонная атмосферная перегонка блок вторичной перегонки бензина

56 Материальный баланс перегонки нефти и использование дистиллятов Нефть (I) (100 %) поступает на установку с содержанием минеральных солей от 50–300 мг/л и воды 0,5–1,0 % (мас.) Углеводородный газ (II). В легкой нефти (ρ = 0,80–0,85) – 1,5–1,8 % (мас.). Для тяжелой – 0,3–0,8 % (мас.) Сжиженная головка стабилизации бензина (IV) содержит пропан и бутан с примесью пентанов (0,2–0,3 % мас.), используется для бытовых нужд (сжиженный газ) или в качестве газового моторного топлива для автомобилей (СПБТЛ или СПБТЗ).

57 Легкая головка бензина (V) – фракция бензина Н. К. (начало кипения) – 85 °С (4–6 % мас.); О. Ч.М (октановое число по моторному методу) не более 70. Бензиновая фракция (VI) 85–180 °С. Выход ее от нефти в зависимости от фракционного состава обычно составляет 10–14 % мас. Октановое число (О. Ч.М = 45–55). Керосин (Х): 1) отбор авиационного керосина – фракция 140–230 °С (выход 10–12 % мас.); 2) компонент зимнего или арктического дизельного топлива (фракции 140–280 или 140–300 °С), выход 14–18 % (мас.) Материальный баланс перегонки нефти и использование дистиллятов

58 Дизельное топливо (XI) – атмосферный газойль 180–350 °С (выход 22–26 % мас., если потоком (Х) отбирается авиакеросин или 10–12 % (мас.), если потоком (Х) отбирается компонент зимнего или арктического дизельного топлива. Легкая газойлевая фракция (XIV) (выход 0,5– 1,0 % мас. Легкий вакуумный газойль (XV) – фракция 240–380 °С, выход этой фракции составляет 3–5 % мас. Материальный баланс перегонки нефти и использование дистиллятов

59 Первичная прямая перегонка нефти даёт сравнительно мало бензина (выход от 4 до 25 %). Увеличение выхода бензина достигается применением вторичной переработки более тяжёлых нефтяных фракций, а также мазута с помощью деструктивных методов.

60 Перегонка нефти в промышленных условиях Атмосферно-вакуумная перегонка нефти с отбензинивающей колонной ЭЛОУ ОТБЕНЗ. АТ ВТ Стаб. Бенз. ЭЖЕКТ

61 Перегонка нефти в промышленных условиях Тепловой режим в колонне, промежуточное орошение Виды острого орошения в атмосферной колонне: – Верх – верхний дистиллят; – различные точки по высоте колонны несколько промежуточных циркуляционных орошений: 1) Промежуточное орошение чаще всего отводят в выносную отпарную колонну с одной из тарелок, расположенных ниже или выше точки вывода бокового дистиллята. 2) В качестве промежуточного орошения используют сам боковой погон, который после охлаждения возвращают в колонну выше или ниже точки ввода в нее паров из отпарной выносной колонны. Применяя орошение, рационально используют избыточное тепло колонны для подогрева нефти, при этом выравниваются нагрузки по высоте колонны, и это обеспечивает оптимальные условия ее работы.

62 Перегонка нефти в промышленных условиях Колонна Число тарелок Тип тарелок Установка АВТ Атмосферная предварительная 28 Клапанные (верх – двух – поточные, низ – четырёхпоточные) Атмосферная основная49Клапанные Вакуумная18 Верх – клапанные, S – образные, низ – решетчатые, струйные Отпарная4Клапанные

63 Перегонка нефти в промышленных условиях Температура, °С подогрева нефти в теплообменниках подогрева отбензиненной нефти в змеевиках трубчатой печи паров, уходящих из отбензинивающей колонны внизу отбензинивающей колонны паров, уходящих из основной колонны внизу основной колонны ввода сырья в вакуумную колонну верха вакуумной колонны низа вакуумной колонны Давление, МПа в отбензинивающей колонне в основной колонне Давление, кПа вверху вакуумной колонны,40,5 0,150,2. 7,85 – 8,85

64 Перегонка нефти в промышленных условиях Ромашкинская нефть Самотлорская нефть Взято, % (масс.) Нестабильная нефть Вода эмульсионная 100,0 0,1 100,0 0,1 Итого100,1 Получено, % (масс.) Углеводородный газ Бензиновая фракция (н. к ) Керосиновая фракция ( ) Дизельная фракция ( ) Мазут (>350) Потери 1,0 12,2 16,3 17,0 52,7 0,9 1,1 18,5 17,9 20,3 41,4 0,9 Итого100,1 Материальный баланс (для установки типа АТ) Отбензинивающую колонну применяют при высоком содержании легких УВ: газы – не менее 1,5-2,2 %, бензиновые фракции – не менее %, в целом светлые фракции – не менее %. 350) Потери 1,0 12,2 16,3 17,0 52,7 0,9 1,1 18,5 17,9 20,3 41,4 0,9 Итого100,1 Материальный баланс (для установки типа АТ) Отбензинивающую колонну применяют при высоком содержании легких УВ: газы – не менее 1,5-2,2 %, бензиновые фракции – не менее 20-30 %, в целом светлые фракции – не менее 50-60 %.”>

66 Перегонка нефти в промышленных условиях Особенности процесса: 1)Максимальная температура нагрева – °С. Если температура выше усиливаются реакции термического крекинга (для мазута): снижается выход продуктов, образуются твердые нерастворимые пробки в трубопроводах. Чем выше нагрев, тем короче расстояние от печи до колонны по трансферному трубопроводу (меньше время нахождения нефти при данной температуре). 2)Куб колонны работает в двух режимах: – в куб колонны подают перегретый водяной пар вместо горячего кубового продукта (создается необходимый тепловой поток, не происходит разложения УВ); – возвращения кубового потока в виде пара не происходит – отпарная колонна. 3) Питающая тарелка должна быть сконструирована таким образом, чтобы: – Равномерно распределить сырье по сечению колонны; – уловить капли жидкости, уносимые паровой фазой.

67 Особенности нефти как сырья процессов перегонки Невысокая термическая стабильность нефти, ее высококипящих фракций (350–360 °С). Поэтому необходимо ограничение температуры нагрева (для повышения относительной летучести – перегонка под вакуумом, перегонка с водяным паром – для отпаривания более легких фракций). С этой целью используют, как минимум, две стадии: атмосферную перегонку до мазута (до 350 °С) и перегонку под вакуумом.

68 Особенности нефти как сырья процессов перегонки Нефть – многокомпонентное сырье с непрерывным характером распределения фракционного состава и соответственно летучести компонентов. Поэтому в нефтепереработке отбирают широкие фракции (°С): бензиновые; керосиновые; дизельные; вакуумный газойль; гудрон. Иногда ограничиваются неглубокой перегонкой нефти с получением остатка (мазута, выкипающего выше 350 °С).

69 Особенности нефти как сырья процессов перегонки Высококипящие и остаточные фракции нефти содержат значительное количество гетероорганических смолисто – асфальтеновых соединений и металлов (ухудшают товарные характеристики продуктов и усложняют дальнейшую переработку дистиллятов).

70 Контактные устройства Тарелка с туннельными колпачками Колпачковая тарелка Тарелка с S-образными элементами: а общий вид; 6 схема Клапанно-прямоточная тарелка

71 Контактные устройства Двух – (б) и четырехпоточная (в) тарелки с переливным устройством Тарелка с просечно-вытяжными отверстиями

72 Контактные устройства Требования, предъявляемые к тарелкам: – обеспечение на их поверхности (плато) соответствующего запаса жидкой фазы (т. наз. задержка жидкости); – достижение необходимой разделит. способности при изменении нагрузок по газу или жидкости; – малое гидравлическое сопротивление газовому потоку; – минимальный брызгоунос (с нижних тарелок на верхние); – возможность подвода теплоты непосредственно в зону контакта фаз и отвода из нее теплоты (достигается установкой над плато тарелок спец. змеевиков); – возможность проводить процесс в вакууме (до 8 Па); Различают барботажный и струйный гидродинамические режимы работы тарелок. В барботажном режиме на тарелках поддерживается слой жидкости (сплошная фаза), через который барботирует восходящий поток газа (дисперсная фаза), распределяясь в жидкости пузырьками. С повышением нагрузок по газу происходит инверсия фаз, при которой в сплошной (газовой) фазе распределена в виде капель и струй дисперсная (жидкая) фаза; такой режим наз. струйным.

74 Вакуумная перегонка нефти в промышленных условиях Конденсационно-вакуумсоздающая система Остаточное давление – кПа ( мм. рт. ст.) Эжектор Эжектор – устройство, в котором в процессе смешения сред происходит передача кинетической энергии от одной среды, движущейся с большей скоростью, к другой. Согласно закону Бернулли, в сужающемся сечении создаётся пониженное давление одной среды, что вызывает подсос в поток другой среды, которая затем переносится и удаляется от места всасывания энергией первой среды

75 Технологические процессы на НПЗ Считается, что на НПЗ средней мощности (5…7 млн т/год) каждый процесс должен быть представлен 1 технологической установкой. При этом связи между процессами становятся весьма жесткими, резко повышаются требования к надежности оборудования, системе контроля и автоматизации, сроку службы катализаторов. В совр. практике проектирования и строительства НПЗ большой мощности (10…15 млн т/год) предпочтение отдают двухпоточной схеме переработки нефти: каждый процесс представлен двумя одноименными технологическими установками. При этом процесс, для которого ресурсы сырья ограничены при данной мощности НПЗ, может быть представлен одной технологической установкой (алкилирование, коксование, висбрекинг, производство серы и др.).

76 Технологические процессы на НПЗ Исходя из принятой оптимальной мощности НПЗ топливного профиля, равной 12 млн т/год, на основании технико-экономических расчетов и опыта эксплуатации современного отечественных и зарубежных заводов принята оптимальной мощность головной установки АВТ, равная 6 млн т/год. Наиболее часто комбинируют следующие процессы: – ЭЛОУ-АВТ (AT), – гидроочистка (ГО) бензина каталитический риформинг (КР), – гидроочистка вакуумного газойля каталитический крекинг (КК) газоразделение, – сероочистка газов производство серы; – ГО КК газофракционирование и др. Наибольшую трудность представляет переработка гудронов с высоким содержанием смолисто-асфальтеновых веществ, металлов и гетеросоединений – с получением таких нетопливных нефтепродуктов, как битум, нефтяные пеки.

Http://www. myshared. ru/slide/821608

К общезаводскому хозяйству (ОЗХ) современных НПЗ и НХЗ относятся объекты приема и хранения сырья, приготовления из компонентов товарной продукции, хранения и отгрузки товарной продукции; ремонтно-механическая база; складское хозяйство; объекты, предназначенные для снабжения воздухом, водородом, инертным газом, топливом; вспомогательные службы (факельное хозяйство, газоспасательная служба, пожарная охрана, медицинская служба и служба питания). В более широком смысле в ОЗХ включают также объекты энергоснабжения, водоснабжения, канализации, очистных сооружений.

Объекты ОЗХ занимают большую часть территории предприятия, а стоимость их строительства превышает 40% от общей стоимости заводов.

Состав объектов ОЗХ зависит от профиля предприятия, его технологической схемы. Например, на заводах топливно-масляного профиля заметное место принадлежит узлам приготовления товарных масел, приема многочисленных присадок со стороны, хранения и затаривания твердых парафинов и т. д. Эти объекты на заводах топливного профиля отсутствуют.

Сырье поставляется на НПЗ и НХЗ по магистральным трубопроводам, железной дороге и, в незначительной степени, водным (танкеры, баржи) и автомобильным (автоцистерны) транспортом.

Трубопроводный транспорт нефти и нефтехимического сырья. Трубопроводным транспортом в нашей стране перевозится около 80% сырой нефти и 8% нефтепродуктов. Общая протяженность нефтепроводов и нефтепродуктопроводов на конец 1980 г. составила 69,7 тыс. км. Средняя дальность перекачки нефти достигла 1400 км. Все нефтеперерабатывающие заводы Советского Союза связаны трубопроводными магистралями с районами добычи нефти. Нефтепроводы проектируются и эксплуатируются организациями Министерства нефтяной промышленности. Пропускная способность нефтепровода определяется мощностью НПЗ, а диаметр, кроме того, зависит от схемы перекачивания нефти (непрерывная или периодическая). При расширений НПЗ зачастую оказывается необходимо предусмотреть увеличение пропускной способности нефтепровода. Эта задача решается прокладкой параллельных трубопроводов на всей протяженности нефтепровода или на отдельных, наиболее перегруженных участках.

Для организации учета и контроля подачи нефти на НПЗ непосредственно перед предприятием (а иногда и на его территории) размещается приемо-сдаточный пункт. В состав пункта входят: площадка приема шара — специального устройства, которое время от времени прогоняется по нефтепроводу с целью очистки трубы от парафинистых отложений и грязи; фильтры-грязеуловители счетчики. Показания счетчиков служат для контроля количества «Поступающей на НПЗ нефти. Они передаются на головную станцию нефтепровода и на центральный диспетчерский пункт НПЗ. Перед фильтрами приемо-сдаточного пункта устанавливаются предохранительные клапаны для. защиты последних участков нефтепровода от разрыва. Причиной разрыва может быть недопустимо высокое давление, возникающее вследствие закрытия задвижки перед приемо-сдаточным пунктом. Сброс от предохранительных клапанов направляют в резервуары сырьевой базы НПЗ. С приемо-сдаточного пункта нефть подается в резервуары сырьевой базы НПЗ. Участок трубопровода от пункта до резервуаров является собственностью НПЗ. Этот трубопровод, как правило, прокладывается в земле и выводится на поверхность перед резервуарами-,

У Нефтехимические предприятия получают по трубопроводам сырье с близлежащих нефте – и газоперерабатывающих заводов. Обычно по трубопроводам подаются на НХЗ бензиновые фракции, сжиженные газы, ароматические углеводороды. Эксплуатируются, также магистральные трубопроводы, по которым сырье подается в НХЗ с предприятий, расположенных на расстоянии 150—200 км и выше.

Нефтехимические заводы часто используют в качестве сырья (например, для установок оксосинтеза) природный газ. Газ поступает на НХЗ из систем магистральных газопроводов через газораспределительные пункты (ГРП). На ГРП происходит снижение давления газа до величины, которая необходима нефтехимическому предприятию, здесь же организуется учет природного газа, Передаваемого на НХЗ. ГРП проектируются и эксплуатируются организациями Министерства газовой промышленности. Трубопровод природного газа, выходящий с ГРП, является собственностью НХЗ.

Транспорт сырья по железной дороге. Нефть на НПЗ подается в железнодорожных цистернах маршрутами, грузоподъемность которых определяется путевым развитием и пропускной способностью сети железных дорог. Для перевозки нефти используются цистерны различных типов — двух-, четырех-, шести – и восьмиосные. Подробная характеристика цистерн приведена в литературе.

Рис. 1.1. Комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов:

1 — наливной стояк; 2 — установка нижнего слива нефти; 3 — коллектор слива нефти; 4 — коллекторы темных нефтепродуктов.

На вновь строящихся НПЗ проектируются для приема нефти двухсторонние сливные эстакады длиной 360 м, вдоль которых устанавливается состав после его расцепки на две части. С целью более полного использования территории и уменьшения капитальных и эксплуатационных затрат практикуется оснащение железнодорожных эстакад устройствами для налива нефтепродуктов — мазута или дизельного топлива. В этом случае эстакада называется сливо-наливной и на ней поочередно осуществляется слив нефти и налив нефтепродукта. На рис. 5.1 изображена комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов.

Цистерны для перевозки нефти оснащены нижними сливными патрубками, к которым подводится и герметично присоединяется установка для нижнего слива (налива), представляющая собой систему шарнирно сочлененных труб. Промышленностью выпускаются установки для нижнего слива по ТОСТ 18194—79. Стандартом предусмотрен выпуск установок без подогрева (УСН), с паровым подогревом (УСНПп), с электроподогревом (УСНПэ). Установки типа УСН имеют диаметр условного прохода 150 и 175 мм, УСНПп — 175 мм, а УСНПэ — 150 мм.

Из сливной установки нефть поступает в сливной трубопровод. Ранее сливным трубопроводом нефть передавалась в резервуары, расположенные ниже отметки рельса («нулевые» резервуары). Вместимость этих резервуаров принималась такой, чтобы обеспечить слив всего маршрута. Из «нулевых» резервуаров нефть забиралась насосами заглубленной насосной и подавалась в резервуары сырьевой базы завода.

Практика показала, что в сооружении «нулевых» резервуаров и заглубленных насосных нет необходимости. Следует предусматривать поступление нефти от сливных приборов к насосам, расположенными на поверхности земли через сливную буфер.

Внимание необходимо уделять расчету гидравлических сопротивлений сливного трубопровода, учитывать всасывающую способ-Юность сырьевого насоса.

При проектировании сливо-наливных железнодорожных эстакад следует учитывать требования по нормативной продолжительности сливных операций, установленные «Правилами перевозок жидких грузов наливом в вагонах — цистернах и бункерных полувагонах», утвержденными МПС 25 мая 1966 г. Эти правила устанавливают следующую продолжительность слива (в ч) в пунктах механизированного (1) и немеханизированного (2) слива.

В зимнее время слив некоторых сортов нефтей и других продуктов, обладающих высокой температурой застывания затруднен, поскольку они поступают на пункты слива загустевшими. Правила перевозки грузов предусматривают увеличение продолжительности слива таких продуктов в период с 15 октября по 15 апреля, а также выделение специального времени на разогрев;

Для разогрева нефти в цистернах предусматривают паровые t гидромеханические подогреватели ПГМП-4 конструкции ВНИИСПТ Нефти, электрогрелки, погруженные змеевиковые подо-греватели, а также системы циркуляционного разогрева, сущность которых заключается в том, что холодный продукт, забираемый из цистерны, подогревается в специальном теплообменнике и в горячем состоянии возвращается в цистерну. Учитывая недостаточную эффективность вышеупомянутых способов непрямого разогрева

Q— .производительность слива; QH — подача основного насоса; Qд —подача дополнительного насоса.

В проектах следует предусматривать также подачу в цистерны острого пара. Сырье нефтехимических предприятий перевозится в цистернах с нижним сливом (и в этих случаях схема сливных операций аналогична описанной выше для нефти), в цистернах с верхним сливом и в специализированных цистернах.

Верхний слив из железнодорожных цистерн менее удобен, чем нижний. При верхнем сливе имеют место значительные потери от испарения, частые срывы работы насосов при сливе продуктов с высоким давлением насыщенных паров. Зачастую не, удается достичь полного удаления продукта из цистерн. Слив может осуществляться самотеком (при благоприятном рельефе местности) или с помощью, насосов.

В тех случаях, когда для верхнего слива применяют центробежные насосы, не обладающие самовсасывающей способностью, необходимо предусматривать установку поршневых насосов для первоначального (перед началом откачки) заполнения трубопроводов продуктом и зачистки цистерн. В летнее время слив продуктов с высоким давлением насыщенных паров сопровождается образованием газовых пробок во всасывающих трубопроводах насосов. Для уменьшения вакуума во всасывающих линиях рекомендуется предусматривать в проектах применение эжекторов. В качестве рабочей жидкости в эжекторах используется сливаемый продукт. При работе с погруженным эжектором не только полностью исключается вакуум во всасывающих линиях, но в отдельных случаях создается избыточное давление (подпор).

Схема обвязки эжекторов определяется разностью отметок между нижней образующей котла цистерны и резервуаром или насосом. На рис. 1.2 приведены различные варианты обвязки эжектора. Схема, изображенная на рис. 1.2, а применяется в тех случаях, когда разность геодезических отметок цистерны и резервуара позволяет (с учетом дополнительного подпора, развиваемого эжектором) обеспечить заданную производительность слива Q0. Подача и напор насоса обеспечивают работу эжектора. В тех случаях, когда разность отметок цистерны и резервуара не позволяет организовать самотечный слив или резервуар находится выше цистерны, применяют схемы, изображенные на рис. 1.2, б. Если давление, развиваемое основным насосом недостаточно для работы эжектора, то следует предусмотреть дополнительный насос для подачи рабочей жидкости в эжектор (рис. 5.2, б). Производитель-Юность дополнительного насоса выбирают равной расходу рабочей жидкости через эжектор, а дифференциальный напор равным разности между давлением рабочего продукта перед эжектором и давлением, развиваемым основным насосом.

