План расположения электрооборудования сварочного цеха нефтеперерабатывающего завода

Установки от экстрасенса 700х170

    1. Планировка размещения оборудования на сварочных участках 1.1 Конструктивное исполнение цеховой сети 1.2 Монтаж электропроводок 2. Электроматериалы и электрооборудование сварочного цеха 2.1 Основные требования к оборудованию 2.2 Требования, предъявляемые к сварочным машинам и аппаратам 3. Правила установки, обслуживания и эксплуатации сварочного оборудования 3.1 Установка оборудования 3.2 Обслуживание оборудования Заключение Список литературы

Сварочный цех представляет собой объект повышенной опасности для человека. Установка распределительных щитков, вентиляционных систем, заземления является залогом безопасности работы персонала.

В курсовой работе представлены описания проведения электромонтажных работ в сварочном цехе. Даны технические характеристики электроматериалов, электрооборудования. Важная роль отведена разделу правил безопасной установки, обслуживанию и эксплуатации сварочного оборудования.

Изучение этапов проведения электромонтажных работ сварочного цеха;

Выполнение проектирования электромонтажных работ в сварочном цехе;

Рассмотрение технических характеристик кабельных линий и распределительных щитов;

Обеспечение безопасного подключения и работы сварочных аппаратов;

Обеспечение безопасной работы персонала при проведении сварочных работ.

3. Правила установки, обслуживания и эксплуатации сварочного оборудования.

В разделах подробно описаны конструктивное исполнение цеховой сети, монтаж электропроводок, электроизоляционные материалы, источники питания постоянного тока, сварочные выпрямители, основные требования к оборудованию, правила безопасной эксплуатации оборудования. В настоящее время сварочное производство является одной из ведущих областей техники. Во всех отраслях машиностроения широко применяют высокопроизводительные и экономически эффективные технологические процессы сварки, наплавки, термической резки и металлизации, позволяющие успешно обрабатывать большинство конструкционных материалов толщиной от нескольких микрометров до нескольких метров. Достигнутый высокий уровень развития сварочной техники служит прочной базой для дальнейшего совершенствования сварочного производства. На основе этих достижений разработаны нормативные документы по рациональному проектированию сварочного производства. Проведенные работы обеспечили переход проектирования сварочного производства, на новый, более высокий уровень с использованием новейших достижений науки и техники.

Основные цели проектирования сварочных производств. При проектировании новых или реконструкции действующих сварочных производств основной целью является обеспечение высокого качества выпускаемой продукции, ее малой металлоемкости и себестоимости, конкурентоспособности на внутреннем и внешнем рынке. Для достижения этой цели требуется обеспечить минимальные сроки проектирования, строительства пли реконструкции цеха, причем требуемый уровень качества продукции должен обеспечиваться не в результате традиционного длительного совершенствования производства, а главным образом за счет оптимизации проектных решений. Обязательным требованием является быстрая смена выпускаемой продукции при минимальных дополнительных затратах. Экономическая эффективность производства существенно зависит от объема выпускаемой однотипной продукции, поскольку высокий уровень концентрации производства позволяет с большей отдачей использовать производственные площади и технологическое оборудование.

Цеховые электрические сети выполняются шинопроводами, кабельными линиями и проводами. В цехе магистральная сеть выполнена с помощью комплектного распределительного шинопровода типа ШРА 73У3, который поставляется в виде отдельных секций, они представляют собой три или четыре шины, заключенные в оболочку и скрепленные самой оболочкой или изоляторами.

Для выполнения прямых участков линий служат прямые секции, для поворотов — угловые, для присоединений — присоединительные. Соединение секций на месте их монтажа выполняется сваркой, болтовыми или штепсельными креплениями. Отдельные приемники подключаются к ШРА через ответвительные коробки проводом марки АПВ, проложенными в трубах в полу.

Для штепсельного соединения ответвительных коробок на секциях шинопровода предусмотрены окна с автоматическими закрывающимися шторками. Это обеспечивает безопасное присоединение коробок к шинопроводу, находящемуся под напряжением в процессе эксплуатации. При открывании крышки коробки питание приемника электроэнергией прекращается.