Слив продукта может быть значительно ускорен, если создать повышенное давление над поверхностью продукта в цистерне. Для создания избыточного давления применяют подачу сжатого воздуха, инертного газа (азота) или пара.

Промыво-пропарочные станции. Для подготовки цистерн под налив и ремонта цистерн предназначены промыво-пропарочные станции (ППС), которые проектируются в составе НПЗ и НХЗ.

Заданием на проектирование ППС устанавливается суточная программа по очистке и промывке цистерн и бункерных полувагонов, оговариваются виды очистки (горячая или холодная). Обычно ППС на НПЗ должны ежесуточно обрабатывать 400—600 цистерн и 50—100 полувагонов.

На ППС предусматривается проведение следующих операций: удаление остатка светлых нефтепродуктов; пропарка котлов цистерн с одновременным сливом остатков темных нефтепродуктов; промывка горячей водой внутренних стенок котлов цистерн; удаление промывочных вод с помощью вакуумных установок; дегазация котлов цистерн вентиляционной установкой; обезвоживание слитых остатков темных нефтепродуктов; очистка сточных вод. ППС проектируются по заказам генпроектировщиков НПЗ проектными институтами МПС СССР.

Водный транспорт сырья. Перевозка нефти и нефтепродуктов. по воде осуществляется в самоходных нефтеналивных судах, морских и речных танкерах, а также в несамоходных морских, (лихтеры) и речных (баржи) судах. Внутренним водным транспортом перевозится более 60 млн. т. нефтепродуктов. Основной объем речных перевозок нефти и нефтепродуктов приходится на Волго-Камский и Обь-Иртышский бассейны. Сырая нефть перевозится с полуострова Мангышлак и из Махачкалы в Волгоград, а также из Куйбышева в районы Черного, Балтийского и Каспийского морей.

Для создания благоприятных условий слива нефти и для предотвращения загрязнения водоемов устраиваются специальные нефтяные гавани, в которых сооружаются пристани, пирсы или причалы. Гавани могут быть естественными (бухты, заливы, затоны) или искусственными.

Хранение сырья. Для хранения нефти на НПЗ предназначаются сырьевые резервуарные парки. Нормы технологического проектирования предлагают предусматривать в проектах такую вместимость парков, чтобы она обеспечивала бесперебойную работу НПЗ, получающего нефть по нефтепроводу, в течение 7. суток. Если предприятие снабжается нефтью по железной дороге или водным путем вместимость сырьевых парков должна быть увеличена. В этом случае величина нормативного запаса оговаривается в задании на проектирование.

Для предотвращения потерь нефти от испарения ее хранят в резервуарах с плавающими крышами или понтонами. На сырьевых базах НПЗ обычно устанавливаются резервуары объемом 20— 50 тыс. м3. Число резервуаров определяется общей вместимостью парка и принятым единичным объемом резервуара. При проектировании сырьевых складов НПЗ и НХЗ руководствуются СНиП II-106—79 [44]. Этот нормативный документ разработан для использования при проектировании складов нефти и нефтепродуктов; его допускается применять при проектировании складов легковоспламеняющихся, и горючих жидкостей, условия хранения которых в зависимости от их свойств сходны с условиями хранения нефти и нефтепродуктов. СНиП П-106—79, однако, не распространяется на проектирование складов (товарных баз) сжиженных газов, нефтепродуктов с упругостью паров выше 93,6 кПа (700 мм рт. ст.) при 20°С, складов синтетических жирозаменителей, подземных хранилищ в горных породах, отложениях каменной соли, ледогрунтовых хранилищ.

СНиП П-106—79 делит склады нефти и нефтепродуктов на две группы, причем товарно-сырьевые склады НПЗ и НХЗ отнесены к первой группе. Склады первой группы подразделяются на три категорий в зависимости от общей вместимости. В СНиП регламентированы расстояния от зданий и сооружений складов (товарно-сырьевых баз) до зданий и сооружений соседних предприятий, жилых и общественных зданий, расстояния от резервуаров для нефти и нефтепродуктов до зданий и сооружений склада (сливо-наливных устройств, насосных, канализационных сооружений, складов для нефтепродуктов в мелкой таре и т. п.), расстояния от зданий и сооружений склада до трубопроводов. СНиП П-106—79 рекомендует размещать резервуары группами, устанавливает предельную вместимость резервуаров в группе и расстояния между стенками резервуаров, расположенных в одной и соседних группах.

Товарная продукция, вырабатываемая на НПЗ, может быть условно разделена на две группы: 1) продукция, производимая непосредственно на технологических установках, и 2) продукция, приготавливаемая из различных компонентов. Непосредственно на установках НПЗ вырабатывают индивидуальные углеводородные фракции С3—Cs (пропановую, бутановые, пентановые), ароматические углеводороды (бензол, толуол, индивидуалыше ксилолы), различные марки твердых парафинов, присадки к маслам и т. д.

Значительное количество крупнотоннажных товарных продуктов — бензин, дизельное и котельное топлива, смазочные масла — получают на НПЗ смешением (компаундированием) из компонентов, вырабатываемых на различных установках. Так, для приготовления автомобильных бензинов на некоторых НПЗ используют до 10—15 компонентов.

На нефтехимических предприятиях товарная продукция — спирты, альдегиды, кислоты, полиолефины, сырье для производства синтетического каучука и др. — вырабатывается непосредственно в цехах и на установках.

Для осуществления операций по приготовлению товарной продукции из компонентов проектируются специальные объекты, на которых используются следующие основные методы компаундирования:

1) циркуляционный — приготовление производится в смесительных резервуарах;

3) непосредственное смешение в трубопроводах. Разработке проекта узла приготовления товарной продукции должен предшествовать расчет ожидаемых показателей качества товарных продуктов на основе сведений о качестве компонентов. В расчетах следует учитывать, что только некоторые из показателей качества являются аддитивными. Так, плотность смеси, содержание в ней серы, температуру анилиновой точки, показатели фракционного состава, определенные по ИТК, находят суммированием произведений массовых долей компонентов на соответствующие показатели каждого из компонентов. Давление насыщенных паров смеси с достаточной степенью точности можно определить суммированием произведений мольных долей компонентов на давления паров этих компонентов.

В известной степени аддитивными являются показатели октанового и цетанового чисел: Однако определенное по правилу аддитивности октановое число смеси может оказаться выше или ниже реального. Более Точно рассчитать реальное октановое число позволяет формула:

Здесь Осм — реальное октановое число смеси; О А, Ов — октановые числа ; высокооктанового и низкооктанового компонента смеси, соответственно; А и В — содержания компонентов в смеси, % (об.); k — поправочный коэффициент, определяемый по специальному графику, приведенному в литературе. –

Для расчета октанового числа смеси могут быть также использованы формулы, разработанные ВНИИНП и НПО «Нефтехим-автоматика» и фирмой «Этил Корпорейшн».

Более точные уравнения, по которым можно определить смесительные характеристики мазутов, зная показатели отдельных компонентов, приводятся в литературе.

Метод приготовления товарной продукции многократной циркуляцией через смесительные резервуары применяется в течение многих лет. Сущность метода заключается в следующем. Компоненты товарных продуктов с технологических установок поступают в компонентные,

Резервуары парков смешения, анализируются, а затем насосами подаются в смесительный резервуар. Приготовленный в смесительном резервуаре продукт забирается специальными насосами и многократно перекачивается по схеме «резервуар—насос— резервуар» до тех пор, пока в резервуаре не будет получена однородная по составу смесь, показатели которой соответствуют требованиям, предъявляемым к готовому продукту.

Вместимость компонентных резервуаров при приготовлении топлив должна соответствовать 48-часовому запасу каждого компонента, а смесительных резервуаров— 16-ч-асовой выработке данного вида топлива. При получении товарных масел предусматриваются компонентные резервуары, исходя из 36-часового запаса каждого компонента, и смесительные резервуары, исходя из суточной выработки масел.

В табл. приводится пример расчета необходимой вместимости резервуарных парков смешения, автобензина.

Для улучшения условий перемешивания резервуары оборудуют смесительными устройствами: маточниками с большим числом отверстий, направленных вверх, вниз или под углом; так называемыми «пауками» с установленными на них инжекторами-смесителями; подъемными трубами, через которые продукт закачивают на определенную высоту от днища.

В аппаратах с перемешивающими устройствами готовят товарные масла. Для ряда НПЗ была запроектирована установка приготовления масел, в состав которой входят компонентные резервуары, смесители с принудительным перемешиванием, насосная, емкости для присадок и камеры для плавления присадок.

Оба описанных выше метода обладают рядом серьезных недостатков: повышенным расходом электроэнергии, малой производительностью смешения, необходимостью строительства смесительных резервуаров.

Р-1—Р-3 — компонентные резервуары; Р-4 — товарный резервуар; Н-1—Н-3 — насосы; Ф-1—Ф-3 —фильтры; PM-J—PM-3— расходомеры; РЕ-1—РЕ-3— регуляторы; К-1—К-3 — регулирующие клапаны; СК-1 — смесительный коллектор.

Более эффективным является приготовление товарной продукции смешением в потоке. Для каждого НПЗ разрабатываются индивидуальные проекты автоматизированных систем (автоматических станций) смешения. Схема автоматической станции смешения, на которой приготавливается продукт из трех компонентов, приведена на рис. 1.3. В состав оборудования станции входят: компонентные резервуары, насосы, фильтры для очистки компонентов от механических примесей, газоотделитель (при приготовлении бензинов), измерители расхода, регулирующие клапаны, обратные, клапаны.

Объем резервуарного парка для хранения компонентов обуславливается производительностью станции смешения, необходимостью остановки для профилактического осмотра и ремонта, потребностью во времени для лабораторного анализа. Нормы технологического проектирования не регламентируют объема компонентных резервуаров, представляя право решать эту задачу проектировщикам. Оптимальные условия эксплуатации, как показывает практика, обеспечиваются при наличии 2-3 резервуаров для каждого компонента, общая вместимость которых соответствует 16—20-часовой выработке этого компонента.

Для перекачки каждого компонента следует предусматривать индивидуальные насосы, причем нежелательно, чтобы одним насосом компонент перекачивался в разные смесительные коллекторы.

В качестве измерителей расхода на станциях смешения применяются объемные счетчики или турбинные расходомеры. Широкое распространение получили венгерские турбинные расходомеры «Турбоквант», достоинством которых являются небольшие размеры, малая металлоемкость, простота ремонта. При разработке проектов станций смешения следует стремиться, чтобы максимальная производительность по компоненту не превышала 75% от пропускной способности расходомера, а минимальная не была близка к нижнему пределу пропускной способности.

Для управления процессом смешения в Рязанском СКВ Московского НПО «Нефтехимавтоматика» разработаны комплексы приборов управления «Поток». В состав комплексов входят блоки компонентов и управления.

Если схема автоконтроля блока компонента фиксирует отклонение действительного расхода компонента от заданного более чем на 0,5% в сторону уменьшения расхода, то формируется команда «Ошибка-1», по которой блок управления снижает скорость смешения.

В составе комплексов имеются основные и резервные блоки. При нарушении режима работы основных блоков резервные блоки подключаются к сети и форсированно выводятся на режим работы основного блока.

Хранение и отгрузка основного количества товарной продукции на НПЗ и НХЗ производится через товарно-сырьевые базы (ТСБ) предприятий. Отдельные виды продукции — битумы, элементарную серу, нефтяной кокс — отправляют потребителям непосредственно с технологических установок. При проектировании предприятий следует стремиться к тому, чтобы объекты по хранению и отгрузке продукции были сосредоточены в одном месте, что облегчает управление товарной базой, упрощает работу железнодорожного транспорта. Исключение делают для объектов по отгрузке сжиженных газов, которые в соответствии с противопожарными нормами проектирования следует размещать на расстоянии не менее 300—500 м от территории предприятия. Вместимость товарных складов (парков) зависит от устанавливаемых нормами технологического проектирования сроков хранения. Товарные парки должны обеспечивать возможность приема и хранения в них 15-суточной выработки, каждого из товарных нефтепродуктов. Вместимость складов сжиженных газов не должна превышать трехсуточной выработки этих продуктов. Если отгрузка товарных нефтепродуктов потребителям производится по трубопроводам, нормативный срок хранения сокращается до 7 суток.

Число устанавливаемых резервуаров зависит от количества подлежащего хранению продукта и единичной вместимости выбранного резервуара. Экономически целесообразно устанавливать меньшее число резервуаров большей вместимости. Так, расход металла на сооружение 6 резервуаров по 10 тыс. м3 составляет 955 т, а при строительстве 3 резервуаров по 20 тыс. м3 — 825 т. Сооружение резервуаров большей вместимости взамен мелких позволяет также уменьшить территорию, занимаемую парками.

Для каждого вида товарной продукции рекомендуется предусматривать не менее 3 резервуаров (в один поступает товарная продукция, второй находится на анализе, из третьего производится отгрузка продукции).

По, расположению и планировке резервуары делятся на подземные (если наивысший уровень жидкости в резервуаре ниже наинизшей планировочной отметки прилегающей площадки не менее, чем на 0,2 м) и наземные (если они не удовлетворяют вышеуказанным условиям). Для хранения товарной продукции НПЗ и НХЗ используются стальные емкости вместимостью 200 м3 (до ОСТ 26-02-1496—76); стальные резервуары вертикальные цилиндрические со щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3 с понтоном и щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3, с плавающей крышей вместимостью от 10 тыс..м3 до 50 тыс. м3; стальные резервуары с коническими днищами; горизонтальные емкости для хранения продуктов под давлением 0,6—1,8 МПа вместимостью отг25 м3 до_200_м,3 (по ОСТ 26-02-1159^-76); шаровые резервуары для хранения продуктов под давлением 0,25—1,2 МПа железобетонные резервуары.

В табл. 1.3 приведены рекомендации по выбору типа емкости для хранения продукции НПЗ и НХЗ. На рис. 1.4 изображен резервуар с плавающей крышей, применяемый для хранения бензина и других легкокипящих продуктов.

Безопасная и удобная эксплуатация резервуаров обеспечивается применением дополнительного оборудования, которое предназначено для заполнения и опорожнения резервуаров, замера уровня продукта, зачистки, .отбора проб, сброса подтоварной воды,

1 — верхний настил крыши; 2 — нижний настил крыши; 3 — днище; 4- подвижная лестница.

Рис. 1.5. Схема расположения оборудования на вертикальных резервуарах для маловязких нефтепродуктов:

1— световой люк; 2 — вентиляционный патрубок; 3 — дыхательный клапан; 4 — огневой предохранитель; 5 — замерный люк; 6 — прибор для замера уровня; 7— люк-лаз; 8 —сифонный кран; 9 — хлопушка; 10 — при-емо-раздаточный патрубок; 11 — перепускное устройство; 12 — управление хлопушкой; 13 — крайнее положение приемо-раздаточных патрубков по отношению к оси; 14 — предохранительный клапан.

Пенотушения, поддержания определенного давления в резервуарах. На рис. 1.5 приводится схема расположения оборудования на вертикальных резервуарах, для маловязких нефтепродуктов.

При разработке проектов товарных баз для НПЗ и НХЗ рекомендуется использовать СНиП II-106—79

Товарная продукция НПЗ и НХЗ отгружается трубопроводным, железнодорожным, автомобильным – и речным транспортом.

Трубопроводный транспорт. По трубопроводам транспортируются потребителям светлые и темные нефтепродукты — бензин, дизельное и котельное топлива, а также сжиженные газы, этилен, аммиак. Экономически целесообразным трубопроводный транспорт становится при концентрированном потреблении продукта в одной точке и районе, когда по трубопроводу перекачиваются не менее 300—500 тыс. т продукта в год.

В ближайшие годы намечается значительно расширить сеть нефтепродуктопроводов. Постановление Совета Министров СССР о развитии сети нефтепродуктопроводов в 1981—1985 годах предусматривает сооружение новых трубопроводов для перекачки бензина и дизельного топлива в центральных районах страны, Сибири, Казахстане, создание ряда мазутопроводов, связывающих НПЗ с крупными тепловыми электростанциями, и керосинопроводов между заводами и аэропортами.

На территории НПЗ и НХЗ обычно размещаются головные сооружения нефтепродуктопроводов: склады (парки), головные насосные. Некоторые продуктопроводы имеют в составе головных сооружений собственные резервуарные парки, в которые продукт подается из резервуаров товарной базы НПЗ насосами товарной насосной. Более экономичным решением является использование в качестве головных сооружений резервуаров заводской товарной базы. Продукт в магистральный трубопровод подается непосредственно c этих резервуаров насосами головной насосной станции, размещаемой рядом с резервуарами.

Железнодорожный транспорт. Транспортировка продукции НПЗ и НХЗ по железной дороге является основным видом перевозки нефтепродуктов и ее ведущее значение сохранится в ближайшие годы. Основным видом тары для перевозки по железной дороге нефтяных и химических продуктов служат цистерны. Цистерны подразделяются на универсальные, предназначенные для перевозки различных грузов (нефти и светлых нефтепродуктов, нефти и мазута и т. д.) и специальные. В специальных цистернах перевозится какой-либо один вид продукции (например, сжиженные газы, кислоты, спирты). Характеристика Цистерн, изготавливаемых вагоностроительными заводами и используемых при перевозке нефтяных и химических. продуктов, приводится в литературе. Для отгрузки продукции нефтеперерабатывающих и нефтехимических предприятий в составе товарных баз проектируются специальные устройства. Если объем отгрузки ограничен десятками тысяч тонн в год, то предусматривают одиночные стояки или небольшие односторонние эстакады, состоящие из 5—10 стояков. Для отгрузки многотоннажных продуктов (бензин, реактивное, дизельное и котельное топлива, смазочные масла) сооружаются двухсторонние эстакады галерейного типа. Эстакады для налива реактивного топлива, авиационных бензинов, смазочных масел, присадок к маслам и других ЛВЖ и горючих жидкостей, в которые недопустимо попадание воды, должны быть оборудованы навесами и крышами. Температура ЛВЖ, подаваемых на налив, должна быть не менее, чем на 10°С, ниже температуры начала кипения наливаемого продукта.

Налив нефтепродуктов осуществляется в одиночные цистерны, группы и маршруты цистерн. Маршрутный налив цистерн более экономичен и должен предусматриваться при проектировании эстакад как основной вид налива.

Длина эстакады не должна быть меньше половины длины маршрута. Конструкция эстакад должна обеспечивать техническую возможность налива продуктов в железнодорожные цистерны всех типов, пригодные для перевозки данных продуктов. Проектирование железнодорожных эстакад на ограниченное число типов (моделей) цистерн допускается только при наличии согласования с Управлением железной дороги, обслуживающей предприятие, или с’ предприятием — собственником цистерн.

В последние годы осуществляется постепенный переход железнодорожного транспорта на цистерны новых типов — шести восьмиосные вместимостью 90 и 120 м3. В проектах следует принимать во внимание особенности налива этих цистерн.

При разработке проектов железнодорожных эстакад необходимо учитывать возможность поступления под налив неисправных цистерн. Чтобы иметь возможность удалить из этих цистерн имеющийся в них продукт, проектом предусматриваются – самостоятельные эстакады с верхним и нижним сливом, которые оборудуются отдельными стояками и коллекторами для сливаемых продуктов. При небольших объемах отгрузки для слива неисправных цистерн могут быть запроектированы отдельно стоящие

Особые требования предъявляются к проектированию железнодорожных эстакад для слива и налива сжиженных газов. Эти эстакады должны быть отделены от прочих эстакад, оборудованы Самостоятельными коллекторами, трубопроводами, сливо-наливными устройствами и газоуравнительными системами для каждого вида наливаемых и сливаемых сжиженных газов. Одновременно с эстакадами для слива и налива сжиженных газов в составе товарно-сырьевых баз сжиженных газов следует проектировать эстакады для подготовки цистерн сжиженного газа под налив. Опыт проектирования эстакад освещен. Эксплуатация железнодорожных эстакад галерейного типа отличается большой трудоемкостью и применением ручного труда. Наиболее трудоемки подготовительные и вспомогательные операции, открытие и закрытие люков цистерн, заправка и подъем наливных шлангов и телескопических устройств и т. д. При проектировании железнодорожных эстакад следует предусматривать их оснащение средствами механизации и автоматизации: ограничителями налива, которые служат для автоматического прекращения подачи жидкости в цистерну при достижении в ней определенного уровня (ПОУН-1, ПОУН-2, НО-2М), устройствами механизации подъема— спуска наливных средств.

Автомобильный транспорт. Продукция НПЗ и НХЗ перевозится автомобильным транспортом в ограниченных размерах, На отдельных предприятиях имеются устройства для налива в автоцистерны мазута, битумов, бензина. Сооружения, предназначенные для полуавтоматического налива нефтепродуктов в автоцистерны и автотопливозаправщики, называются станциями налива. Станции налива оборудуются стояками, которые различаются по виду наливаемого продукта, По способу налива (герметизированные и негерметизированные), по виду управления процессом (автоматизированные и неавтоматизированные), по виду управления, (с механизированным и ручным управлением).

Станция налива состоит из 4—12 наливных «островков», располагаемых под навесом. Каждый островок оборудуется одним или двумя наливными стояками, в качестве которых применяются установки: автоматизированного налива с местным управлением АСН-5П, автоматизированного налива с дистанционным управлением АСН-5Н, автоматизированного и герметизированного налива АСН-12.

Водный транспорт. Нефтеперерабатывающие, заводы, расположенные вблизи крупных рек, отправляют в навигационный период часть своей продукции водным путем (в танкерах, баржах и лихтерах). Для налива сооружаются специальные причалы.

Налив нефтепродуктов осуществляется по трубопроводам, прокладываемым от резервуаров к причалам. Возможны два варианта организации налива: 1) подача продукта насосами из резервуаров товарного парка непосредственно в наливные суда; 2) подача продукта по трубопроводам в промежуточные резервуары, расположенные в непосредственной близости от причала с последующим поступлением нефтепродуктов в суда самотеком. Последний вариант применяют обычно ‘в тех случаях, когда НПЗ расположен на расстоянии нескольких километров от причала.

В составе нефтепричалов проектируют следующие сооружения: водные подходы, причальные устройства (подходные эстакады, центральные платформы, швартовые палы, отбойные устройства), шлангующие устройства и установки.

При проектировании водных подходов необходимо определить глубину и ширину полосы акватории, глубину водных подходов. Проект причальных устройств включает выбор типа причальных сооружений, определение суточной пропускной способности одного причала и числа причалов, необходимого для отгрузки всего количества грузов. В проекте нефтепричала также решаются вопросы выбора шлангующих устройств, подготовки резервуаров, трубопроводов и нефтеналивных судов к сливо-наливным операциям, определяются методы борьбы с потерями нефтепродуктов при наливе и защиты водных бассейнов от загрязнения нефтепродуктами.

1. Рудин М. Г., Смирнов Г. Ф. Проектирование нефте-перерабатывающих и нефтехимических заводов. –Л.: Химия, 1984.

Http://refeteka. ru/r-183330.html

Просмотров: 3228 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно Скачать

К общезаводскому хозяйству (ОЗХ) современных НПЗ и НХЗ относятся объекты приема и хранения сырья, приготовления из компонентов товарной продукции, хранения и отгрузки товарной продукции; ремонтно-механическая база; складское хозяйство; объекты, предназначенные для снабжения воздухом, водородом, инертным газом, топливом; вспомогательные службы (факельное хозяйство, газоспасательная служба, пожарная охрана, медицинская служба и служба питания). В более широком смысле в ОЗХ включают также объекты энергоснабжения, водоснабжения, канализации, очистных сооружений.

Объекты ОЗХ занимают большую часть территории предприятия, а стоимость их строительства превышает 40% от общей стоимости заводов.

Состав объектов ОЗХ зависит от профиля предприятия, его технологической схемы. Например, на заводах топливно-масляного профиля заметное место принадлежит узлам приготовления товарных масел, приема многочисленных присадок со стороны, хранения и затаривания твердых парафинов и т. д. Эти объекты на заводах топливного профиля отсутствуют.

Сырье поставляется на НПЗ и НХЗ по магистральным трубопроводам, железной дороге и, в незначительной степени, водным (танкеры, баржи) и автомобильным (автоцистерны) транспортом.

Трубопроводный транспорт нефти и нефтехимического сырья. Трубопроводным транспортом в нашей стране перевозится около 80% сырой нефти и 8% нефтепродуктов. Общая протяженность нефтепроводов и нефтепродуктопроводов на конец 1980 г. составила 69,7 тыс. км. Средняя дальность перекачки нефти достигла 1400 км. Все нефтеперерабатывающие заводы Советского Союза связаны трубопроводными магистралями с районами добычи нефти. Нефтепроводы проектируются и эксплуатируются организациями Министерства нефтяной промышленности. Пропускная способность нефтепровода определяется мощностью НПЗ, а диаметр, кроме того, зависит от схемы перекачивания нефти (непрерывная или периодическая). При расширений НПЗ зачастую оказывается необходимо предусмотреть увеличение пропускной способности нефтепровода. Эта задача решается прокладкой параллельных трубопроводов на всей протяженности нефтепровода или на отдельных, наиболее перегруженных участках.

Для организации учета и контроля подачи нефти на НПЗ непосредственно перед предприятием (а иногда и на его территории) размещается приемо-сдаточный пункт. В состав пункта входят: площадка приема шара — специального устройства, которое время от времени прогоняется по нефтепроводу с целью очистки трубы от парафинистых отложений и грязи; фильтры-грязеуловители счетчики. Показания счетчиков служат для контроля количества «Поступающей на НПЗ нефти. Они передаются на головную станцию нефтепровода и на центральный диспетчерский пункт НПЗ. Перед фильтрами приемо-сдаточного пункта устанавливаются предохранительные клапаны для. защиты последних участков нефтепровода от разрыва. Причиной разрыва может быть недопустимо высокое давление, возникающее вследствие закрытия задвижки перед приемо-сдаточным пунктом. Сброс от предохранительных клапанов направляют в резервуары сырьевой базы НПЗ. С приемо-сдаточного пункта нефть подается в резервуары сырьевой базы НПЗ. Участок трубопровода от пункта до резервуаров является собственностью НПЗ. Этот трубопровод, как правило, прокладывается в земле и выводится на поверхность перед резервуарами-,

У Нефтехимические предприятия получают по трубопроводам сырье с близлежащих нефте – и газоперерабатывающих заводов. Обычно по трубопроводам подаются на НХЗ бензиновые фракции, сжиженные газы, ароматические углеводороды. Эксплуатируются, также магистральные трубопроводы, по которым сырье подается в НХЗ с предприятий, расположенных на расстоянии 150—200 км и выше.

Нефтехимические заводы часто используют в качестве сырья (например, для установок оксосинтеза) природный газ. Газ поступает на НХЗ из систем магистральных газопроводов через газораспределительные пункты (ГРП). На ГРП происходит снижение давления газа до величины, которая необходима нефтехимическому предприятию, здесь же организуется учет природного газа, Передаваемого на НХЗ. ГРП проектируются и эксплуатируются организациями Министерства газовой промышленности. Трубопровод природного газа, выходящий с ГРП, является собственностью НХЗ.

Транспорт сырья по железной дороге. Нефть на НПЗ подается в железнодорожных цистернах маршрутами, грузоподъемность которых определяется путевым развитием и пропускной способностью сети железных дорог. Для перевозки нефти используются цистерны различных типов — двух-, четырех-, шести – и восьмиосные. Подробная характеристика цистерн приведена в литературе.

Рис. 1.1. Комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов:

1 — наливной стояк; 2 — установка нижнего слива нефти; 3 — коллектор слива нефти; 4 — коллекторы темных нефтепродуктов.

На вновь строящихся НПЗ проектируются для приема нефти двухсторонние сливные эстакады длиной 360 м, вдоль которых устанавливается состав после его расцепки на две части. С целью более полного использования территории и уменьшения капитальных и эксплуатационных затрат практикуется оснащение железнодорожных эстакад устройствами для налива нефтепродуктов — мазута или дизельного топлива. В этом случае эстакада называется сливо-наливной и на ней поочередно осуществляется слив нефти и налив нефтепродукта. На рис. 5.1 изображена комбинированная двухсторонняя железнодорожная эстакада для слива нефти и налива темных нефтепродуктов.

Цистерны для перевозки нефти оснащены нижними сливными патрубками, к которым подводится и герметично присоединяется установка для нижнего слива (налива), представляющая собой систему шарнирно сочлененных труб. Промышленностью выпускаются установки для нижнего слива по ТОСТ 18194—79. Стандартом предусмотрен выпуск установок без подогрева (УСН), с паровым подогревом (УСНПп), с электроподогревом (УСНПэ). Установки типа УСН имеют диаметр условного прохода 150 и 175 мм, УСНПп — 175 мм, а УСНПэ — 150 мм.

Из сливной установки нефть поступает в сливной трубопровод. Ранее сливным трубопроводом нефть передавалась в резервуары, расположенные ниже отметки рельса («нулевые» резервуары). Вместимость этих резервуаров принималась такой, чтобы обеспечить слив всего маршрута. Из «нулевых» резервуаров нефть забиралась насосами заглубленной насосной и подавалась в резервуары сырьевой базы завода.

Практика показала, что в сооружении «нулевых» резервуаров и заглубленных насосных нет необходимости. Следует предусматривать поступление нефти от сливных приборов к насосам, расположенными на поверхности земли через сливную буфер.

Внимание необходимо уделять расчету гидравлических сопротивлений сливного трубопровода, учитывать всасывающую способ-Юность сырьевого насоса.

При проектировании сливо-наливных железнодорожных эстакад следует учитывать требования по нормативной продолжительности сливных операций, установленные «Правилами перевозок жидких грузов наливом в вагонах — цистернах и бункерных полувагонах», утвержденными МПС 25 мая 1966 г. Эти правила устанавливают следующую продолжительность слива (в ч) в пунктах механизированного (1) и немеханизированного (2) слива.

В зимнее время слив некоторых сортов нефтей и других продуктов, обладающих высокой температурой застывания затруднен, поскольку они поступают на пункты слива загустевшими. Правила перевозки грузов предусматривают увеличение продолжительности слива таких продуктов в период с 15 октября по 15 апреля, а также выделение специального времени на разогрев;

Для разогрева нефти в цистернах предусматривают паровые t гидромеханические подогреватели ПГМП-4 конструкции ВНИИСПТ Нефти, электрогрелки, погруженные змеевиковые подо-греватели, а также системы циркуляционного разогрева, сущность которых заключается в том, что холодный продукт, забираемый из цистерны, подогревается в специальном теплообменнике и в горячем состоянии возвращается в цистерну. Учитывая недостаточную эффективность вышеупомянутых способов непрямого разогрева

Q— .производительность слива; QH — подача основного насоса; Qд —подача дополнительного насоса.

В проектах следует предусматривать также подачу в цистерны острого пара. Сырье нефтехимических предприятий перевозится в цистернах с нижним сливом (и в этих случаях схема сливных операций аналогична описанной выше для нефти), в цистернах с верхним сливом и в специализированных цистернах.

Верхний слив из железнодорожных цистерн менее удобен, чем нижний. При верхнем сливе имеют место значительные потери от испарения, частые срывы работы насосов при сливе продуктов с высоким давлением насыщенных паров. Зачастую не, удается достичь полного удаления продукта из цистерн. Слив может осуществляться самотеком (при благоприятном рельефе местности) или с помощью, насосов.

В тех случаях, когда для верхнего слива применяют центробежные насосы, не обладающие самовсасывающей способностью, необходимо предусматривать установку поршневых насосов для первоначального (перед началом откачки) заполнения трубопроводов продуктом и зачистки цистерн. В летнее время слив продуктов с высоким давлением насыщенных паров сопровождается образованием газовых пробок во всасывающих трубопроводах насосов. Для уменьшения вакуума во всасывающих линиях рекомендуется предусматривать в проектах применение эжекторов. В качестве рабочей жидкости в эжекторах используется сливаемый продукт. При работе с погруженным эжектором не только полностью исключается вакуум во всасывающих линиях, но в отдельных случаях создается избыточное давление (подпор).

Схема обвязки эжекторов определяется разностью отметок между нижней образующей котла цистерны и резервуаром или насосом. На рис. 1.2 приведены различные варианты обвязки эжектора. Схема, изображенная на рис. 1.2, а применяется в тех случаях, когда разность геодезических отметок цистерны и резервуара позволяет (с учетом дополнительного подпора, развиваемого эжектором) обеспечить заданную производительность слива Q0. Подача и напор насоса обеспечивают работу эжектора. В тех случаях, когда разность отметок цистерны и резервуара не позволяет организовать самотечный слив или резервуар находится выше цистерны, применяют схемы, изображенные на рис. 1.2, б. Если давление, развиваемое основным насосом недостаточно для работы эжектора, то следует предусмотреть дополнительный насос для подачи рабочей жидкости в эжектор (рис. 5.2, б). Производитель-Юность дополнительного насоса выбирают равной расходу рабочей жидкости через эжектор, а дифференциальный напор равным разности между давлением рабочего продукта перед эжектором и давлением, развиваемым основным насосом.

Слив продукта может быть значительно ускорен, если создать повышенное давление над поверхностью продукта в цистерне. Для создания избыточного давления применяют подачу сжатого воздуха, инертного газа (азота) или пара.

Промыво-пропарочные станции. Для подготовки цистерн под налив и ремонта цистерн предназначены промыво-пропарочные станции (ППС), которые проектируются в составе НПЗ и НХЗ.

Заданием на проектирование ППС устанавливается суточная программа по очистке и промывке цистерн и бункерных полувагонов, оговариваются виды очистки (горячая или холодная). Обычно ППС на НПЗ должны ежесуточно обрабатывать 400—600 цистерн и 50—100 полувагонов.

На ППС предусматривается проведение следующих операций: удаление остатка светлых нефтепродуктов; пропарка котлов цистерн с одновременным сливом остатков темных нефтепродуктов; промывка горячей водой внутренних стенок котлов цистерн; удаление промывочных вод с помощью вакуумных установок; дегазация котлов цистерн вентиляционной установкой; обезвоживание слитых остатков темных нефтепродуктов; очистка сточных вод. ППС проектируются по заказам генпроектировщиков НПЗ проектными институтами МПС СССР.

Водный транспорт сырья. Перевозка нефти и нефтепродуктов. по воде осуществляется в самоходных нефтеналивных судах, морских и речных танкерах, а также в несамоходных морских, (лихтеры) и речных (баржи) судах. Внутренним водным транспортом перевозится более 60 млн. т. нефтепродуктов. Основной объем речных перевозок нефти и нефтепродуктов приходится на Волго-Камский и Обь-Иртышский бассейны. Сырая нефть перевозится с полуострова Мангышлак и из Махачкалы в Волгоград, а также из Куйбышева в районы Черного, Балтийского и Каспийского морей.

Для создания благоприятных условий слива нефти и для предотвращения загрязнения водоемов устраиваются специальные нефтяные гавани, в которых сооружаются пристани, пирсы или причалы. Гавани могут быть естественными (бухты, заливы, затоны) или искусственными.

Хранение сырья. Для хранения нефти на НПЗ предназначаются сырьевые резервуарные парки. Нормы технологического проектирования предлагают предусматривать в проектах такую вместимость парков, чтобы она обеспечивала бесперебойную работу НПЗ, получающего нефть по нефтепроводу, в течение 7. суток. Если предприятие снабжается нефтью по железной дороге или водным путем вместимость сырьевых парков должна быть увеличена. В этом случае величина нормативного запаса оговаривается в задании на проектирование.

Для предотвращения потерь нефти от испарения ее хранят в резервуарах с плавающими крышами или понтонами. На сырьевых базах НПЗ обычно устанавливаются резервуары объемом 20— 50 тыс. м3. Число резервуаров определяется общей вместимостью парка и принятым единичным объемом резервуара. При проектировании сырьевых складов НПЗ и НХЗ руководствуются СНиП II-106—79 [44]. Этот нормативный документ разработан для использования при проектировании складов нефти и нефтепродуктов; его допускается применять при проектировании складов легковоспламеняющихся, и горючих жидкостей, условия хранения которых в зависимости от их свойств сходны с условиями хранения нефти и нефтепродуктов. СНиП П-106—79, однако, не распространяется на проектирование складов (товарных баз) сжиженных газов, нефтепродуктов с упругостью паров выше 93,6 кПа (700 мм рт. ст.) при 20°С, складов синтетических жирозаменителей, подземных хранилищ в горных породах, отложениях каменной соли, ледогрунтовых хранилищ.

СНиП П-106—79 делит склады нефти и нефтепродуктов на две группы, причем товарно-сырьевые склады НПЗ и НХЗ отнесены к первой группе. Склады первой группы подразделяются на три категорий в зависимости от общей вместимости. В СНиП регламентированы расстояния от зданий и сооружений складов (товарно-сырьевых баз) до зданий и сооружений соседних предприятий, жилых и общественных зданий, расстояния от резервуаров для нефти и нефтепродуктов до зданий и сооружений склада (сливо-наливных устройств, насосных, канализационных сооружений, складов для нефтепродуктов в мелкой таре и т. п.), расстояния от зданий и сооружений склада до трубопроводов. СНиП П-106—79 рекомендует размещать резервуары группами, устанавливает предельную вместимость резервуаров в группе и расстояния между стенками резервуаров, расположенных в одной и соседних группах.

Товарная продукция, вырабатываемая на НПЗ, может быть условно разделена на две группы: 1) продукция, производимая непосредственно на технологических установках, и 2) продукция, приготавливаемая из различных компонентов. Непосредственно на установках НПЗ вырабатывают индивидуальные углеводородные фракции С3—Cs (пропановую, бутановые, пентановые), ароматические углеводороды (бензол, толуол, индивидуалыше ксилолы), различные марки твердых парафинов, присадки к маслам и т. д.

Значительное количество крупнотоннажных товарных продуктов — бензин, дизельное и котельное топлива, смазочные масла — получают на НПЗ смешением (компаундированием) из компонентов, вырабатываемых на различных установках. Так, для приготовления автомобильных бензинов на некоторых НПЗ используют до 10—15 компонентов.

На нефтехимических предприятиях товарная продукция — спирты, альдегиды, кислоты, полиолефины, сырье для производства синтетического каучука и др. — вырабатывается непосредственно в цехах и на установках.

Для осуществления операций по приготовлению товарной продукции из компонентов проектируются специальные объекты, на которых используются следующие основные методы компаундирования:

1) циркуляционный — приготовление производится в смесительных резервуарах;

3) непосредственное смешение в трубопроводах. Разработке проекта узла приготовления товарной продукции должен предшествовать расчет ожидаемых показателей качества товарных продуктов на основе сведений о качестве компонентов. В расчетах следует учитывать, что только некоторые из показателей качества являются аддитивными. Так, плотность смеси, содержание в ней серы, температуру анилиновой точки, показатели фракционного состава, определенные по ИТК, находят суммированием произведений массовых долей компонентов на соответствующие показатели каждого из компонентов. Давление насыщенных паров смеси с достаточной степенью точности можно определить суммированием произведений мольных долей компонентов на давления паров этих компонентов.

В известной степени аддитивными являются показатели октанового и цетанового чисел: Однако определенное по правилу аддитивности октановое число смеси может оказаться выше или ниже реального. Более Точно рассчитать реальное октановое число позволяет формула:

Здесь Осм — реальное октановое число смеси; О А, Ов — октановые числа ; высокооктанового и низкооктанового компонента смеси, соответственно; А и В — содержания компонентов в смеси, % (об.); k — поправочный коэффициент, определяемый по специальному графику, приведенному в литературе. –

Для расчета октанового числа смеси могут быть также использованы формулы, разработанные ВНИИНП и НПО «Нефтехим-автоматика» и фирмой «Этил Корпорейшн».

Более точные уравнения, по которым можно определить смесительные характеристики мазутов, зная показатели отдельных компонентов, приводятся в литературе.

Метод приготовления товарной продукции многократной циркуляцией через смесительные резервуары применяется в течение многих лет. Сущность метода заключается в следующем. Компоненты товарных продуктов с технологических установок поступают в компонентные,

Резервуары парков смешения, анализируются, а затем насосами подаются в смесительный резервуар. Приготовленный в смесительном резервуаре продукт забирается специальными насосами и многократно перекачивается по схеме «резервуар—насос— резервуар» до тех пор, пока в резервуаре не будет получена однородная по составу смесь, показатели которой соответствуют требованиям, предъявляемым к готовому продукту.