Распределительную сеть выполняем проводом АПВ (алюминиевые жилы, поливинилхлоридная изоляция). Для питания силовых пунктов выбираем кабель марки АПВБ (алюминиевые жилы, изоляция из полиэтилена, оболочка из поливинилхлоридного пластиката, броня из двух стальных лент с противокоррозионным покрытием).

Электрические проводки должны отвечать требованиям безопасности, надёжности и экономичности. Поэтому важно правильно рассчитать длину и сечение необходимых для монтажа электрической проводки проводов.

Длину провода рассчитывают по монтажной схеме. Для этого на схеме измеряют расстояние между соседними местами расположения щитков, штепсельных розеток, выключателей, ответвительных коробок и т. п. Затем, пользуясь масштабом, в котором вычерчена схема, вычисляют длину отрезков проводов; к длине каждого отрезка прибавляют не менее 100 мм (учитывая необходимость присоединения проводов). Длину провода можно рассчитать также, измеряя непосредственно на щитках, панелях, стенах, потолках и т. п. отрезки линий, вдоль которых должны быть проложены провода.

Сечение провода рассчитывают по потери напряжения и допустимой длительной токовой нагрузке. Если рассчитанные сечения окажутся неодинаковыми, то за окончательный результат принимают величину большего сечения.

Потеря напряжения — это падение напряжения в проводах, соединяющих источник электропитания с электроприёмником. Она не должна превышать 2−5% номинального напряжения источника электропитания. Сечение проводов по потере напряжения рассчитывают при проектировании электрических сетей, от которых питаются электроприёмники промышленных предприятий. При проектировании небольших электроустановок потерей напряжения можно пренебречь, т. к. она очень мала.

Минимальные расстояния между изолированной жилой, корпусом кабельной муфты и металлическим корпусом устройства, а также между заделками, на уровне выхода жил из заделки, по условиям удобства выполнения монтажных работ должны быть не менее 50 мм.

Рекомендуемое расстояние между осями заделок внутренней установки — 220 мм. При монтаже нескольких заделок в одном отсеке подключения минимальное расстояние между жилами разных фаз должно быть не менее 10 мм. Прикосновение жил разных фаз не допускаются.

Рекомендуемое рабочее положение кабельных заделок или муфт — вертикальное, жилами вверх.

Длина жил кабелей при подключении должна быть: максимальная — 1000 мм; минимальная — для напряжения до 1 кВ — 15 — мм, для напряжения до 6 кВ — 250 мм, для напряжения 10кВ — 400 мм.

Допустимый расчётный радиус изгиба жил (в мм) для сечения кабелей (в мм2) составляет: 16−125; 25−160; 35−200; 50−200; 70−250; 95 — 250; 120−320; 150−320; 185 — 400; 240 — 400.

Для приема и распределения электроэнергии к группам потребителей трехфазного переменного тока промышленной частоты напряжением 380 В применяют силовые распределительные шкафы и пункты.

Для цехов с нормальными условиями окружающей среды изготавливают шкафы серий СП-62 и ШРС1−20У3 защищенного исполнения. Шкафы имеют на вводе рубильник, а на выводах — предохранители типа ПН2 или НПН2. номинальные токи шкафов СП-62 и ШРС1−20У3 составляют 250А.

При выполнении проекта сварочного цеха осуществляют детальную разработку технологических процессов с учетом возможной механизации и автоматизации их производства. Принципиальные технологические решения, выбор производственного оборудования и транспортных средств, в значительной степени определяются серийностью производства, т. е. программой выпуска однотипных изделий. Повышение серийности производства обеспечивает более высокую и равномерную загрузку оборудования, делает эффективным использование сложного и дорогого специализированного транспортного и технологического оборудования.