Вместимость компонентных резервуаров при приготовлении топлив должна соответствовать 48-часовому запасу каждого компонента, а смесительных резервуаров— 16-ч-асовой выработке данного вида топлива. При получении товарных масел предусматриваются компонентные резервуары, исходя из 36-часового запаса каждого компонента, и смесительные резервуары, исходя из суточной выработки масел.

В табл. приводится пример расчета необходимой вместимости резервуарных парков смешения, автобензина.

Для улучшения условий перемешивания резервуары оборудуют смесительными устройствами: маточниками с большим числом отверстий, направленных вверх, вниз или под углом; так называемыми «пауками» с установленными на них инжекторами-смесителями; подъемными трубами, через которые продукт закачивают на определенную высоту от днища.

В аппаратах с перемешивающими устройствами готовят товарные масла. Для ряда НПЗ была запроектирована установка приготовления масел, в состав которой входят компонентные резервуары, смесители с принудительным перемешиванием, насосная, емкости для присадок и камеры для плавления присадок.

Оба описанных выше метода обладают рядом серьезных недостатков: повышенным расходом электроэнергии, малой производительностью смешения, необходимостью строительства смесительных резервуаров.

Р-1—Р-3 — компонентные резервуары; Р-4 — товарный резервуар; Н-1—Н-3 — насосы; Ф-1—Ф-3 —фильтры; PM-J—PM-3— расходомеры; РЕ-1—РЕ-3— регуляторы; К-1—К-3 — регулирующие клапаны; СК-1 — смесительный коллектор.

Более эффективным является приготовление товарной продукции смешением в потоке. Для каждого НПЗ разрабатываются индивидуальные проекты автоматизированных систем (автоматических станций) смешения. Схема автоматической станции смешения, на которой приготавливается продукт из трех компонентов, приведена на рис. 1.3. В состав оборудования станции входят: компонентные резервуары, насосы, фильтры для очистки компонентов от механических примесей, газоотделитель (при приготовлении бензинов), измерители расхода, регулирующие клапаны, обратные, клапаны.

Объем резервуарного парка для хранения компонентов обуславливается производительностью станции смешения, необходимостью остановки для профилактического осмотра и ремонта, потребностью во времени для лабораторного анализа. Нормы технологического проектирования не регламентируют объема компонентных резервуаров, представляя право решать эту задачу проектировщикам. Оптимальные условия эксплуатации, как показывает практика, обеспечиваются при наличии 2-3 резервуаров для каждого компонента, общая вместимость которых соответствует 16—20-часовой выработке этого компонента.

Для перекачки каждого компонента следует предусматривать индивидуальные насосы, причем нежелательно, чтобы одним насосом компонент перекачивался в разные смесительные коллекторы.

В качестве измерителей расхода на станциях смешения применяются объемные счетчики или турбинные расходомеры. Широкое распространение получили венгерские турбинные расходомеры «Турбоквант», достоинством которых являются небольшие размеры, малая металлоемкость, простота ремонта. При разработке проектов станций смешения следует стремиться, чтобы максимальная производительность по компоненту не превышала 75% от пропускной способности расходомера, а минимальная не была близка к нижнему пределу пропускной способности.

Для управления процессом смешения в Рязанском СКВ Московского НПО «Нефтехимавтоматика» разработаны комплексы приборов управления «Поток». В состав комплексов входят блоки компонентов и управления.

Если схема автоконтроля блока компонента фиксирует отклонение действительного расхода компонента от заданного более чем на 0,5% в сторону уменьшения расхода, то формируется команда «Ошибка-1», по которой блок управления снижает скорость смешения.

В составе комплексов имеются основные и резервные блоки. При нарушении режима работы основных блоков резервные блоки подключаются к сети и форсированно выводятся на режим работы основного блока.

Хранение и отгрузка основного количества товарной продукции на НПЗ и НХЗ производится через товарно-сырьевые базы (ТСБ) предприятий. Отдельные виды продукции — битумы, элементарную серу, нефтяной кокс — отправляют потребителям непосредственно с технологических установок. При проектировании предприятий следует стремиться к тому, чтобы объекты по хранению и отгрузке продукции были сосредоточены в одном месте, что облегчает управление товарной базой, упрощает работу железнодорожного транспорта. Исключение делают для объектов по отгрузке сжиженных газов, которые в соответствии с противопожарными нормами проектирования следует размещать на расстоянии не менее 300—500 м от территории предприятия. Вместимость товарных складов (парков) зависит от устанавливаемых нормами технологического проектирования сроков хранения. Товарные парки должны обеспечивать возможность приема и хранения в них 15-суточной выработки, каждого из товарных нефтепродуктов. Вместимость складов сжиженных газов не должна превышать трехсуточной выработки этих продуктов. Если отгрузка товарных нефтепродуктов потребителям производится по трубопроводам, нормативный срок хранения сокращается до 7 суток.

Число устанавливаемых резервуаров зависит от количества подлежащего хранению продукта и единичной вместимости выбранного резервуара. Экономически целесообразно устанавливать меньшее число резервуаров большей вместимости. Так, расход металла на сооружение 6 резервуаров по 10 тыс. м3 составляет 955 т, а при строительстве 3 резервуаров по 20 тыс. м3 — 825 т. Сооружение резервуаров большей вместимости взамен мелких позволяет также уменьшить территорию, занимаемую парками.

Для каждого вида товарной продукции рекомендуется предусматривать не менее 3 резервуаров (в один поступает товарная продукция, второй находится на анализе, из третьего производится отгрузка продукции).

По, расположению и планировке резервуары делятся на подземные (если наивысший уровень жидкости в резервуаре ниже наинизшей планировочной отметки прилегающей площадки не менее, чем на 0,2 м) и наземные (если они не удовлетворяют вышеуказанным условиям). Для хранения товарной продукции НПЗ и НХЗ используются стальные емкости вместимостью 200 м3 (до ОСТ 26-02-1496—76); стальные резервуары вертикальные цилиндрические со щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3 с понтоном и щитовой кровлей вместимостью от 100 м3 до 30 тыс. м3, с плавающей крышей вместимостью от 10 тыс..м3 до 50 тыс. м3; стальные резервуары с коническими днищами; горизонтальные емкости для хранения продуктов под давлением 0,6—1,8 МПа вместимостью отг25 м3 до_200_м,3 (по ОСТ 26-02-1159^-76); шаровые резервуары для хранения продуктов под давлением 0,25—1,2 МПа железобетонные резервуары.

В табл. 1.3 приведены рекомендации по выбору типа емкости для хранения продукции НПЗ и НХЗ. На рис. 1.4 изображен резервуар с плавающей крышей, применяемый для хранения бензина и других легкокипящих продуктов.

Безопасная и удобная эксплуатация резервуаров обеспечивается применением дополнительного оборудования, которое предназначено для заполнения и опорожнения резервуаров, замера уровня продукта, зачистки, .отбора проб, сброса подтоварной воды,

1 — верхний настил крыши; 2 — нижний настил крыши; 3 — днище; 4- подвижная лестница.

Рис. 1.5. Схема расположения оборудования на вертикальных резервуарах для маловязких нефтепродуктов:

1— световой люк; 2 — вентиляционный патрубок; 3 — дыхательный клапан; 4 — огневой предохранитель; 5 — замерный люк; 6 — прибор для замера уровня; 7— люк-лаз; 8 —сифонный кран; 9 — хлопушка; 10 — при-емо-раздаточный патрубок; 11 — перепускное устройство; 12 — управление хлопушкой; 13 — крайнее положение приемо-раздаточных патрубков по отношению к оси; 14 — предохранительный клапан.

Пенотушения, поддержания определенного давления в резервуарах. На рис. 1.5 приводится схема расположения оборудования на вертикальных резервуарах, для маловязких нефтепродуктов.

При разработке проектов товарных баз для НПЗ и НХЗ рекомендуется использовать СНиП II-106—79

Товарная продукция НПЗ и НХЗ отгружается трубопроводным, железнодорожным, автомобильным – и речным транспортом.

Трубопроводный транспорт. По трубопроводам транспортируются потребителям светлые и темные нефтепродукты — бензин, дизельное и котельное топлива, а также сжиженные газы, этилен, аммиак. Экономически целесообразным трубопроводный транспорт становится при концентрированном потреблении продукта в одной точке и районе, когда по трубопроводу перекачиваются не менее 300—500 тыс. т продукта в год.

В ближайшие годы намечается значительно расширить сеть нефтепродуктопроводов. Постановление Совета Министров СССР о развитии сети нефтепродуктопроводов в 1981—1985 годах предусматривает сооружение новых трубопроводов для перекачки бензина и дизельного топлива в центральных районах страны, Сибири, Казахстане, создание ряда мазутопроводов, связывающих НПЗ с крупными тепловыми электростанциями, и керосинопроводов между заводами и аэропортами.

На территории НПЗ и НХЗ обычно размещаются головные сооружения нефтепродуктопроводов: склады (парки), головные насосные. Некоторые продуктопроводы имеют в составе головных сооружений собственные резервуарные парки, в которые продукт подается из резервуаров товарной базы НПЗ насосами товарной насосной. Более экономичным решением является использование в качестве головных сооружений резервуаров заводской товарной базы. Продукт в магистральный трубопровод подается непосредственно c этих резервуаров насосами головной насосной станции, размещаемой рядом с резервуарами.

Железнодорожный транспорт. Транспортировка продукции НПЗ и НХЗ по железной дороге является основным видом перевозки нефтепродуктов и ее ведущее значение сохранится в ближайшие годы. Основным видом тары для перевозки по железной дороге нефтяных и химических продуктов служат цистерны. Цистерны подразделяются на универсальные, предназначенные для перевозки различных грузов (нефти и светлых нефтепродуктов, нефти и мазута и т. д.) и специальные. В специальных цистернах перевозится какой-либо один вид продукции (например, сжиженные газы, кислоты, спирты). Характеристика Цистерн, изготавливаемых вагоностроительными заводами и используемых при перевозке нефтяных и химических. продуктов, приводится в литературе. Для отгрузки продукции нефтеперерабатывающих и нефтехимических предприятий в составе товарных баз проектируются специальные устройства. Если объем отгрузки ограничен десятками тысяч тонн в год, то предусматривают одиночные стояки или небольшие односторонние эстакады, состоящие из 5—10 стояков. Для отгрузки многотоннажных продуктов (бензин, реактивное, дизельное и котельное топлива, смазочные масла) сооружаются двухсторонние эстакады галерейного типа. Эстакады для налива реактивного топлива, авиационных бензинов, смазочных масел, присадок к маслам и других ЛВЖ и горючих жидкостей, в которые недопустимо попадание воды, должны быть оборудованы навесами и крышами. Температура ЛВЖ, подаваемых на налив, должна быть не менее, чем на 10°С, ниже температуры начала кипения наливаемого продукта.

Налив нефтепродуктов осуществляется в одиночные цистерны, группы и маршруты цистерн. Маршрутный налив цистерн более экономичен и должен предусматриваться при проектировании эстакад как основной вид налива.

Длина эстакады не должна быть меньше половины длины маршрута. Конструкция эстакад должна обеспечивать техническую возможность налива продуктов в железнодорожные цистерны всех типов, пригодные для перевозки данных продуктов. Проектирование железнодорожных эстакад на ограниченное число типов (моделей) цистерн допускается только при наличии согласования с Управлением железной дороги, обслуживающей предприятие, или с’ предприятием — собственником цистерн.

В последние годы осуществляется постепенный переход железнодорожного транспорта на цистерны новых типов — шести восьмиосные вместимостью 90 и 120 м3. В проектах следует принимать во внимание особенности налива этих цистерн.

При разработке проектов железнодорожных эстакад необходимо учитывать возможность поступления под налив неисправных цистерн. Чтобы иметь возможность удалить из этих цистерн имеющийся в них продукт, проектом предусматриваются – самостоятельные эстакады с верхним и нижним сливом, которые оборудуются отдельными стояками и коллекторами для сливаемых продуктов. При небольших объемах отгрузки для слива неисправных цистерн могут быть запроектированы отдельно стоящие

Особые требования предъявляются к проектированию железнодорожных эстакад для слива и налива сжиженных газов. Эти эстакады должны быть отделены от прочих эстакад, оборудованы Самостоятельными коллекторами, трубопроводами, сливо-наливными устройствами и газоуравнительными системами для каждого вида наливаемых и сливаемых сжиженных газов. Одновременно с эстакадами для слива и налива сжиженных газов в составе товарно-сырьевых баз сжиженных газов следует проектировать эстакады для подготовки цистерн сжиженного газа под налив. Опыт проектирования эстакад освещен. Эксплуатация железнодорожных эстакад галерейного типа отличается большой трудоемкостью и применением ручного труда. Наиболее трудоемки подготовительные и вспомогательные операции, открытие и закрытие люков цистерн, заправка и подъем наливных шлангов и телескопических устройств и т. д. При проектировании железнодорожных эстакад следует предусматривать их оснащение средствами механизации и автоматизации: ограничителями налива, которые служат для автоматического прекращения подачи жидкости в цистерну при достижении в ней определенного уровня (ПОУН-1, ПОУН-2, НО-2М), устройствами механизации подъема— спуска наливных средств.

Автомобильный транспорт. Продукция НПЗ и НХЗ перевозится автомобильным транспортом в ограниченных размерах, На отдельных предприятиях имеются устройства для налива в автоцистерны мазута, битумов, бензина. Сооружения, предназначенные для полуавтоматического налива нефтепродуктов в автоцистерны и автотопливозаправщики, называются станциями налива. Станции налива оборудуются стояками, которые различаются по виду наливаемого продукта, По способу налива (герметизированные и негерметизированные), по виду управления процессом (автоматизированные и неавтоматизированные), по виду управления, (с механизированным и ручным управлением).

Станция налива состоит из 4—12 наливных «островков», располагаемых под навесом. Каждый островок оборудуется одним или двумя наливными стояками, в качестве которых применяются установки: автоматизированного налива с местным управлением АСН-5П, автоматизированного налива с дистанционным управлением АСН-5Н, автоматизированного и герметизированного налива АСН-12.

Водный транспорт. Нефтеперерабатывающие, заводы, расположенные вблизи крупных рек, отправляют в навигационный период часть своей продукции водным путем (в танкерах, баржах и лихтерах). Для налива сооружаются специальные причалы.

Налив нефтепродуктов осуществляется по трубопроводам, прокладываемым от резервуаров к причалам. Возможны два варианта организации налива: 1) подача продукта насосами из резервуаров товарного парка непосредственно в наливные суда; 2) подача продукта по трубопроводам в промежуточные резервуары, расположенные в непосредственной близости от причала с последующим поступлением нефтепродуктов в суда самотеком. Последний вариант применяют обычно ‘в тех случаях, когда НПЗ расположен на расстоянии нескольких километров от причала.

В составе нефтепричалов проектируют следующие сооружения: водные подходы, причальные устройства (подходные эстакады, центральные платформы, швартовые палы, отбойные устройства), шлангующие устройства и установки.

При проектировании водных подходов необходимо определить глубину и ширину полосы акватории, глубину водных подходов. Проект причальных устройств включает выбор типа причальных сооружений, определение суточной пропускной способности одного причала и числа причалов, необходимого для отгрузки всего количества грузов. В проекте нефтепричала также решаются вопросы выбора шлангующих устройств, подготовки резервуаров, трубопроводов и нефтеналивных судов к сливо-наливным операциям, определяются методы борьбы с потерями нефтепродуктов при наливе и защиты водных бассейнов от загрязнения нефтепродуктами.

1. Рудин М. Г., Смирнов Г. Ф. Проектирование нефте-перерабатывающих и нефтехимических заводов. –Л.: Химия, 1984.

Http://www. bestreferat. ru/referat-183330.html

Отправимся в воображаемую экскурсию на НПЗ (нефтеперерабатывающий завод) и для простоты будем считать, что он производит лишь бензин, керосин, дизельное и другие топлива, смазочные масла и кокс.

Этого, уверяем вас, для первого раза более чем достаточно. Ведь только в стандартах на бензины не менее десятка обязательных показателей. Их разброс по отдельным компонентам очень широк. Всего же на современном нефтеперерабатывающем заводе выделяют до 15—20 компонентов. И количества их разные—от десятков тысяч до миллионов тонн в год. Да добавьте к этому разную себестоимость компонентов и разные цены на различные марки бензина. В общем, только компьютеры на основе соответствующих экономико-математических моделей позволяют получать оптимальные решения производственных задач, обеспечивают получение всех заданных марок топлива при условии получения максимальной прибыли. Или при минимальных затратах нефти—что выгоднее в данный момент.

Всякий нефтеперерабатывающий завод состоит как бы из двух блоков: блока производства компонентов и блока смешения. В блок производства входят технологические установки; блок смешения—это, главным образом, резервуары и насосы.

Производственный цикл начинается с ЭЛОУ. Это сокращение означает “электрообессоливающая установка”. Для чего она нужна?

Как мы уже знаем в нефти есть минеральные примеси, в том числе и соли: хлориды, сульфаты и другие. В некоторых сортах нефти содержатся и минеральные кислоты. Все эти соединения необходимо выделить из нефти, так как они, во-первых, вызывают коррозию аппаратуры, а, во-вторых, являются каталитическими ядами, то есть ухудшают протекание многих химических процессов последующей переработки нефти. И наконец: в-третьих, соли не в лучшую сторону влияют на качество бензина, дизельного топлива и масел.

Обессоливание начинают с того, что нефть забирают из заводского резервуара, смешивают ее с промывной водой, деэмульгаторами, щелочью (если в сырой нефти есть кислоты). Затем смесь нагревают до 80—120°С и подают в электродегидратор. Здесь под воздействием электрического поля и температуры вода и растворенные в ней неорганические соединения отделяются от нефти.

Требования к процессу обессоливания жесткие—в нефти должно остаться не более 3—4 мг/л солей и около 0,1% воды. Поэтому чаще всего в производстве применяют двухступенчатый процесс, и нефть после первого попадает во второй электродегидратор.

После этого нефть считается пригодной для дальнейшей переработки и поступает на первичную перегонку.

Как мы уже знаем, нефть представляет собой смесь тысяч различных веществ. Даже сегодня, при наличии самых изощренных средств анализа: хроматографии, ядерно-магнитного резонанса, электронных микроскопов—далеко не все эти вещества полностью определены. Что же говорить о делах столетней давности? Конечно, наши предшественники определяли состав нефти с достаточной мерой приближения.

Впрочем, надо отдать должное их практической сметке: довольно скоро они сообразили, что независимо от сложности состава переработку нефти все равно надо начинать с перегонки. Как можно убедится по схеме, первый нефтеперегонный завод в России был очень прост и весь процесс состоял только из прегонки.

Смысл этого процесса довольно прост. Как и все другие соединения, любой жидкий углеводород нефти имеет свою температуру кипения, то есть температуру, выше которой он испаряется. (Температура кипения возрастает по мере увеличения числа атомов углерода в молекуле. Например, бензол С6Н6 кипит при 80,1 °С, а толуол С7Н8 при 110,6°С). И наоборот, если пары бензола охладить ниже температуры кипения, он снова превратится в жидкость. На этом свойстве и основана перегонка (к слову сказать, даже само название “нефть” происходит от арабского nafatha, что в переводе означает “кипеть”).

Предположим, мы поместили нефть в перегонный куб— огромный чан с крышкой, и начали ее нагревать. Как только температура жидкости перейдет за 80 °С, из нее испарится весь бензол, а с ним и другие углеводороды с близкими температурами кипения. Тем самым мы отделим от нефти фракцию от начала кипения до 80 °С, или н. к.—80 °С, как это принято писать в литературе по нефтепереработке.

Продолжим нагрев и поднимем температуру в кубе еще на 25 °С. При этом от нефти, отделится следующая фракция— углеводороды С7, которые кипят в диапазоне 80—105 °С. И так далее, вплоть до температуры 350 °С. Выше этого предела температуру поднимать нежелательно, так как в остающихся углеводородах содержатся нестабильные соединения, которые при нагреве осмоляют нефть, разлагаются до углерода и способны закоксовать, забить смолой всю аппаратуру.

Введем одно техническое новшество – вместо дробной перегонки в периодически работающих кубах, внедрим ректификационную колонну. Для этого над кубом, в котором нагревают нефть, водрузим высокий цилиндр, перегороженный множеством, ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары нефтепродуктов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают пробулькивать через слой жидкости на каждой тарелке.

Температура в ректификационной колонне снижается от куба к самой последней, верхней тарелке. Если в кубе она, скажем, 380 °С, то на верхней тарелке она должна быть не выше 35-40 °С, чтобы сконденсировать и не потерять все углеводороды C5, без которых товарный бензин не приготовить. Верхом колонны уходят несконденсировавшиеся углеводородные газы С1-С4. Все, что может конденсироваться, остается на тарелках.

Таким образом, достаточно сделать отводы на разной высоте, чтобы получать фракции перегонки нефти, каждая из которых кипит в заданных температурных пределах. Фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов.

С точки зрения затрат, чем грубее перегонка, чем более широкие фракции получаются в итоге, тем она дешевле. Ведь при всякой ректификации происходят достаточно сложные процессы тепло – и массообмена. На каждой тарелке происходят испарение и конденсация. Мы должны нагреть жидкость до температуры кипения, затем добавить еще энергию, чтобы ее испарить (с учетом скрытой теплоты парообразования). Потом, когда пары конденсируются, эта энергия выделяется. Но вот использовать ее удается далеко не полностью – слишком много энергии при таких переходах безвозвратно теряется.

И чем более узкие фракции мы хотим получить, тем выше должны быть колонны. Тем больше в них должно быть тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку, перейти из газовой фазы в жидкую и обратно. Для этого нужна энергия. Ее подводят к кубу колонны в виде пара или топочных газов.

Как везде в технике, в нефтепереработке не любят лишних затрат. Поэтому нефть поначалу перегоняли на широкие фракции. Это прежде всего бензиновая фракция (прямогонный бензин); она кипит от 40-50 °С до 140-150 °С. Далее следует фракция реактивного топлива (140-240 °С), затем дизельная (240-350 °С).

Остатком перегонки нефти был мазут. Поначалу его практически целиком сжигали как котельное топливо. И только с изобретением крекинга, о котором речь дальше, появилась возможность использовать и, его.

В принципе нефть можно перегнать в одной колонне, отбирая фракции с расположенных на разной высоте тарелок. Но мы уже убедились, что это невыгодно как по затратам энергии, так и по затратам на оборудование. Поэтому на практике перегонку (или, как говорят специалисты, разгонку), проводят в нескольких колоннах. Обычно их пять. На первой колонне выделяется легкая бензиновая фракция, которая затем конденсируется в специальном холодильнике-конденсаторе и уже в жидком виде отправляется в стабилизационную колонну.

Зачем нужна стабилизация? Дело в том, что вместе с легкой бензиновой фракцией на первой колонне отгоняются и легкие углеводородные газы С3 – C5. Они легкокипящие, поэтому при обычной комнатной температуре 20-25 °С улетучиваются из жидкой углеводородной массы (содержание их в растворе обратно пропорционально температуре). Между жидкостью и газовой фазой устанавливается термодинамическое равновесие, соответствующее данной температуре.

Это означает, что строго определенное число молекул, например бутана С4Н10, переходит в единицу времени из жидкой фазы в газовую и обратно. Тем самым над поверхностью бензина создается как бы газовая подушка, от которой зависит такой важный показатель качества бензина, как давление насыщенных паров. Понятно, чем больше пропана С3Н8 и бутана С4Н10 осталось растворенными в бензине, тем выше давление паров, то есть тем выше концентрация пропана и бутана также над поверхностью бензина при данной температуре.

Практическое значение данного показателя очень велико. От него зависит испаряемость бензина в карбюраторе, сам процесс карбюрации и последующее сгорание топливно-воздушной смеси в цилиндрах двигателя. Легкие фракции бензина иногда называют пусковыми. Если их мало, то двигатель заводится с трудом, особенно зимой. Именно по этой причине в ГОСТе на бензин оговаривается, что давление насыщенных паров бензина для зимних сортов должно быть 66-92 кПа (500-700 мм рт. ст.), а для летних не более 66,5 кПа.

Почему же летом “не более”? По двум причинам. Во-первых, потому что повышенное содержание легких газов в бензине способно нарушить систему топливоподачи из-за образования локальных газовых пробок, а во-вторых, чтобы сократить потери бензина за счет испарения. Приходилось ли вам открывать в жаркий летний день канистру с бензином? Если да, то вспомните, как из-под крышки, стоит ее лишь приоткрыть, тотчас выплескивается бензин. Точно так же брызжет шампанское из плохо охлажденной бутылки.

А теперь представьте себе путь бензина от нефтеперерабатывающего завода до автомобильного бака. Его многократно перекачивают из резервуара в резервуар, затем в железнодорожные цистерны, лотом в автоцистерны и т. д. Все процессы транспортировки и хранения бензина ведутся под давлением, таковы требования техники безопасности. Но уплотнения оборудования не идеальны. Бензин то и дело непосредственно соприкасается с атмосферой, при этом происходит его испарение, а значит – потери. Они тем выше, чем больше давление насыщенных паров. Поэтому и нужна стабилизационная колонна, где в случае необходимости из бензина специально удаляют бутан, чтобы этот показатель укладывался в предусмотренные ГОСТом пределы.

Но мы несколько отвлеклись. Итак, на первой колонне выделяется только легкий бензин. Оставшаяся нефть поступает на вторую колонну, где с верха отбирают весь остальной, тяжелый бензин, а с боковых отводов – керосиновую и дизельную фракции. Снизу выделяется мазут.

Тяжелый бензин также стабилизуется на специальной колонне. Керосиновую и дизельную фракции на отдельной колонне освобождают дополнительно от примеси бензиновой фракции. Мазут же поступает в печь, нагревается до 400 °С и подается в куб вакуумной колонны. В зависимости от необходимости его здесь разделяют на вакуум-дистиллят (фракция 350 – 500 °С) и на гудрон, кипящий при температуре выше 500 °С. Иногда вакуум-дистиллят называют вакуум-газойлем.

Вакуум-дистиллят используют для получения котельных топлив. Гудрон же используют для производства асфальта, дорожных и строительных битумов.

Агрегаты первичной перегонки нефти получили название атмосферной или атмосферно-вакуумной трубчатки, поскольку они оборудованы трубчатыми печами для нагрева нефти. Иногда на нефтеперерабатывающих заводах, где переработка мазута не предусмотрена, вакуумная часть отсутствует.

И чтобы закончить с первичной перегонкой, несколько слов о том, как выглядят производственные установки. На современных нефтеперерабатывающих заводах обычно работают атмосферные трубчатки или атмосферно-вакуумные трубчатки мощностью 6 – 8 миллионов тонн перерабатываемой нефти в год. Обычно на заводе таких установок не одна, а две-три.

Первая атмосферная колонна представляет собой сооружение диаметром, например, 7 метров в нижней и 5 метров в верхней части. Высота колонны – 51 метр. По существу, это два цилиндра, поставленные один на другой. И это еще не самая большая подобная установка. Другие колонны, холодильники-конденсаторы, печи и теплообменники также выглядят достаточно внушительно и в то же время элегантно. Дизайнеры поработали и здесь.

Кроме обессоливания, обезвоживания и прямой перегонки на многих нефтезаводах есть еще одна операция переработки – вторичная перегонка. Ее еще называют зачастую четкой ректификацией. Задача этой технологии – получить узкие фракции нефти для последующей переработки. Продуктами вторичной, перегонки обычно являются бензиновые фракции, служащие для получения автомобильных и авиационных топлив, а также в качестве сырья для последующего получения ароматических углеводородов – бензола, толуола и других.

Типовые установки вторичной перегонки и по своему виду, и по принципу действия в общем-то очень похожи на агрегаты атмосферной трубчатки, только они гораздо меньше, можно сказать даже миниатюрны.

Вторичная перегонка завершает первую стадию переработки нефти: от обессоливания до получения узких фракций. По современным понятиям, это даже не полпути. Наступает очередь деструктивных процессов.

В отличие от физических по существу процессов перегонки, здесь уже происходят глубокие химические преобразования. Из одной большой молекулы можно получить несколько малых; прямоцепочечные углеводороды будут превращены в циклические или в разветвленные…

Первый патент на промышленную технологию крекинга взял Дж. Юнг в 1866 году. Называлось это техническое решение так:

“Способ получения керосина из тяжелой нефти перегонкой под давлением”. Термин “крекинг” (от английского слова cracking – расщепление) был введен в обиход позднее.

Первые крекинг-аппараты по существу представляли собой периодически работающие кубы, подобные тем, в которых осуществлялась обычная перегонка. Лишь в 1891 году наши соотечественники, известные инженеры – В. Г. Шухов и С. П. Гаврилов, предложили новое устройство для крекинг-процесса. Это был трубчатый реактор непрерывного действия, где по трубам осуществлялась принудительная циркуляция мазута или другого тяжелого нефтяного сырья, а в межтрубное пространство подавались нагретые топочные газы.

Что же происходит при термическом крекинге? Под воздействием высокой температуры длинные молекулы, например алканов С20, разлагаются на более короткие – от С2 до С18. Углеводороды С8 – С10 – это бензиновая фракция, С15 – дизельная. Вообще при термическом крекинге происходят сложные рекомбинации осколков разорванных молекул с образованием более легких углеводородов. При этом одновременно происходит перераспределение процентного содержания углерода и водорода в сырье и продуктах.

Таким образом, если, например, превращать мазут в легкие бензиновые фракции, содержащие повышенные количества водорода, то одновременно должен образоваться и остаток, богатый углеродом. И такой остаток, действительно, образуется. В нем концентрируются смолы, кокс, серосодержащие соединения и минеральная часть нефти, не отмытая на ЭЛОУ. Этот крекинг-остаток затем обычно используют как компонент котельного топлива, смешивая его с мазутом, оставшимся от прямой перегонки нефти.

С изобретением крекинга глубина переработки нефти увеличилась. Выход светлых составляющих, из которых затем можно приготовить бензин, керосин, дизельное топливо (соляр) повысился с 40-45 до 55-60%. Но главное даже не в этом. Новая технология позволила повнимательнее присмотреться к мазуту, использовать его в качестве сырья для производства масел.

Колесная мазь появилась, наверное, чуть позже, чем само колесо, но тоже достаточно давно. Прямой смысл известного афоризма: “Не подмажешь – не поедешь”, – указывает на один из самых древних способов борьбы с трением.

Сначала для этой цели использовали животные жиры. Затем появился деготь-продукт термической перегонки некоторых сортов древесины. Впоследствии этот же деготь стали гнать из каменного угля. Но промышленная революция, быстрое развитие техники выдвигали все новые задачи. Механизмы вращались все быстрее, транспортные средства все наращивали скорость, а значит, все возрастали требования к смазке. Требовались смазочные масла со все большим спектром свойств: сверхвязкие и сверхтекучие, термостойкие и неосмоляющиеся, противозадирные и противоизносные. А главное – их требовалось с каждым годом все больше. И в конце концов смазочные масла стали делать из нефти.

К тому времени химики выяснили, что углеводороды подходящей структуры имеются в тех фракциях нефти, которые выкипают при температуре выше 350 °С. Правда, эти масляные фракции есть не во всякой нефти, но подходящих сортов тоже набирается достаточно. Больше огорчало специалистов другое: углеводороды масляных фракций имеют сложную структуру, соседствуют по температурам кипения с парафинами, так что разделить их не так-то просто. В поисках наилучшей технологии пришли к перегонке мазута под вакуумом.

В основе такой перегонки лежит известный физический закон, согласно которому с понижением давления снижается и температура кипения жидкостей. Все ведь знают, что высоко в горах вода кипит при температуре ниже 100 °С, и сварить яйцо на Эвересте – проблема. Но то, что в обыденной жизни можно отнести к минусам, в нефтехимической технологии превратилось в плюс.

Если в ректификационной колонне создать вакуум, скажем 1 – 1,5 кПа, то мазут начинает испаряться при температуре ниже 350 °С. Значит, с меньшими затратами тепла и с большей точностью из него можно отогнать те узкие фракции, которые затем будут использованы для производства смазочных масел.

Это в теории. На практике же изготовление масел достаточно сложное, многостадийное производство. Сначала применяют серию очисток – в маслах очень нежелательно присутствие серы, ванадия и других минеральных примесей, имеющихся в исходной нефти. Затем надо очистить масляные фракции от парафинов – хорошее будет масло, если оно будет застывать уже при комнатной температуре.

Полученные парафины раньше использовались для производства свеч. В настоящее время их гораздо чаще используют в бумажной, пищевой и химической промышленности. Парафинированная бумага не боится влаги, хорошо воспринимает типографскую краску и потому применяется для производства высококачественных полиграфических изделий. В парафин также “замуровывают” сыр. А химической переработкой парафинов получают синтетические жирные кислоты, которые незаменимы при производстве моющих средств.

Иногда при переработке тяжелых сортов нефти остаток прямой перегонки нельзя использовать в качестве топочного мазута – это уже гудрон. Содержащиеся в нем смолы делают его настолько вязким, что перекачка, транспортировка и сжигание связаны с очень большими трудностями, особенно зимой, в морозы, когда котельное топливо больше всего и нужно. Чтобы слить его из цистерн, их приходится подогревать паром или прибегать к каким-то другим хитростям.

Так вот, чтобы избежать таких трудностей, для приготовления котельного топлива из гудрона используют не обычный термический крекинг, о котором мы только что говорили, а один из его вариантов – висбрекинг. Это название тоже произошло из английского языка и содержит в себе кусочки сразу трех английских слов: viscosity – вязкость, breack – ломать, разрушать и cracking-расщепление. Таким образом, висбрекинг – это крекинг, специально используемый для снижения вязкости. Проводят его при пониженных температурах и давлениях.

Каталитический крекинг был открыт в 30-е годы нашего Века, когда заметили, что контакт с некоторыми природными алюмосиликатами меняет состав продуктов термического крекинга. Дополнительные исследования привели к двум важным результатам. Во-первых, удалось установить подробности каталитических превращений. Во-вторых, созрела убежденность в необходимости специально готовить катализаторы для таких химических превращений, а не искать их в природе, как это делали поначалу.

Каковы же задачи катализаторов крекинга, если формулировать их, исходя из современных представлений о механизме протекающих реакций? В самом общем виде картина следующая. Катализатор отбирает из сырья и сорбирует на себе прежде всего те молекулы, которые способны достаточно легко дегидрироваться, то есть отдавать водород. Образующиеся при этом непредельные углеводороды, обладая повышенной адсорбционной способностью, вступают в связь с активными центрами катализатора. По мере роста непредельности (ненасыщенности связей) происходит полимеризация углеводородов, появляются смолы – предшественницы кокса, а затем и сам кокс. Высвобождающийся водород принимает активное участие в других реакциях, в частности гидрокрекинга, изомеризации и др., в результате чего продукт крекинга обогащается углеводородами не просто легкими, но и высококачественными – изоалканами, аренами, алкиларенами с температурами кипения 80 – 195° С. Это и есть широкая бензиновая фракция, ради которой ведут каталитический крекинга тяжелого сырья. Конечно, образуются и более высококипящие углеводороды фракции дизельного топлива, относящиеся к светлым нефтепродуктам.

Типичные параметры каталитического крекинга при работе на вакуум-дистилляте (фр. 350 – 500 °С): температура 450 – 480 °С и давление 0,14 – 0,18 МПа. В итоге получают углеводородные газы (20%), бензиновую фракцию (50%), дизельную фракцию (20%). Остальное приходится на тяжелый газойль или крекинг-остаток, кокс и потери.

Выход кокса может достигнуть 5%. Это накладывает особые требования на технологию крекинга, потому что по мере закоксовывания активных центров катализатор работает все хуже и в конце концов вообще прекращает выполнять свои функции. Теперь его надо регенерировать. Обычно для этого кокс с катализатора выжигают воздухом при 700 – 730 °С.

Каким требованиям должен отвечать катализатор для подобного процесса? Во-первых, он должен обладать специфическими хемосорбционными свойствами, то есть с разной активностью притягивать и сорбировать на себе различные молекулы нефтяного сырья. Во-вторых, необходима высокая пористость, причем желательно уметь регулировать диаметр и глубину пор. Это позволит упорядочить процесс адсорбции молекул на активных каталитических центрах, осуществить направленные превращения углеводородов, а затем десорбировать с контакта продукты превращения. В-третьих, структура и свойства катализатора должны способствовать организации наиболее эффективного тепло – и массообмена в реакционной зоне – ведь каталитический крекинг процесс термокаталитический, и роль температуры здесь особенно велика. Отсюда требования к механической прочности катализатора.

В целом же роль и задача катализаторов – повышать селективность протекающих химических реакций, увеличивая выход целевого продукта из единицы сырья. Однако применительно к каталитическому крекингу нужно сделать определенные уточнения. Целевым продуктом здесь является не просто бензин, а высокооктановый. Поэтому в самом общем виде селективность каталитического крекинга можно оценить выходом бензиновой фракции с заданным октановым числом.

Первым “рукотворным” катализатором крекинга стал алюмосиликатный формованный катализатор в виде шариков диаметром около 3 мм. В основе его был аморфный алюмосиликат, естественная пористость которого поначалу устраивала нефтепереработчиков. На смену ему пришел микросферический алюмосиликатный катализатор, частицы которого измерялись микронами. Этот пылевидный контакт положил начало использованию в каталитическом крекинге технологии взвешенного (его называют также кипящим или псевдоожиженным) слоя. Технологические усовершенствования позволили за короткий срок реализовать все преимущества, которые могли обеспечить алюмосиликатные катализаторы в части повышения селективности. А дальше дело стало из-за невозможности регулировать и определенньм образом упорядочить структуру алюмосиликата.

Выручили цеолиты. Их еще часто называют молекулярными ситами. Первоначально их применяли для разделения молекул различных углеводородов, используя различия в их пространственной структуре. Цеолиты – это практически те же алюмосиликаты, но при их изготовлении удается регулировать длину пор, их диаметр и количество на единицу объема или поверхности. Кроме того, в кристаллическую решетку алюмосиликатов можно вводить другие элементы (в основном, редкоземельные), которые модифицируют активные центры, находящиеся в определенных точках цеолита. От этого существенно зависят адсорбционные свойства цеолита – какие молекулы и с какой энергией он может адсорбировать в порах или на поверхности и какие деструктивные превращения с ними производить.

Цеолиты – это порядок и регулярность структуры, а значит и свойств. В нефтепереработке быстро оценили новые возможности. Но так как цеолиты значительно дороже алюмосиликатов, то их в чистом виде решили не применять. Это оказалось не только дорого, но и излишне. Достаточно определенным образом нанести цеолит на алюмосиликат, как мы получим нужный эффект в катализе. Так появилось целое семейство цеолитсодержащих катализаторов крекинга, причем в зависимости от назначения, вида сырья, применяемой технологии количество цеолита менялось в широких пределах, но не превышало 15 – 20%.

Вид применяемых катализаторов, способ их регенерации определяет технологию, а значит и аппаратуру каталитического крекинга.

Первые установки работали на таблетированном катализаторе в периодическом режиме. В них и реакция, и регенерация загруженного неподвижного катализатора осуществлялись попеременно в одних и тех же аппаратах. Затем появились более совершенные шариковые катализаторы и установки непрерывного действия. Здесь крекинг и регенерация катализатора осуществляются уже раздельно.

Реактор такой установки представляет собой аппарат колонного типа. Сверху в него через специальное устройство поступает катализатор в виде шариков диаметром 1 – 2 мм. Шарики плотным слоем спускаются вниз, проходя постепенно реакционную зону, зону отделения продуктов крекинга и зону отпарки. Отпарка необходима для удаления углеводородов, прилипших к катализатору. Обработку паром надо делать обязательно, так как затем катализатор поступает в другой аппарат – регенератор, где с него выжигается кокс. Неудаленные углеводороды при этом простони сгорели бы, выход полезных продуктов снизился.

После выжига катализатор ссыпается в загрузочное устройство пневмоподъемника и поднимается по специальному транспортеру в бункер-сепаратор. Дело в том, что при многочисленных перемещениях, выжигах, отпарках часть шариков повреждается, образуются крошка, пыль, и их надо удалить, иначе будут нарушены условия гидродинамики, тепло – и массообмена в реакторе. Это и делают в сепараторе. К регенерированному и отсеянному катализатору добавляют для восполнения потерь свежие шарики и весь цикл повторяется.