Оптимизация принимаемых решений путем использования систем автоматизированного проектирования технологии заготовительных и сборочно-сварочных операций дает существенное снижение трудоемкости этого этапа работ. Помимо технологических процессов и технологической документации эти системы обеспечивают получение большого объема данных, необходимых при проектировании цеха: перечень необходимого оборудования; его загрузка; сведения о потребном количестве энергии, вспомогательных материалов, технологической оснастки. Площадь проектируемого цеха определяют вначале ориентировочно на основе заданного годового выпуска металлоконструкций (т) и планируемого удельного выпуска с 1 м 2 площади. Эти данные уточняются в процессе детальной проработки компоновки цеха и планировки отдельных участков с учетом расположения на них основного и вспомогательного оборудования, мест для складирования деталей, изготовления узлов, зоны обслуживания рабочих мест и площадей, занятых проездами и проходами. При планировке размещения оборудования стремятся к выполнению следующих требований: рациональное использование площади. В отделении сборки и сварки узлов конструкции рабочие места оснащают специализированными или универсальными грузоподъемными устройствами, площадками для размещения заготовок и готовых сварных узлов, а также сборочно-сварочной оснасткой. Целесообразно применение сварочных автоматических установок, роботов и робототехнических комплексов. Наличие большого количества рабочих мест требует хорошей организации внутрицехового и межцехового транспорта. Эффективными могут быть напольные или подвесные конвейеры, в том числе, с автоматическим адресованием грузов.

Знакомятся с рабочими чертежами проекта электроустановки и монтажными схемами.

Размечают места установки светильников, арматуры, коммуникативных аппаратов (выключателей, рубильников и т. п. ), электрических щитков, линий прокладки проводов. Разметку делают по монтажным схемам и картам, разработанным на основе чертежей проекта электроустановки. Пробивают отверстия и гнёзда, сверлят проходы, фрезеруют борозды. Устанавливают крепёжные детали, опорные конструкции, изоляторы и т. п. Устанавливают и крепят щитки, арматуру, коммуникационные аппараты, ответвительные коробки.

Соединяют между собой смонтированные провода и присоединяют их к щиткам, аппаратуре и т. п.

Проверяют правильность монтажа и соответствие его проекту электроустановки.

Проверяют работу электроустановки под напряжением, устраняют неисправности (при отключённом напряжении) и сдают электроустановку в эксплуатацию.

Оборудования для контактной сварки рассчитано на питание от сети переменного тока частотой 50 Гц с напряжением 380 В.

Максимальное вторичное напряжение холостого хода не должно превышать 36 В; отношение вторичного максимального тока к минимальному должно быть не менее 1,8. Вторичный ток можно регулировать: ступенчато — изменением вторичного напряжения сварочного трансформатора и плавно — фазовым регулированием выпрямителя. Машина должна быть снабжена отключающими устройствами, рассчитанными на максимальную мощность.

В машинах для контактной сварки предусматривается водяное охлаждение электродов, токопроводов, электродержателей, вторичного витка сварочного трансформатора и других частей вторичного контура.

Источники питания сварочной дуги должны удовлетворять следующим основным требованиям:

1. Напряжения холостого хода источника должно быть достаточным для возбуждения дуги и безопасным для человека.

2. После возбуждения дуги напряжение источника должно уменьшаться до значений, соответствующих напряжению горения дуги.

3. При изменении длины дуги не должно происходить значительного изменения сварочного тока.

4. При К З ток в цепи не должен превышать рабочий ток при сварке более чем на 20−40%.

5. Источник тока должен обеспечивать возможность лёгкого и плавного регулирования сварочного тока.

Сварочное оборудование имеет единую систему обозначений, которая состоит из буквенной и цифровой частей.

А — наименование изделия (А — агрегат, В — выпрямитель, И — источник питания, П — преобразователь, Т — трансформатор);

В — способ сварки (О — открытой дугой, Ф — под флюсом, Г — в защитном газе). Отсутствие буквы означает ручную сварку штучным электродом. Дополнительно могут использоваться буквы М — для многопостовой сварки, И — импульсной, Б — с бензиновым двигателем, Д — с дизельным двигателем. Первые две или одна цифры — регистрационный номер;

Г — климатическое исполнение (У — умеренного, Т — тропического или ХЛ — холодного климата); последующая цифра означает категорию помещения, для которого оно предназначено (1 — открытый воздух, 2 — палатки, прицепы и кузова автомобилей, 3 — помещения с естественной вентиляцией, 4 — помещения с принудительной вентиляцией и отоплением, 5 — помещения с повышенной влажностью).