Следующий шаг совершенствования технологии – внедрение крекинга в кипящем слое пылевидного катализатора. Его применение стало возможньм благодаря появлению принципиально новых, микросферических катализаторов на основе специально синтезированных цеолитов. Эти катализаторы хороши не только высокой активностью и селективностью. Их отличают также хорошая регенерируемость и высокая механическая прочность.

Технология кипящего или псевдоожиженного слоя основана на физических законах витания микрочастицы в восходящем поток жидкости или газа.

Сырье нагревается в теплообменнике и в специальной печи затем в него добавляют водяной пар, и эту смесь подают катализаторопровод, туда же поступает регенерированный катали затор. Затем смесь попадает в реактор, где над распределительной решеткой образуется кипящий слой катализатора. Крекинг начинается еще в катализаторопроводе, поскольку там поддерживается достаточная температура, и заканчивается в нижней зоне реактора. Затем вся масса за счет давления газов поднимается вверх и попадает в отпарную зону.

В верхней части отпарной зоны имеется перелив для удаления катализатора из реактора, а над нею – отстойная зона. Она снабжена специальными циклонами для дополнительного отделения частиц катализатора.

Закоксованный катализатор тем временем подается на регенерацию. Регенератор представляет собой аппарат, также работающий в режиме кипящего слоя. Правда, здесь псевдоожижение производится воздухом, с помощью которого и происходит выжиг кокса. Основная забота здесь – уберечь катализатор от выноса иначе он попадет вместе с дымовыми газами в атмосферу.

Применение крекинга в кипящем слое позволило резко интенсифицировать процесс, сделать установки более компактными, увеличить их мощность. Так, стандартньми в России являются каталитические комплексы по переработке 2 миллионов тонн сырья в год. Существуют и более мощные установки – до 5 миллионов тонн вакуум-газойля в год, причем реактор такой установки не так уж велик: его диаметр составляет 18 метров.

Впервые гидрокрекинг появился в 50-х годах нашего века. Ему сразу предрекали широкое распространение. Однако с этим вышла задержка, поскольку при производстве бензина выгоднее оказался каталитический крекинг. И лишь с усилением дизелизации, с ростом пассажирской и грузовой реактивной авиации преимущества гидрокрекинга стали проявляться в полной мере.

Сырьем для гидрокрекинга могут быть тяжелые бензины, газойли, тяжелые нефтяные остатки.

Есть страны, полностью лишенные запасов природного газа. А когда возникает нужда в пропане и бутане, то выгоднее оказывается ввозить не их, а тяжелый бензин. И уже на месте его подвергают гидрокрекингу, получая сжиженный газ.

Если нужен бензин и по какой-либо причине нет возможности получить его при помощи каталитического крекинга, используют гидрокрекинг атмосферного газойля. Для этого достаточно одной стадии переработки при давлении 5 МПа и температуре 400 – 410 °С.

Если же переработке подвергается вакуум-дистиллят или другие тяжелые остатки, приходится применять двухступенчатый гидрокрекинг. На первой стадии используют сероустойчивый катализатор, удаляющий вредные примеси, в том числе и соли металлов. Затем уже, во второй ступени, используют активный крекирующий катализатор. А чтобы уберечь катализатор от закоксовывания, в системе циркулирует водород под давлением 15 МПа; благодаря этому смолы – предшественницы кокса переводятся в углеводородные газы.

С точки зрения детонационной стойкости прямогонные бензины тем хуже, чем больше в них линейных и малоразветвленных алканов.

Для получения более разветвленных углеводородов использовали процесс термического риформинга. По сути дела это тот же термический крекинг, только сырьем служат не мазут, а тяжелая фракция прямогонного бензина и температура процесса выше. В результате термической деструкции углеводородов бензин обогащается более высокооктановыми легкими компонентами. Кроме того, значительная часть алканов переходит в алкены, которые, как известно, отличаются неплохими детонационными свойствами.

Однако были у термического риформинга и недостатки. Много исходного сырья превращалось в газ, а продукт все равно имел не такое уж высокое октановое число (70—75 МОЧ). Кроме полезных алкенов в нем оказывалось и достаточное количество нестабильных диенов. Поэтому приходилось применять специальные антиокислители и стабилизаторы, иначе бензин при хранении мутнел, осмолялся.

В общем, термический риформинг не оправдал возлагавшихся на него надежд и был вытеснен каталитическим риформингом.

Реакции ароматизации, лежащие в его основе, были открыты еще в середине 30-х годов.

Эти каталитические превращения позволяют дегидрировать нафтеновые углеводороды в ароматические. Одновременно происходит дегидрирование алканов в соответствующие алкены, эти последние циклизуются тут же в циклоалканы, и с еще большей скоростью происходит дегидрирование циклоалканов в арены. Так, в процессе ароматизации типичное превращение следующее:

Одновременно с этими происходят и другие реакции, например, изомеризации. Это тоже полезное превращение, так как изосоединения повышают октановое число катализата. Побочной, вредной здесь считается реакция гидрокрекинга, когда исходные алканы крекируются в газ.

Перед второй мировой войной были построены и первые установки каталитической ароматизации бензинов. Они работали по принципу гидроформинга, осуществлявшегося с циркулирующим водородным газом под давлением. Вы спросите, что это такое. Вообще говоря, при ароматизации водород образуется постоянно, и его надо отводить. Но при низком давлении водорода катализатор быстро закоксовывается, теряет стабильность, активность и селективность. Бороться с этими неприятными явлениями легче всего, повысив давление водорода в реакционной зоне. Поэтому на первых установках гидроформинга применяли давление порядка 4,5—5 МПа, жертвуя глубиной ароматизации и, соответственно, октановым числом бензина.

Однако в начале 50-х годов было сделано очень важное открытие. Выяснилось, что платина, осажденная на оксид алюминия, является великолепным катализатором риформинга. Применение новых катализаторов позволило снизить рабочее давление повысить температуру, углубить процессы ароматизации и в итоге получить бензин с октановым числом выше 90 ИОЧ.

Первые установки модернизированного процесса, названного платформинг, работали при давлении 2—3 МПа. Затем начался процесс непрерывного совершенствования катализаторов и технологии риформирования прямогонных бензинов. В результате появились полиметаллические катализаторы. В них к платине добавляют рений, кадмий, галлий. Октановое число получающегося бензина приблизилось уже к 100. А кроме того, высокая селективность новых вариантов риформинга обеспечивает и очень высокий выход топлива.

Сырьем каталитического риформинга являются фракции бензина 85—180 °С. Более легкая часть “отрезается”, так как в условиях риформинга она не ароматизуется и в лучшем случае является балластом. Но в ней присутстствуют низкооктановые н-пентан С5Н12 и н-гексан С6Н14.

В наше время много машин используют дизельное топливо. Требуется все большее и большее количество дизельного топлива. Происходит широкое вовлечение в переработку средних (дизельных) фракций нефти. А это, в свою очередь, невозможно, без дальнейшего совершенствования процессов гидроочистки и гидрокрекинга.

Эти процессы имеют особую важность для России. Ведь мы вынуждены иметь дело преимущественно с сернистыми и высокосернистыми тяжелыми сортами нефти.

Известно, что все сераорганические соединения не выдерживают обработки под давлением водорода на катализаторах. Они распадаются с образованием углеводородов и сероводорода Н2S. Сероводород в обычных условиях находится в газообразном состоянии и при нагревании нефтепродукта выделяется из него. Его поглощают водой в колоннах орошения и затем превращают либо в элементарную серу, либо в концентрированную серную кислоту.

Такой процесс осуществляют на гидрирующих катализаторах с использованием алюминиевых, кобальтовых и молибденовых соединений. При давлении 4 – 5 МПа и температуре 380 – 420 °C содержание серы, особенно в светлых нефтепродуктах, можно таким образом свести до тысячных долей.

Могут спросить, кому это нужно? Зачем доводить содержание примесей в бензине до такой жесткой нормы? Все дело в последующем использовании. Известно, например, что чем жестче режим каталитического риформинга, тем выше выход высокооктанового бензина при данном октановом числе или выше октановое число при данном выходе катализата. В результате увеличивается выход октан-тонн – так называется произведение количества катализата риформинга или любого другого компонента на его октановое число. Вот об увеличении октан-тонн продукта по сравнению с сырьем и заботятся нефтепереработчики в первую очередь. В этом смысле повышение жесткости любого вторичного процесса есть благо. В риформинге жесткость определяется снижением давления и повышением температуры. При этом полнее и быстрее идут реакции ароматизации. Но повышение жесткости лимитируется стабильностью катализатора и его активностью. Сера, будучи каталитическим ядом, отравляет катализатор по мере ее накопления на нем. Отсюда понятно: чем меньше ее в сырье, тем дольше катализатор будет активным при повышении жесткости. Как в правиле рычага: проиграешь на стадии очистки – выиграешь на стадии риформинга.

Обычно гидроочистке подвергают не всю, скажем, дизельную фракцию, а только ее часть. Ведь этот процесс не так уж дешев. Кроме того, у него есть еще один недостаток: эта операция практически не изменяет углеводородный состав фракций.

Как только в нефтепереработке появились термические процессы, возникла проблема кокса. Он выделялся в объеме реакторов, оседал на стенках оборудования, покрывал поверхности нагревательных печей и теплообменников. Долгое время его использовали в лучшем случае в качестве топлива.

Но вот настало время электрохимических и электротермических процессов. Для электролитных ванн алюминиевых заводов, для различных электрометаллургических печей потребовались электроды. Их делали, да и сейчас зачастую делают из графита. Но всех потребностей природным графитом не удовлетворить, а иногда графитовые электроды не вполне соответствуют требованиям технологии производства металлов. В связи с этим появились электроды из нефтяного кокса. Они быстро завоевали большую популярность, особенно в цветной металлургии.

Первые установки коксования представляли собой большие металлические кубы с внешним обогревом от специальной печи. В куб загружали сырье (тяжелые нефтяные остатки типа тяжелого крегинг-газойля), температуру поднимали до 500 °С, и в течение определенного времени происходило превращение нефтяного сырья в кокс, естественно, без доступа воздуха. Длительность операции определялась выделением летучих. Затем кокс из куба выгружали.

Есть и другие конструкции. Так называемые полупериодические установки замедленного коксования в необогреваемых камерах оборудованы двумя камерами. В одну подают нагретое примерно до 5000 °С сырье, которое выдерживают в течение 24 часов без доступа воздуха и без дополнительного подогрева. Кокс образуется из нагретого сырья, формируется в виде аморфной массы, и после “созревания” его выгружают. В это время начинают заполнять вторую камеру.

Нефтяной кокс, по какой бы технологии он ни был получен, нуждается в прокаливании, так как содержание летучих в нем строго лимитируется. Если их больше нормы, то при высоких рабочих температурах электроды начинают вспучиваться и растрескиваться. До последнего времени прокалка кокса осуществлялась на электродных заводах, но сейчас эту операцию взяли на себя нефтепеработчики. Они теперь отвечают за содержание не только летучих, но и влаги, серы, золы, а также за механическую прочность и гранулометрический состав выпускаемого кокса: с размером кусков свыше 25 мм, 6-25 мм и 0 – 6 мм, с учетом нужд различных потребителей.

Надо сказать, что при переработке нефти образуется достаточно много углеводородных газов от метана СH4 до бутанов С3Н8 включительно. Источник номер один – прямая перегонка. Выход газов здесь зависит исключительно от степени стабилизации нефти на промыслах или при транспорте. И еще подчеркнем, что в газах атмосферно-вакуумной трубчатки почти нет метана, мало, этана и на 80 – 85% они состоят из пропана и бутанов.

Совсем другую картину представляют газы вторичных процессов: крекинга, риформинга, гидроочистки, изомеризации. Во всех этих процессах молекулы углеводородов претерпевают термическую, каталитическую или термокаталитическую деструкцию. Поэтому в газах этих процессов неизбежно присутствует метан. Далее, если термокаталитические процессы проводятся не под давлением водорода, то в газах обязательно присутствуют алкены, а иногда и алкины С2 – С4. Именно поэтому на НПЗ непредельные газы термического и каталитического крекинга, термического риформинга, висбрекинга собирают и перерабатывают отдельно от газов каталитического риформинга, гидроочистки, изомеризации, гидрокрекинга. В этих последних кроме углеводеродов в большом количестве содержится водород.

Разделение газов значительно отличается от разделения нефти. Сначала весь газовый поток сжимают и охлаждают. В первом контуре охлаждения используют воздух и воду. Здесь при давлении 0,5 МПа и температуре 35 °С происходит конденсация части газов С3 – С4. Получившуюся газожидкостную смесь прокачивают через колонну с бензином. Сконденсировавшиеся молекулы пропана и бутана растворяются в нем (абсорбируются).

Насыщенный газом бензин из абсорбера затем поступает на десорбцию, то есть из него при соответствующих давлениях и температурах выделяют растворенные газы.

Оставшуюся же часть исходной газовой смеси продолжают сжимать и охлаждать. Сначала это делают в аммиачном или фреоновом цикле (температура до -40 °С), далее в этановом или этиленовом (-80 °С), а при необходимости идут и еще дальше, применяя метановый холодильный цикл с температурой ниже -100 °С и давлением порядка 4 МПа.

Так поступают с газами нефтепереработки. Подобные же циклы газофракционирования используют и для переработки попутного газа, выделяемого на промыслах. Не случайно первые газоперерабатывающие заводы очень часто назывались газобензиновыми. Они и в самом деле разделяли сырье на сухой газ (смесь метана и этана), сжиженные газы С3 – С4 и газовый бензин.

Такие маломощные заводики с простейшим оборудованием как ни странно, сохранились и поныне. Они давно сосуществую с мощными нефтеперерабатывающими заводами примерно так же, как сосуществуют крупные плавбазы и маленькие сейнера. Иногда газобензиновые заводы даже монтируют на большегрузных прицепах и баржах, и они по мере надобности кочуют с промысла на промысел.

Дело в том, что попутный газ кончается на месторождении, как правило, гораздо раньше, чем нефть. Так что его надо использовать сразу, пока он есть. И тут мобильные газобензиновые заводики как нельзя более кстати. А нефть уж можно перерабатывать на современном нефтеперерабатывающем предприятии, которое и строится и работает потом достаточно долго.

Ну, а как быть с чисто газовыми месторождениями? Для их использования тоже созданы специализированные предприятия. Чаще всего природный газ – это метан с незначительными добавками этана. Иногда природа делает подарки, добавляя в метан ценнейший гелий, так нужный многим отраслям техники. Но гораздо чаще встречаются неприятные сюрпризы – в виде примесей диоксида углерода и сероводорода.

Понятно, что такие кислые газы надо тотчас отделять от основного сырья. Иначе трубопроводы не спасут никакие антикоррозийные мероприятия. В многоступенчатой системе такой газ подвергается сорбционной отмывке водой, щелочью, специальными растворителями. Потом на основе выделенного сероводорода получают серную кислоту или чистую серу.

Иногда бывает, что в залежи находится не газ, а газожидкостная смесь метана и высших углеводородов, предшественников нефти. Иногда в качестве таковых присутствуют даже алканы, циклоалканы и арены. Представляете, дизельное топливо равномерно распределено в метановой залежи на глубине нескольких километров при давлении в десятки мегапаскалей и температуре в сотни градусов!

Но добыть это топливо не так уж просто. Газоконденсатные месторождения различаются содержанием и фракционным составом жидкой части. Когда пласт протыкают скважинами, давление в нем начинает падать. Физико-химические свойства смеси при этом меняются, она расслаивается, и жидкость скапливается на дне линзы. Если из залежи просто откачивать газ, то скорость расслаивания быстро возрастает, и жидкие углеводороды из смеси быстро растекаются, навсегда оставаясь в недрах. При сегодняшнем развитии техники поднять на поверхность их не удается.

Чтобы таких потерь не было, поступают следующим образом. Газ из конденсатных месторождений поступает в абсорберы. Из него под давлением вымывают тяжелые углеводороды. А затем часть сухого газа под давлением подают обратно в залежь. Этим путем давление в пласте регулируется так, чтобы предотвратить расслоение смеси.

Конечно, все это требует дополнительных расходов, но затраты окупаются сторицей. Месторождение одновременно дает и газ, и дизельное топливо.

Каким образом в дальнейшем используют природный газ, вы, наверное, уже знаете. Прежде всего это прекрасное топливо для промышленных котельных и обычных газовых плит. Кроме того, выделяемый из природного газа этан – прекрасное химическое сырье. Из него делают этилен, а из того, в свою очередь, сотни разнообразных вещей, нужных народному хозяйству.

. Вот так перерабатывают нефтезаводские, попутные и природные газы. Ресурсы их велики, однако используются до сих пор они не полностью. В целом из газов извлекается для дальнейшего использования около 65% бутанов, 35 – 40% пропана и менее 8% этана. Так что резервы тут есть, и немалые!

Http://www. erudition. ru/referat/printref/id.24165_1.html

Производственные сточные воды нефтеперерабатывающих заводов, спускаемые в канализацию, сначала поступают в приемники, устанавливаемые в производственных помещениях технологических установок, цехов или в резервуарных парках, насосных станциях, сливных и наливных эстакадах и др.[ . ]

Приемниками производственных сточных вод служат трапы, воронки, лотки, трубы и т. д., располагаемые в полу помещений, у технологических аппаратов (холодильников, конденсаторов и пр.) и машин (компрессоров, насосов и пр.).[ . ]

Из приемников сточные воды поступают в трубы внутренней канализационной сети, называемой внутрицеховой канализацией. По трубам внутрицеховой канализации производственные сточные воды отводятся через один или несколько выпусков в наружные канализационные сети.[ . ]

Для того чтобы воздух и газ из наружной канализационной сети не попадали внутрь зданий и во избежание распространения огня в случае пожара по сети производственной канализации на выпусках внутрицеховой канализации устанавливают колодцы с гидравлическими затворами (фиг. 11).[ . ]

При проектировании системы канализации, как уже указывалось, следует предусматривать четкое деление сточных вод на отдельные виды ввиду их различного качественного состава и отведение их по самостоятельным сетям как внутрицеховой, так и наружной канализации, т. е. по раздельной системе.[ . ]

С этой целью для отдельных видов производственных сточных вод устраивают самостоятельные очистные сооружения.[ . ]

При решении схемы канализации основной задачей является осуществление самотечного отведения всех сточных вод завода к очистным сооружениям и в водоем, так как устройство и эксплуатация станций перекачек в условиях нефтеперерабатывающих заводов доставляют много затруднений вследствие особого характера загрязнений производственных сточных вод.[ . ]

При перекачке сточных вод, содержащих нефтепродукты, повышается растворимость нефтяных веществ и облегчается образование эмульсий, вследствие чего затрудняется отстаивание нефти от воды в нефтеловушках. Содержащиеся в производственных сточных водах сероводород и серная кислота вызывают коррозию насосного оборудования и напорных трубопроводов. При эксплуатации станций перекачки производственных сточных вод, содержащих указанные химические ’загрязнения и особенно сероводород, необходимы особые меры предосторожности, что также связано с большими затруднениями.[ . ]

Все это делает менее надежной работу станций перекачки и, следовательно, всей системы канализации.[ . ]

При неизбежности по местным условиям перекачки насосную станцию следует располагать после нефтеловушки.[ . ]

Http://ru-ecology. info/post/101785102940013/

Отправимся в воображаемую экскурсию на НПЗ (нефтеперерабатывающий завод) и для простоты будем считать, что он производит лишь бензин, керосин, дизельное и другие топлива, смазочные масла и кокс.

Этого, уверяем вас, для первого раза более чем достаточно. Ведь только в стандартах на бензины не менее десятка обязательных показателей. Их разброс по отдельным компонентам очень широк. Всего же на современном нефтеперерабатывающем заводе выделяют до 15—20 компонентов. И количества их разные—от десятков тысяч до миллионов тонн в год. Да добавьте к этому разную себестоимость компонентов и разные цены на различные марки бензина. В общем, только компьютеры на основе соответствующих экономико-математических моделей позволяют получать оптимальные решения производственных задач, обеспечивают получение всех заданных марок топлива при условии получения максимальной прибыли. Или при минимальных затратах нефти—что выгоднее в данный момент.

Всякий нефтеперерабатывающий завод состоит как бы из двух блоков: блока производства компонентов и блока смешения. В блок производства входят технологические установки; блок смешения—это, главным образом, резервуары и насосы.

Производственный цикл начинается с ЭЛОУ. Это сокращение означает “электрообессоливающая установка”. Для чего она нужна?

Как мы уже знаем в нефти есть минеральные примеси, в том числе и соли: хлориды, сульфаты и другие. В некоторых сортах нефти содержатся и минеральные кислоты. Все эти соединения необходимо выделить из нефти, так как они, во-первых, вызывают коррозию аппаратуры, а, во-вторых, являются каталитическими ядами, то есть ухудшают протекание многих химических процессов последующей переработки нефти. И наконец: в-третьих, соли не в лучшую сторону влияют на качество бензина, дизельного топлива и масел.

Обессоливание начинают с того, что нефть забирают из заводского резервуара, смешивают ее с промывной водой, деэмульгаторами, щелочью (если в сырой нефти есть кислоты). Затем смесь нагревают до 80—120°С и подают в электродегидратор. Здесь под воздействием электрического поля и температуры вода и растворенные в ней неорганические соединения отделяются от нефти.

Требования к процессу обессоливания жесткие—в нефти должно остаться не более 3—4 мг/л солей и около 0,1% воды. Поэтому чаще всего в производстве применяют двухступенчатый процесс, и нефть после первого попадает во второй электродегидратор.

После этого нефть считается пригодной для дальнейшей переработки и поступает на первичную перегонку.

Как мы уже знаем, нефть представляет собой смесь тысяч различных веществ. Даже сегодня, при наличии самых изощренных средств анализа: хроматографии, ядерно-магнитного резонанса, электронных микроскопов—далеко не все эти вещества полностью определены. Что же говорить о делах столетней давности? Конечно, наши предшественники определяли состав нефти с достаточной мерой приближения.

Впрочем, надо отдать должное их практической сметке: довольно скоро они сообразили, что независимо от сложности состава переработку нефти все равно надо начинать с перегонки. Как можно убедится по схеме, первый нефтеперегонный завод в России был очень прост и весь процесс состоял только из прегонки.

Смысл этого процесса довольно прост. Как и все другие соединения, любой жидкий углеводород нефти имеет свою температуру кипения, то есть температуру, выше которой он испаряется. (Температура кипения возрастает по мере увеличения числа атомов углерода в молекуле. Например, бензол С6Н6 кипит при 80,1 °С, а толуол С7Н8 при 110,6°С). И наоборот, если пары бензола охладить ниже температуры кипения, он снова превратится в жидкость. На этом свойстве и основана перегонка (к слову сказать, даже само название “нефть” происходит от арабского nafatha, что в переводе означает “кипеть”).

Предположим, мы поместили нефть в перегонный куб— огромный чан с крышкой, и начали ее нагревать. Как только температура жидкости перейдет за 80 °С, из нее испарится весь бензол, а с ним и другие углеводороды с близкими температурами кипения. Тем самым мы отделим от нефти фракцию от начала кипения до 80 °С, или н. к.—80 °С, как это принято писать в литературе по нефтепереработке.

Продолжим нагрев и поднимем температуру в кубе еще на 25 °С. При этом от нефти, отделится следующая фракция— углеводороды С7, которые кипят в диапазоне 80—105 °С. И так далее, вплоть до температуры 350 °С. Выше этого предела температуру поднимать нежелательно, так как в остающихся углеводородах содержатся нестабильные соединения, которые при нагреве осмоляют нефть, разлагаются до углерода и способны закоксовать, забить смолой всю аппаратуру.

Введем одно техническое новшество – вместо дробной перегонки в периодически работающих кубах, внедрим ректификационную колонну. Для этого над кубом, в котором нагревают нефть, водрузим высокий цилиндр, перегороженный множеством, ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары нефтепродуктов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают пробулькивать через слой жидкости на каждой тарелке.

Температура в ректификационной колонне снижается от куба к самой последней, верхней тарелке. Если в кубе она, скажем, 380 °С, то на верхней тарелке она должна быть не выше 35-40 °С, чтобы сконденсировать и не потерять все углеводороды C5, без которых товарный бензин не приготовить. Верхом колонны уходят несконденсировавшиеся углеводородные газы С1-С4. Все, что может конденсироваться, остается на тарелках.

Таким образом, достаточно сделать отводы на разной высоте, чтобы получать фракции перегонки нефти, каждая из которых кипит в заданных температурных пределах. Фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов.

С точки зрения затрат, чем грубее перегонка, чем более широкие фракции получаются в итоге, тем она дешевле. Ведь при всякой ректификации происходят достаточно сложные процессы тепло – и массообмена. На каждой тарелке происходят испарение и конденсация. Мы должны нагреть жидкость до температуры кипения, затем добавить еще энергию, чтобы ее испарить (с учетом скрытой теплоты парообразования). Потом, когда пары конденсируются, эта энергия выделяется. Но вот использовать ее удается далеко не полностью – слишком много энергии при таких переходах безвозвратно теряется.

И чем более узкие фракции мы хотим получить, тем выше должны быть колонны. Тем больше в них должно быть тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку, перейти из газовой фазы в жидкую и обратно. Для этого нужна энергия. Ее подводят к кубу колонны в виде пара или топочных газов.

Как везде в технике, в нефтепереработке не любят лишних затрат. Поэтому нефть поначалу перегоняли на широкие фракции. Это прежде всего бензиновая фракция (прямогонный бензин); она кипит от 40-50 °С до 140-150 °С. Далее следует фракция реактивного топлива (140-240 °С), затем дизельная (240-350 °С).

Остатком перегонки нефти был мазут. Поначалу его практически целиком сжигали как котельное топливо. И только с изобретением крекинга, о котором речь дальше, появилась возможность использовать и, его.

В принципе нефть можно перегнать в одной колонне, отбирая фракции с расположенных на разной высоте тарелок. Но мы уже убедились, что это невыгодно как по затратам энергии, так и по затратам на оборудование. Поэтому на практике перегонку (или, как говорят специалисты, разгонку), проводят в нескольких колоннах. Обычно их пять. На первой колонне выделяется легкая бензиновая фракция, которая затем конденсируется в специальном холодильнике-конденсаторе и уже в жидком виде отправляется в стабилизационную колонну.

Зачем нужна стабилизация? Дело в том, что вместе с легкой бензиновой фракцией на первой колонне отгоняются и легкие углеводородные газы С3 – C5. Они легкокипящие, поэтому при обычной комнатной температуре 20-25 °С улетучиваются из жидкой углеводородной массы (содержание их в растворе обратно пропорционально температуре). Между жидкостью и газовой фазой устанавливается термодинамическое равновесие, соответствующее данной температуре.

Это означает, что строго определенное число молекул, например бутана С4Н10, переходит в единицу времени из жидкой фазы в газовую и обратно. Тем самым над поверхностью бензина создается как бы газовая подушка, от которой зависит такой важный показатель качества бензина, как давление насыщенных паров. Понятно, чем больше пропана С3Н8 и бутана С4Н10 осталось растворенными в бензине, тем выше давление паров, то есть тем выше концентрация пропана и бутана также над поверхностью бензина при данной температуре.

Практическое значение данного показателя очень велико. От него зависит испаряемость бензина в карбюраторе, сам процесс карбюрации и последующее сгорание топливно-воздушной смеси в цилиндрах двигателя. Легкие фракции бензина иногда называют пусковыми. Если их мало, то двигатель заводится с трудом, особенно зимой. Именно по этой причине в ГОСТе на бензин оговаривается, что давление насыщенных паров бензина для зимних сортов должно быть 66-92 кПа (500-700 мм рт. ст.), а для летних не более 66,5 кПа.

Почему же летом “не более”? По двум причинам. Во-первых, потому что повышенное содержание легких газов в бензине способно нарушить систему топливоподачи из-за образования локальных газовых пробок, а во-вторых, чтобы сократить потери бензина за счет испарения. Приходилось ли вам открывать в жаркий летний день канистру с бензином? Если да, то вспомните, как из-под крышки, стоит ее лишь приоткрыть, тотчас выплескивается бензин. Точно так же брызжет шампанское из плохо охлажденной бутылки.

А теперь представьте себе путь бензина от нефтеперерабатывающего завода до автомобильного бака. Его многократно перекачивают из резервуара в резервуар, затем в железнодорожные цистерны, лотом в автоцистерны и т. д. Все процессы транспортировки и хранения бензина ведутся под давлением, таковы требования техники безопасности. Но уплотнения оборудования не идеальны. Бензин то и дело непосредственно соприкасается с атмосферой, при этом происходит его испарение, а значит – потери. Они тем выше, чем больше давление насыщенных паров. Поэтому и нужна стабилизационная колонна, где в случае необходимости из бензина специально удаляют бутан, чтобы этот показатель укладывался в предусмотренные ГОСТом пределы.

Но мы несколько отвлеклись. Итак, на первой колонне выделяется только легкий бензин. Оставшаяся нефть поступает на вторую колонну, где с верха отбирают весь остальной, тяжелый бензин, а с боковых отводов – керосиновую и дизельную фракции. Снизу выделяется мазут.

Тяжелый бензин также стабилизуется на специальной колонне. Керосиновую и дизельную фракции на отдельной колонне освобождают дополнительно от примеси бензиновой фракции. Мазут же поступает в печь, нагревается до 400 °С и подается в куб вакуумной колонны. В зависимости от необходимости его здесь разделяют на вакуум-дистиллят (фракция 350 – 500 °С) и на гудрон, кипящий при температуре выше 500 °С. Иногда вакуум-дистиллят называют вакуум-газойлем.

Вакуум-дистиллят используют для получения котельных топлив. Гудрон же используют для производства асфальта, дорожных и строительных битумов.

Агрегаты первичной перегонки нефти получили название атмосферной или атмосферно-вакуумной трубчатки, поскольку они оборудованы трубчатыми печами для нагрева нефти. Иногда на нефтеперерабатывающих заводах, где переработка мазута не предусмотрена, вакуумная часть отсутствует.

И чтобы закончить с первичной перегонкой, несколько слов о том, как выглядят производственные установки. На современных нефтеперерабатывающих заводах обычно работают атмосферные трубчатки или атмосферно-вакуумные трубчатки мощностью 6 – 8 миллионов тонн перерабатываемой нефти в год. Обычно на заводе таких установок не одна, а две-три.

Первая атмосферная колонна представляет собой сооружение диаметром, например, 7 метров в нижней и 5 метров в верхней части. Высота колонны – 51 метр. По существу, это два цилиндра, поставленные один на другой. И это еще не самая большая подобная установка. Другие колонны, холодильники-конденсаторы, печи и теплообменники также выглядят достаточно внушительно и в то же время элегантно. Дизайнеры поработали и здесь.

Кроме обессоливания, обезвоживания и прямой перегонки на многих нефтезаводах есть еще одна операция переработки – вторичная перегонка. Ее еще называют зачастую четкой ректификацией. Задача этой технологии – получить узкие фракции нефти для последующей переработки. Продуктами вторичной, перегонки обычно являются бензиновые фракции, служащие для получения автомобильных и авиационных топлив, а также в качестве сырья для последующего получения ароматических углеводородов – бензола, толуола и других.

Типовые установки вторичной перегонки и по своему виду, и по принципу действия в общем-то очень похожи на агрегаты атмосферной трубчатки, только они гораздо меньше, можно сказать даже миниатюрны.

Вторичная перегонка завершает первую стадию переработки нефти: от обессоливания до получения узких фракций. По современным понятиям, это даже не полпути. Наступает очередь деструктивных процессов.

В отличие от физических по существу процессов перегонки, здесь уже происходят глубокие химические преобразования. Из одной большой молекулы можно получить несколько малых; прямоцепочечные углеводороды будут превращены в циклические или в разветвленные…

Первый патент на промышленную технологию крекинга взял Дж. Юнг в 1866 году. Называлось это техническое решение так:

“Способ получения керосина из тяжелой нефти перегонкой под давлением”. Термин “крекинг” (от английского слова cracking – расщепление) был введен в обиход позднее.

Первые крекинг-аппараты по существу представляли собой периодически работающие кубы, подобные тем, в которых осуществлялась обычная перегонка. Лишь в 1891 году наши соотечественники, известные инженеры – В. Г. Шухов и С. П. Гаврилов, предложили новое устройство для крекинг-процесса. Это был трубчатый реактор непрерывного действия, где по трубам осуществлялась принудительная циркуляция мазута или другого тяжелого нефтяного сырья, а в межтрубное пространство подавались нагретые топочные газы.

Что же происходит при термическом крекинге? Под воздействием высокой температуры длинные молекулы, например алканов С20, разлагаются на более короткие – от С2 до С18. Углеводороды С8 – С10 – это бензиновая фракция, С15 – дизельная. Вообще при термическом крекинге происходят сложные рекомбинации осколков разорванных молекул с образованием более легких углеводородов. При этом одновременно происходит перераспределение процентного содержания углерода и водорода в сырье и продуктах.

Таким образом, если, например, превращать мазут в легкие бензиновые фракции, содержащие повышенные количества водорода, то одновременно должен образоваться и остаток, богатый углеродом. И такой остаток, действительно, образуется. В нем концентрируются смолы, кокс, серосодержащие соединения и минеральная часть нефти, не отмытая на ЭЛОУ. Этот крекинг-остаток затем обычно используют как компонент котельного топлива, смешивая его с мазутом, оставшимся от прямой перегонки нефти.

С изобретением крекинга глубина переработки нефти увеличилась. Выход светлых составляющих, из которых затем можно приготовить бензин, керосин, дизельное топливо (соляр) повысился с 40-45 до 55-60%. Но главное даже не в этом. Новая технология позволила повнимательнее присмотреться к мазуту, использовать его в качестве сырья для производства масел.

Колесная мазь появилась, наверное, чуть позже, чем само колесо, но тоже достаточно давно. Прямой смысл известного афоризма: “Не подмажешь – не поедешь”, – указывает на один из самых древних способов борьбы с трением.

Сначала для этой цели использовали животные жиры. Затем появился деготь-продукт термической перегонки некоторых сортов древесины. Впоследствии этот же деготь стали гнать из каменного угля. Но промышленная революция, быстрое развитие техники выдвигали все новые задачи. Механизмы вращались все быстрее, транспортные средства все наращивали скорость, а значит, все возрастали требования к смазке. Требовались смазочные масла со все большим спектром свойств: сверхвязкие и сверхтекучие, термостойкие и неосмоляющиеся, противозадирные и противоизносные. А главное – их требовалось с каждым годом все больше. И в конце концов смазочные масла стали делать из нефти.

К тому времени химики выяснили, что углеводороды подходящей структуры имеются в тех фракциях нефти, которые выкипают при температуре выше 350 °С. Правда, эти масляные фракции есть не во всякой нефти, но подходящих сортов тоже набирается достаточно. Больше огорчало специалистов другое: углеводороды масляных фракций имеют сложную структуру, соседствуют по температурам кипения с парафинами, так что разделить их не так-то просто. В поисках наилучшей технологии пришли к перегонке мазута под вакуумом.

В основе такой перегонки лежит известный физический закон, согласно которому с понижением давления снижается и температура кипения жидкостей. Все ведь знают, что высоко в горах вода кипит при температуре ниже 100 °С, и сварить яйцо на Эвересте – проблема. Но то, что в обыденной жизни можно отнести к минусам, в нефтехимической технологии превратилось в плюс.

Если в ректификационной колонне создать вакуум, скажем 1 – 1,5 кПа, то мазут начинает испаряться при температуре ниже 350 °С. Значит, с меньшими затратами тепла и с большей точностью из него можно отогнать те узкие фракции, которые затем будут использованы для производства смазочных масел.

Это в теории. На практике же изготовление масел достаточно сложное, многостадийное производство. Сначала применяют серию очисток – в маслах очень нежелательно присутствие серы, ванадия и других минеральных примесей, имеющихся в исходной нефти. Затем надо очистить масляные фракции от парафинов – хорошее будет масло, если оно будет застывать уже при комнатной температуре.

Полученные парафины раньше использовались для производства свеч. В настоящее время их гораздо чаще используют в бумажной, пищевой и химической промышленности. Парафинированная бумага не боится влаги, хорошо воспринимает типографскую краску и потому применяется для производства высококачественных полиграфических изделий. В парафин также “замуровывают” сыр. А химической переработкой парафинов получают синтетические жирные кислоты, которые незаменимы при производстве моющих средств.

Иногда при переработке тяжелых сортов нефти остаток прямой перегонки нельзя использовать в качестве топочного мазута – это уже гудрон. Содержащиеся в нем смолы делают его настолько вязким, что перекачка, транспортировка и сжигание связаны с очень большими трудностями, особенно зимой, в морозы, когда котельное топливо больше всего и нужно. Чтобы слить его из цистерн, их приходится подогревать паром или прибегать к каким-то другим хитростям.

Так вот, чтобы избежать таких трудностей, для приготовления котельного топлива из гудрона используют не обычный термический крекинг, о котором мы только что говорили, а один из его вариантов – висбрекинг. Это название тоже произошло из английского языка и содержит в себе кусочки сразу трех английских слов: viscosity – вязкость, breack – ломать, разрушать и cracking-расщепление. Таким образом, висбрекинг – это крекинг, специально используемый для снижения вязкости. Проводят его при пониженных температурах и давлениях.

Каталитический крекинг был открыт в 30-е годы нашего Века, когда заметили, что контакт с некоторыми природными алюмосиликатами меняет состав продуктов термического крекинга. Дополнительные исследования привели к двум важным результатам. Во-первых, удалось установить подробности каталитических превращений. Во-вторых, созрела убежденность в необходимости специально готовить катализаторы для таких химических превращений, а не искать их в природе, как это делали поначалу.

Каковы же задачи катализаторов крекинга, если формулировать их, исходя из современных представлений о механизме протекающих реакций? В самом общем виде картина следующая. Катализатор отбирает из сырья и сорбирует на себе прежде всего те молекулы, которые способны достаточно легко дегидрироваться, то есть отдавать водород. Образующиеся при этом непредельные углеводороды, обладая повышенной адсорбционной способностью, вступают в связь с активными центрами катализатора. По мере роста непредельности (ненасыщенности связей) происходит полимеризация углеводородов, появляются смолы – предшественницы кокса, а затем и сам кокс. Высвобождающийся водород принимает активное участие в других реакциях, в частности гидрокрекинга, изомеризации и др., в результате чего продукт крекинга обогащается углеводородами не просто легкими, но и высококачественными – изоалканами, аренами, алкиларенами с температурами кипения 80 – 195° С. Это и есть широкая бензиновая фракция, ради которой ведут каталитический крекинга тяжелого сырья. Конечно, образуются и более высококипящие углеводороды фракции дизельного топлива, относящиеся к светлым нефтепродуктам.

Типичные параметры каталитического крекинга при работе на вакуум-дистилляте (фр. 350 – 500 °С): температура 450 – 480 °С и давление 0,14 – 0,18 МПа. В итоге получают углеводородные газы (20%), бензиновую фракцию (50%), дизельную фракцию (20%). Остальное приходится на тяжелый газойль или крекинг-остаток, кокс и потери.

Выход кокса может достигнуть 5%. Это накладывает особые требования на технологию крекинга, потому что по мере закоксовывания активных центров катализатор работает все хуже и в конце концов вообще прекращает выполнять свои функции. Теперь его надо регенерировать. Обычно для этого кокс с катализатора выжигают воздухом при 700 – 730 °С.

Каким требованиям должен отвечать катализатор для подобного процесса? Во-первых, он должен обладать специфическими хемосорбционными свойствами, то есть с разной активностью притягивать и сорбировать на себе различные молекулы нефтяного сырья. Во-вторых, необходима высокая пористость, причем желательно уметь регулировать диаметр и глубину пор. Это позволит упорядочить процесс адсорбции молекул на активных каталитических центрах, осуществить направленные превращения углеводородов, а затем десорбировать с контакта продукты превращения. В-третьих, структура и свойства катализатора должны способствовать организации наиболее эффективного тепло – и массообмена в реакционной зоне – ведь каталитический крекинг процесс термокаталитический, и роль температуры здесь особенно велика. Отсюда требования к механической прочности катализатора.

В целом же роль и задача катализаторов – повышать селективность протекающих химических реакций, увеличивая выход целевого продукта из единицы сырья. Однако применительно к каталитическому крекингу нужно сделать определенные уточнения. Целевым продуктом здесь является не просто бензин, а высокооктановый. Поэтому в самом общем виде селективность каталитического крекинга можно оценить выходом бензиновой фракции с заданным октановым числом.