3. Правила установки, обслуживания и эксплуатации сварочного оборудования

Сварочные установки следует располагать и устанавливать в соответствии с требованиями «Правил устройства электроустановок».

При обслуживании электросварочных установок помимо настоящего раздела Правил следует выполнять указания по эксплуатации и безопасному обслуживанию, изложенные в инструкции завода — изготовителя.

Все виды постоянных работ по электродуговой и плазменной сварке в зданиях должны производиться в специально для этого отведённых вентилируемых помещениях, площадь и кубатуры которых удовлетворяют требованиям Строительных норм и правил (СНиП), с учётом габаритов сварочного оборудования и свариваемых изделий.

Ручная дуговая сварка или сварка в среде защитных газов, выполняемая систематически, должна производиться в специальных хорошо вентилируемых кабинах со светонепроницаемыми стенками из несгораемого материала. Те же виды сварки, выполняемые несистематически, а также на крупногабаритных деталях, должны производиться при ограждении мест работы светонепроницаемыми щитами или занавесами из несгораемого материала.

При сварке под флюсом и электрошлаковой сварке ограждения не требуются.

Эти особенности должны быть обязательно учтены при составлении схемы монтажа электропроводки и оборудования сварочного цеха.

Размещение сварочного оборудования, а также расположение и конструкция его узлов и механизмов должны обеспечить безопасный и свободный доступ к нему.

В помещениях для электросварочных работ должны быть предусмотрены достаточные по ширине проходы (не менее 0,8 м), обеспечивающие удобство и безопасность сварочных работ и доставки изделий к месту сварки и обратно.

Напряжение холостого хода источников сварочного тока не должно превышать максимальных значений, указанных нормалями на соответствующее оборудование.

Схема присоединения нескольких сварочных транформаторов или генераторов при работе на одну сварочную дугу должна исключать возможность получения между изделиями и электродом напряжения, превышающего напряжение холостого хода одного из источников сварочного тока.

Источники сварочного тока могут присоединяться к распределительным электрическим сетям напряжением не выше 660 в. Нагрузка однофазных сварочных трансформаторов должна быть равномерно распределена между отдельными фазами трёхфазной сети.

В качестве источников сварочного тока для всех видов дуговой сварки могут применяться однопостовые и многопостовые трансформаторы, выпрямители и генераторы постоянного и переменного тока, специально для этого предназначенные. Непосредственно питание сварочной дуги от силовой (или ответвительной) распределительной цеховой сети не допускается.

Питание дуги в установках для атомно-водородной сварки должно производится от однопостового трансформатора.

Все электросварочные установки с источниками переменного и постоянного тока, предназначенные для сварки в особо опасных условиях, должны быть оснащены устройствами автоматического отключения напряжения холостого хода или ограничения его до напряжения 12 в с выдержкой времени не более 0,5 сек.

Все электросварочные установки, предназначенные для работы в помещениях с повышенной опасностью и имеющие напряжение холостого хода выше 36 в, также должны быть оснащены устройствами автоматического отключения напряжения холостого хода или его ограничения до безопасной в данных условиях величины.

Питание электродвигателей переменного тока сварочной головки допускается только через понижающий трансформатор со вторичным напряжением не выше 36 В. Один из выводов вторичной цепи такого трансформатора должен быть наглухо заземлён. Корпус электродвигателя сварочной головки при этом не заземляется, за исключением работы в особо опасных условиях.

При дуговой сварке для подвода тока к электроду следует применять гибкий шланговый кабель (провод), предусмотренный заводом — изготовителем.

Длина первичной цепи между пунктом питания и передвижной сварочной установкой не должна превышать 10 м. Изоляция проводов должна быть защищена от механических повреждений.

В качестве обратного провода, соединяющего свариваемое изделие с источником сварочного тока, могут служить гибкие провода, а также где это возможно, стальные шины любого профиля достаточного сечения, сварочные плиты и сама свариваемая конструкция. Использование в качестве обратного провода сети заземления, металлических конструкций, коммуникаций и несварочного технологического оборудования запрещается. Зажим вторичной обмотки сварочного трансформатора, к которому подключается обратный провод, а также аналогичные зажимы у сварочных выпрямителей и генераторов, у которых обмотки возбуждения подключаются к распределительной электрической сети без распределительного трансформатора, следует заземлять.

Соединение между собой отдельных элементов, используемых в качестве обратного провода, должно выполняться тщательно (сваркой или с помощью болтов, зажимов). В установках для дуговой сварки в случае необходимости допускается соединение обратного провода со свариваемым изделием при помощи скользящего контакта.

Узлы сварочного оборудования, содержащие конденсаторы должны иметь устройства для автоматической разрядки конденсаторов.

При атомно-водородной сварке необходимо предусмотреть устройство автоматического отключения напряжения и прекращения подачи газа в случае разрыва дуги.

Однопостовые и многопостовые сварочные установки должны быть защищены предохранителями или автоматами со стороны питающей сети. Многопостовые сварочные агрегаты кроме защиты со стороны питающей сети должны иметь максимальный автомат в общем проводе сварочной цепи и предохранители на каждом проводе и сварочном посту. Подсоединение сварочных постов к многопостовому агрегату должно производиться при отключенном от сети агрегате.

При ручной дуговой сварке толстообмазанными электродами, ванно-шлаковой сварке, сварке под флюсом и при автоматической сварке открытой дугой должен быть предусмотрен отсос газов непосредственно вблизи дуги.

При сварке открытой дугой и под флюсом внутри резервуаров и закрытых полостей конструкций в зависимости от характера выполняемых работ должна устанавливаться вентиляция. При ручной сварке рекомендуется, кроме того, подача воздуха непосредственно под щиток сварщика.

Все органы управления сварочным оборудованием должны иметь надёжные фиксаторы или ограждения, исключающие самопроизвольное или случайное их включение (или отключение).

Штепсельные соединения проводов для включения в электросеть переносных пультов управления электросварочных автоматов должны иметь заземляющие контакты.

Корпус любой сварочной установки необходимо заземлять. Для присоединения заземляющего провода на электросварочном оборудовании должен быть предусмотрен болт диаметром 5 — 8 мм, расположенный в доступном месте с надписью «земля». Последовательное включение в заземляющий проводник нескольких заземляемых аппаратов запрещается.

Корпус любого источника питания сварочной установки (сварочный трансформатор, выпрямитель, преобразователь) должен надёжно заземляться.

Для стационарно установленных светильников местного освещения напряжение не должно превышать 36 в, для переносных светильников — 12 в.

Перед присоединением сварочной установки следует произвести внешний осмотр всей установки и убедиться в её исправности. Особое внимание при этом надо обратить на состояние контактов и заземляющих проводников, исправность изоляции рабочих проводов, наличие и исправность защитных средств. При обнаружении каких — либо неисправностей сварочную установку включать запрещается.

Обслуживание оборудования заключается в выполнении следующих работ: систематический профилактический осмотр; чистка (устранение пыли, грязи и т. п. ); смена перегоревших плавких вставок; проверка надёжности заземления; регулировка натяжения пружин; текущий ремонт; испытание (измерение тока срабатывания, напряжения срабатывания, сопротивления изоляции).

Чистить и ремонтировать оборудование, а также заменять плавкие вставки разрешается только при снятом напряжении.

Все постоянные контактные соединения в аппаратуре должны быть плотными. Плотность нажатия контактов регулируется с помощью имеющихся в аппаратуре пружин. Не допускается работа аппаратуры, если контакты покрыты окисью. Окислившиеся контакты очищают наждачной бумагой до блеска. Изношенные детали аппаратуры нужно своевременно заменять новыми.

Запрещается производить ремонт сварочного оборудования под напряжением. Сроки текущих и капитальных ремонтов сварочных установок определяет лицо, ответственное за электрохозяйство, исходя их местных условий и режима эксплуатации установки, а также указаний завода — изготовителя.

Осмотры и чистка установки и пусковой аппаратуры производится не реже 1 раза в месяц. Замер сопротивления изоляции электрических цепей установки производится при текущих ремонтах в соответствии с ГОСТ на эксплуатируемое электросварочное оборудование. После капитального ремонта изоляция электросварочная установка должна быть проверена на электрическую прочность в соответствии с требованиями на эксплуатируемое электросварочное оборудование.

При проектировании систем электроснабжения сварочных цехов промышленных предприятий, необходимо учитывать стремительное развитие отрасли электроэнергетики, электропромышленности. Модернизация и автоматизация систем, создание разнообразных устройств с электронными, полупроводниковыми и электромагнитными элементами, совершенствование электрооборудования, применение современных технологий позволяет с высокой степенью надёжности производить электромонтажные работы.

При монтаже электропроводки и электрооборудования необходимо учитывать технические характеристики современных проводниковых, изоляционных материалов для проведения верных расчётов.

В настоящее время созданы методы расчёта и проектирования цеховых сетей, выбора мощности трансформаторов, методика определения электрических нагрузок, выбора напряжения, сечений проводов, жил, кабелей и т. п.

По мере развития электропотребления усложняются системы электроснабжения промышленных предприятий. В них включаются сети высоких напряжений, распределительные сети. Возникает необходимость внедрять автоматизацию систем электроснабжения процессов промышленных предприятий и производственных цехов. Ведётся активная работа по экономии электрической энергии.

1. Учебное пособие под ред. д-ра техн. наук, проф. А. Е. Розена. Пенза: Изд-во ПГУ. 2010. — 276 с.

2. Красовский А. И. Основы проектирования сварочных цехов: учебник для вузов по специальности «Оборудование и технология сварочного производства». — 4-е изд., перераб. — М.: Машиностроение, 1980.3. Куркин С. А. , Николаев Г. А. Технология изготовления, еханизация, автоматизация и контроль качества в сварочном производстве: Учебник для вузов. — М.: Высш. шк., 1991. — 398 с.

4. Лукьянов В. Ф. , Харченко В. Я. , Людмирский Ю. Г. Изготовление сварных конструкций в заводских условиях. Серия: Высшее образование. 2009.

5. Николаев Г. А. , Куркин С. А. , Винокуров В. А. Сварные конструкции. Технология изготовления. Автоматизация производства и проектирование сварных конструкций: учеб. пособие. — М.: Высш. шк., 1983. 344 с.

6. Проектирование машиностроительных цехов. Справочник. Под общей редакцией Ямпольского Е. С. В 3-х тт. Т.3. М.: «Машиностроение», 1974.

7. Сварка в машиностроении: Справочник. Т.1 /под ред. Н. А. Ольшанского. — М.: Машиностроение, 1978. — 504 с.

8. Сварка в машиностроении: Справочник. Т. 2/под ред. Н. А. Ольшанского. — М.: Машиностроение, 1978. — 462 с.

9. Сварные конструкции: расчет и проектирование/ под ред. Г. А. Николаева. — М.: Высшая школа, 1990. — 446 с. 47

10. Технология, механизация и автоматизация производства сварных конструкций: Альбом /С. А. Куркин, В. М. Хохлов, А. М. Рыбачук. — М.: Машиностроение, 1989. — 282 с.

Http://sinp. com. ua/work/175226/Montazh-elektrooborudovaniya-svarochnogo-cexa

Сварочный участок (СУ) предназначен для подготовительных работ с изделиями. Он является частью крупного механического цеха завода тяжелого машиностроения.

На сварочном участке предусмотрены работы различного назначения: ручная электродуговая сварка и наплавка, полуавтоматическая и автоматическая импульсная наплавка под слоем флюса и т. п.

Он оборудован электроустановками (ЭУ): термическими сварочными, вентиляционными, а также металлообрабатывающими станками.

Транспортные операции осуществляются с помощью кран-балки, электротали, наземных электротележек, ленточных конвейеров.

Участок имеет механическое, термическое отделение, сварочные посты, отделение импульсной наплавки, где размещено основное оборудование.

Электроснабжение (ЭСН) обеспечивается от цеховой трансформаторной подстанции ( ТП) 10/0,4 кВ, расположенной на расстоянии 50 м от здания участка. В перспективе от этой же ТП предусматривается ЭСН станочного участка с дополнительной нагрузкой (Р=800 кВт; cos = 0,85; КП = 0,6).

Электроприемники, обеспечивающие жизнедеятельность (вентиляция и кондиционирование) относятся к 2 категории надежности ЭСН, а остальные — к 3. Количество рабочих смен — 2.

Грунт в районе цеха — песок при температуре +12 °С. Каркас здания сооружен из блоков-секций длиной 8, 6 и 4 м каждый.

Все помещения, кроме механического отделения, двухэтажные высотой 3,6 м. Перечень ЭО цеха сварочного участка дан в таблице 3.16.

Мощность электропотребления (РЭп) указана для одного электроприемника. Расположение основного ЭО показано на плане (рис. 3.16).

Http://studfiles. net/preview/2207282/

Электрическая энергия находит широкое применение во всех областях народного хозяйства и в быту. Этому способствуют такие её свойства, как универсальность и простота использования; возможность производства в больших количествах промышленным способом и передачи на значительные расстояния.

В современной технологии и оборудования промышленных предприятий велика роль электрооборудования, т. е. совокупности электрических машин, аппаратов, приборов и устройств, по средствам которых производится преобразование электрической энергии в другие виды энергии и обеспечивается автоматизация технологических процессов.

В настоящем дипломном проекте выполнено электроснабжение и электрооборудование сварочного цеха

В данной дипломной работе мы разберем инструментальных цех фирмы ООО «АВЕК» находящийся по адресы Индустриальная 7а

Данные цеха: Ширина –30 м. Длина – 48 м. Высота –6 м. Категория помещения – В1

Рис.1 План размещения силового оборудования Инструментального цеха.(размеры в см)

1.3. Характеристика потребителей электроэнергии и определение категории электроснабжения.

Категории электроприемников по надежности электроснабжения определяются в процессе проектирования системы электроснабжения на основании нормативной документации, а так же технологической части проекта. В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории: Первая категория объединяет такие электроприёмники, перерыв в электроснабжении которых связан с опасностью для жизни людей, нанесением значительного ущерба народному хозяйству, расстройством сложного технологического процесса, повреждением оборудования, массовым браком продукции. Перерыв в электроснабжении приёмников первой категории допускается только на время автоматического ввода резервного питания. Из приёмников первой категории выделяется особая группа, недопускающая перерыва в питании. В случае нарушения технологического режима при кратковременном перерыве в электроснабжении приёмников первой категории эти приёмники обеспечивают безаварийную остановку технологического процесса и предотвращают возможность взрыва, пожара или разрушения технологического оборудования. Вторая категория надёжности включает приёмники, перерыв в электроснабжении которых может привести к массовому не до отпуску продукции, простою технологических механизмов, рабочих, промышленного транспорта. Перерыв в электроснабжении приёмников этой категории допускается на время, необходимое для включения резервного питания силами эксплуатационного персонала, но не более 1 суток.

Третья категория объединяет электроприёмники, которые не подходят под вышеуказанные характеристики. Приёмники данной категории допускают перерыв в электроснабжении не более одних суток. Инструментальный цех относится ко второй категории электроприемников, то есть при их отключении возможен не до отпуск продукции. По режиму работы электроприёмники относят к одному из трёх режимов: продолжительному (S1