Первым “рукотворным” катализатором крекинга стал алюмосиликатный формованный катализатор в виде шариков диаметром около 3 мм. В основе его был аморфный алюмосиликат, естественная пористость которого поначалу устраивала нефтепереработчиков. На смену ему пришел микросферический алюмосиликатный катализатор, частицы которого измерялись микронами. Этот пылевидный контакт положил начало использованию в каталитическом крекинге технологии взвешенного (его называют также кипящим или псевдоожиженным) слоя. Технологические усовершенствования позволили за короткий срок реализовать все преимущества, которые могли обеспечить алюмосиликатные катализаторы в части повышения селективности. А дальше дело стало из-за невозможности регулировать и определенньм образом упорядочить структуру алюмосиликата.

Выручили цеолиты. Их еще часто называют молекулярными ситами. Первоначально их применяли для разделения молекул различных углеводородов, используя различия в их пространственной структуре. Цеолиты – это практически те же алюмосиликаты, но при их изготовлении удается регулировать длину пор, их диаметр и количество на единицу объема или поверхности. Кроме того, в кристаллическую решетку алюмосиликатов можно вводить другие элементы (в основном, редкоземельные), которые модифицируют активные центры, находящиеся в определенных точках цеолита. От этого существенно зависят адсорбционные свойства цеолита – какие молекулы и с какой энергией он может адсорбировать в порах или на поверхности и какие деструктивные превращения с ними производить.

Цеолиты – это порядок и регулярность структуры, а значит и свойств. В нефтепереработке быстро оценили новые возможности. Но так как цеолиты значительно дороже алюмосиликатов, то их в чистом виде решили не применять. Это оказалось не только дорого, но и излишне. Достаточно определенным образом нанести цеолит на алюмосиликат, как мы получим нужный эффект в катализе. Так появилось целое семейство цеолитсодержащих катализаторов крекинга, причем в зависимости от назначения, вида сырья, применяемой технологии количество цеолита менялось в широких пределах, но не превышало 15 – 20%.

Вид применяемых катализаторов, способ их регенерации определяет технологию, а значит и аппаратуру каталитического крекинга.

Первые установки работали на таблетированном катализаторе в периодическом режиме. В них и реакция, и регенерация загруженного неподвижного катализатора осуществлялись попеременно в одних и тех же аппаратах. Затем появились более совершенные шариковые катализаторы и установки непрерывного действия. Здесь крекинг и регенерация катализатора осуществляются уже раздельно.

Реактор такой установки представляет собой аппарат колонного типа. Сверху в него через специальное устройство поступает катализатор в виде шариков диаметром 1 – 2 мм. Шарики плотным слоем спускаются вниз, проходя постепенно реакционную зону, зону отделения продуктов крекинга и зону отпарки. Отпарка необходима для удаления углеводородов, прилипших к катализатору. Обработку паром надо делать обязательно, так как затем катализатор поступает в другой аппарат – регенератор, где с него выжигается кокс. Неудаленные углеводороды при этом простони сгорели бы, выход полезных продуктов снизился.

После выжига катализатор ссыпается в загрузочное устройство пневмоподъемника и поднимается по специальному транспортеру в бункер-сепаратор. Дело в том, что при многочисленных перемещениях, выжигах, отпарках часть шариков повреждается, образуются крошка, пыль, и их надо удалить, иначе будут нарушены условия гидродинамики, тепло – и массообмена в реакторе. Это и делают в сепараторе. К регенерированному и отсеянному катализатору добавляют для восполнения потерь свежие шарики и весь цикл повторяется.

Следующий шаг совершенствования технологии – внедрение крекинга в кипящем слое пылевидного катализатора. Его применение стало возможньм благодаря появлению принципиально новых, микросферических катализаторов на основе специально синтезированных цеолитов. Эти катализаторы хороши не только высокой активностью и селективностью. Их отличают также хорошая регенерируемость и высокая механическая прочность.

Технология кипящего или псевдоожиженного слоя основана на физических законах витания микрочастицы в восходящем поток жидкости или газа.

Сырье нагревается в теплообменнике и в специальной печи затем в него добавляют водяной пар, и эту смесь подают катализаторопровод, туда же поступает регенерированный катали затор. Затем смесь попадает в реактор, где над распределительной решеткой образуется кипящий слой катализатора. Крекинг начинается еще в катализаторопроводе, поскольку там поддерживается достаточная температура, и заканчивается в нижней зоне реактора. Затем вся масса за счет давления газов поднимается вверх и попадает в отпарную зону.

В верхней части отпарной зоны имеется перелив для удаления катализатора из реактора, а над нею – отстойная зона. Она снабжена специальными циклонами для дополнительного отделения частиц катализатора.

Закоксованный катализатор тем временем подается на регенерацию. Регенератор представляет собой аппарат, также работающий в режиме кипящего слоя. Правда, здесь псевдоожижение производится воздухом, с помощью которого и происходит выжиг кокса. Основная забота здесь – уберечь катализатор от выноса иначе он попадет вместе с дымовыми газами в атмосферу.

Применение крекинга в кипящем слое позволило резко интенсифицировать процесс, сделать установки более компактными, увеличить их мощность. Так, стандартньми в России являются каталитические комплексы по переработке 2 миллионов тонн сырья в год. Существуют и более мощные установки – до 5 миллионов тонн вакуум-газойля в год, причем реактор такой установки не так уж велик: его диаметр составляет 18 метров.

Впервые гидрокрекинг появился в 50-х годах нашего века. Ему сразу предрекали широкое распространение. Однако с этим вышла задержка, поскольку при производстве бензина выгоднее оказался каталитический крекинг. И лишь с усилением дизелизации, с ростом пассажирской и грузовой реактивной авиации преимущества гидрокрекинга стали проявляться в полной мере.

Сырьем для гидрокрекинга могут быть тяжелые бензины, газойли, тяжелые нефтяные остатки.

Есть страны, полностью лишенные запасов природного газа. А когда возникает нужда в пропане и бутане, то выгоднее оказывается ввозить не их, а тяжелый бензин. И уже на месте его подвергают гидрокрекингу, получая сжиженный газ.

Если нужен бензин и по какой-либо причине нет возможности получить его при помощи каталитического крекинга, используют гидрокрекинг атмосферного газойля. Для этого достаточно одной стадии переработки при давлении 5 МПа и температуре 400 – 410 °С.

Если же переработке подвергается вакуум-дистиллят или другие тяжелые остатки, приходится применять двухступенчатый гидрокрекинг. На первой стадии используют сероустойчивый катализатор, удаляющий вредные примеси, в том числе и соли металлов. Затем уже, во второй ступени, используют активный крекирующий катализатор. А чтобы уберечь катализатор от закоксовывания, в системе циркулирует водород под давлением 15 МПа; благодаря этому смолы – предшественницы кокса переводятся в углеводородные газы.

С точки зрения детонационной стойкости прямогонные бензины тем хуже, чем больше в них линейных и малоразветвленных алканов.

Для получения более разветвленных углеводородов использовали процесс термического риформинга. По сути дела это тот же термический крекинг, только сырьем служат не мазут, а тяжелая фракция прямогонного бензина и температура процесса выше. В результате термической деструкции углеводородов бензин обогащается более высокооктановыми легкими компонентами. Кроме того, значительная часть алканов переходит в алкены, которые, как известно, отличаются неплохими детонационными свойствами.

Однако были у термического риформинга и недостатки. Много исходного сырья превращалось в газ, а продукт все равно имел не такое уж высокое октановое число (70—75 МОЧ). Кроме полезных алкенов в нем оказывалось и достаточное количество нестабильных диенов. Поэтому приходилось применять специальные антиокислители и стабилизаторы, иначе бензин при хранении мутнел, осмолялся.

В общем, термический риформинг не оправдал возлагавшихся на него надежд и был вытеснен каталитическим риформингом.

Реакции ароматизации, лежащие в его основе, были открыты еще в середине 30-х годов.

Эти каталитические превращения позволяют дегидрировать нафтеновые углеводороды в ароматические. Одновременно происходит дегидрирование алканов в соответствующие алкены, эти последние циклизуются тут же в циклоалканы, и с еще большей скоростью происходит дегидрирование циклоалканов в арены. Так, в процессе ароматизации типичное превращение следующее:

Одновременно с этими происходят и другие реакции, например, изомеризации. Это тоже полезное превращение, так как изосоединения повышают октановое число катализата. Побочной, вредной здесь считается реакция гидрокрекинга, когда исходные алканы крекируются в газ.

Перед второй мировой войной были построены и первые установки каталитической ароматизации бензинов. Они работали по принципу гидроформинга, осуществлявшегося с циркулирующим водородным газом под давлением. Вы спросите, что это такое. Вообще говоря, при ароматизации водород образуется постоянно, и его надо отводить. Но при низком давлении водорода катализатор быстро закоксовывается, теряет стабильность, активность и селективность. Бороться с этими неприятными явлениями легче всего, повысив давление водорода в реакционной зоне. Поэтому на первых установках гидроформинга применяли давление порядка 4,5—5 МПа, жертвуя глубиной ароматизации и, соответственно, октановым числом бензина.

Однако в начале 50-х годов было сделано очень важное открытие. Выяснилось, что платина, осажденная на оксид алюминия, является великолепным катализатором риформинга. Применение новых катализаторов позволило снизить рабочее давление повысить температуру, углубить процессы ароматизации и в итоге получить бензин с октановым числом выше 90 ИОЧ.

Первые установки модернизированного процесса, названного платформинг, работали при давлении 2—3 МПа. Затем начался процесс непрерывного совершенствования катализаторов и технологии риформирования прямогонных бензинов. В результате появились полиметаллические катализаторы. В них к платине добавляют рений, кадмий, галлий. Октановое число получающегося бензина приблизилось уже к 100. А кроме того, высокая селективность новых вариантов риформинга обеспечивает и очень высокий выход топлива.

Сырьем каталитического риформинга являются фракции бензина 85—180 °С. Более легкая часть “отрезается”, так как в условиях риформинга она не ароматизуется и в лучшем случае является балластом. Но в ней присутстствуют низкооктановые н-пентан С5Н12 и н-гексан С6Н14.

В наше время много машин используют дизельное топливо. Требуется все большее и большее количество дизельного топлива. Происходит широкое вовлечение в переработку средних (дизельных) фракций нефти. А это, в свою очередь, невозможно, без дальнейшего совершенствования процессов гидроочистки и гидрокрекинга.

Эти процессы имеют особую важность для России. Ведь мы вынуждены иметь дело преимущественно с сернистыми и высокосернистыми тяжелыми сортами нефти.

Известно, что все сераорганические соединения не выдерживают обработки под давлением водорода на катализаторах. Они распадаются с образованием углеводородов и сероводорода Н2S. Сероводород в обычных условиях находится в газообразном состоянии и при нагревании нефтепродукта выделяется из него. Его поглощают водой в колоннах орошения и затем превращают либо в элементарную серу, либо в концентрированную серную кислоту.

Такой процесс осуществляют на гидрирующих катализаторах с использованием алюминиевых, кобальтовых и молибденовых соединений. При давлении 4 – 5 МПа и температуре 380 – 420 °C содержание серы, особенно в светлых нефтепродуктах, можно таким образом свести до тысячных долей.

Могут спросить, кому это нужно? Зачем доводить содержание примесей в бензине до такой жесткой нормы? Все дело в последующем использовании. Известно, например, что чем жестче режим каталитического риформинга, тем выше выход высокооктанового бензина при данном октановом числе или выше октановое число при данном выходе катализата. В результате увеличивается выход октан-тонн – так называется произведение количества катализата риформинга или любого другого компонента на его октановое число. Вот об увеличении октан-тонн продукта по сравнению с сырьем и заботятся нефтепереработчики в первую очередь. В этом смысле повышение жесткости любого вторичного процесса есть благо. В риформинге жесткость определяется снижением давления и повышением температуры. При этом полнее и быстрее идут реакции ароматизации. Но повышение жесткости лимитируется стабильностью катализатора и его активностью. Сера, будучи каталитическим ядом, отравляет катализатор по мере ее накопления на нем. Отсюда понятно: чем меньше ее в сырье, тем дольше катализатор будет активным при повышении жесткости. Как в правиле рычага: проиграешь на стадии очистки – выиграешь на стадии риформинга.

Обычно гидроочистке подвергают не всю, скажем, дизельную фракцию, а только ее часть. Ведь этот процесс не так уж дешев. Кроме того, у него есть еще один недостаток: эта операция практически не изменяет углеводородный состав фракций.

Как только в нефтепереработке появились термические процессы, возникла проблема кокса. Он выделялся в объеме реакторов, оседал на стенках оборудования, покрывал поверхности нагревательных печей и теплообменников. Долгое время его использовали в лучшем случае в качестве топлива.

Но вот настало время электрохимических и электротермических процессов. Для электролитных ванн алюминиевых заводов, для различных электрометаллургических печей потребовались электроды. Их делали, да и сейчас зачастую делают из графита. Но всех потребностей природным графитом не удовлетворить, а иногда графитовые электроды не вполне соответствуют требованиям технологии производства металлов. В связи с этим появились электроды из нефтяного кокса. Они быстро завоевали большую популярность, особенно в цветной металлургии.

Первые установки коксования представляли собой большие металлические кубы с внешним обогревом от специальной печи. В куб загружали сырье (тяжелые нефтяные остатки типа тяжелого крегинг-газойля), температуру поднимали до 500 °С, и в течение определенного времени происходило превращение нефтяного сырья в кокс, естественно, без доступа воздуха. Длительность операции определялась выделением летучих. Затем кокс из куба выгружали.

Есть и другие конструкции. Так называемые полупериодические установки замедленного коксования в необогреваемых камерах оборудованы двумя камерами. В одну подают нагретое примерно до 5000 °С сырье, которое выдерживают в течение 24 часов без доступа воздуха и без дополнительного подогрева. Кокс образуется из нагретого сырья, формируется в виде аморфной массы, и после “созревания” его выгружают. В это время начинают заполнять вторую камеру.

Нефтяной кокс, по какой бы технологии он ни был получен, нуждается в прокаливании, так как содержание летучих в нем строго лимитируется. Если их больше нормы, то при высоких рабочих температурах электроды начинают вспучиваться и растрескиваться. До последнего времени прокалка кокса осуществлялась на электродных заводах, но сейчас эту операцию взяли на себя нефтепеработчики. Они теперь отвечают за содержание не только летучих, но и влаги, серы, золы, а также за механическую прочность и гранулометрический состав выпускаемого кокса: с размером кусков свыше 25 мм, 6-25 мм и 0 – 6 мм, с учетом нужд различных потребителей.

Надо сказать, что при переработке нефти образуется достаточно много углеводородных газов от метана СH4 до бутанов С3Н8 включительно. Источник номер один – прямая перегонка. Выход газов здесь зависит исключительно от степени стабилизации нефти на промыслах или при транспорте. И еще подчеркнем, что в газах атмосферно-вакуумной трубчатки почти нет метана, мало, этана и на 80 – 85% они состоят из пропана и бутанов.

Совсем другую картину представляют газы вторичных процессов: крекинга, риформинга, гидроочистки, изомеризации. Во всех этих процессах молекулы углеводородов претерпевают термическую, каталитическую или термокаталитическую деструкцию. Поэтому в газах этих процессов неизбежно присутствует метан. Далее, если термокаталитические процессы проводятся не под давлением водорода, то в газах обязательно присутствуют алкены, а иногда и алкины С2 – С4. Именно поэтому на НПЗ непредельные газы термического и каталитического крекинга, термического риформинга, висбрекинга собирают и перерабатывают отдельно от газов каталитического риформинга, гидроочистки, изомеризации, гидрокрекинга. В этих последних кроме углеводеродов в большом количестве содержится водород.

Разделение газов значительно отличается от разделения нефти. Сначала весь газовый поток сжимают и охлаждают. В первом контуре охлаждения используют воздух и воду. Здесь при давлении 0,5 МПа и температуре 35 °С происходит конденсация части газов С3 – С4. Получившуюся газожидкостную смесь прокачивают через колонну с бензином. Сконденсировавшиеся молекулы пропана и бутана растворяются в нем (абсорбируются).

Насыщенный газом бензин из абсорбера затем поступает на десорбцию, то есть из него при соответствующих давлениях и температурах выделяют растворенные газы.

Оставшуюся же часть исходной газовой смеси продолжают сжимать и охлаждать. Сначала это делают в аммиачном или фреоновом цикле (температура до -40 °С), далее в этановом или этиленовом (-80 °С), а при необходимости идут и еще дальше, применяя метановый холодильный цикл с температурой ниже -100 °С и давлением порядка 4 МПа.

Так поступают с газами нефтепереработки. Подобные же циклы газофракционирования используют и для переработки попутного газа, выделяемого на промыслах. Не случайно первые газоперерабатывающие заводы очень часто назывались газобензиновыми. Они и в самом деле разделяли сырье на сухой газ (смесь метана и этана), сжиженные газы С3 – С4 и газовый бензин.

Такие маломощные заводики с простейшим оборудованием как ни странно, сохранились и поныне. Они давно сосуществую с мощными нефтеперерабатывающими заводами примерно так же, как сосуществуют крупные плавбазы и маленькие сейнера. Иногда газобензиновые заводы даже монтируют на большегрузных прицепах и баржах, и они по мере надобности кочуют с промысла на промысел.

Дело в том, что попутный газ кончается на месторождении, как правило, гораздо раньше, чем нефть. Так что его надо использовать сразу, пока он есть. И тут мобильные газобензиновые заводики как нельзя более кстати. А нефть уж можно перерабатывать на современном нефтеперерабатывающем предприятии, которое и строится и работает потом достаточно долго.

Ну, а как быть с чисто газовыми месторождениями? Для их использования тоже созданы специализированные предприятия. Чаще всего природный газ – это метан с незначительными добавками этана. Иногда природа делает подарки, добавляя в метан ценнейший гелий, так нужный многим отраслям техники. Но гораздо чаще встречаются неприятные сюрпризы – в виде примесей диоксида углерода и сероводорода.

Понятно, что такие кислые газы надо тотчас отделять от основного сырья. Иначе трубопроводы не спасут никакие антикоррозийные мероприятия. В многоступенчатой системе такой газ подвергается сорбционной отмывке водой, щелочью, специальными растворителями. Потом на основе выделенного сероводорода получают серную кислоту или чистую серу.

Иногда бывает, что в залежи находится не газ, а газожидкостная смесь метана и высших углеводородов, предшественников нефти. Иногда в качестве таковых присутствуют даже алканы, циклоалканы и арены. Представляете, дизельное топливо равномерно распределено в метановой залежи на глубине нескольких километров при давлении в десятки мегапаскалей и температуре в сотни градусов!

Но добыть это топливо не так уж просто. Газоконденсатные месторождения различаются содержанием и фракционным составом жидкой части. Когда пласт протыкают скважинами, давление в нем начинает падать. Физико-химические свойства смеси при этом меняются, она расслаивается, и жидкость скапливается на дне линзы. Если из залежи просто откачивать газ, то скорость расслаивания быстро возрастает, и жидкие углеводороды из смеси быстро растекаются, навсегда оставаясь в недрах. При сегодняшнем развитии техники поднять на поверхность их не удается.

Чтобы таких потерь не было, поступают следующим образом. Газ из конденсатных месторождений поступает в абсорберы. Из него под давлением вымывают тяжелые углеводороды. А затем часть сухого газа под давлением подают обратно в залежь. Этим путем давление в пласте регулируется так, чтобы предотвратить расслоение смеси.

Конечно, все это требует дополнительных расходов, но затраты окупаются сторицей. Месторождение одновременно дает и газ, и дизельное топливо.

Каким образом в дальнейшем используют природный газ, вы, наверное, уже знаете. Прежде всего это прекрасное топливо для промышленных котельных и обычных газовых плит. Кроме того, выделяемый из природного газа этан – прекрасное химическое сырье. Из него делают этилен, а из того, в свою очередь, сотни разнообразных вещей, нужных народному хозяйству.

. Вот так перерабатывают нефтезаводские, попутные и природные газы. Ресурсы их велики, однако используются до сих пор они не полностью. В целом из газов извлекается для дальнейшего использования около 65% бутанов, 35 – 40% пропана и менее 8% этана. Так что резервы тут есть, и немалые!

Http://www. km. ru/referats/376D0C7AC6314158B5C94ED269B99A88

Поделиться ссылкой: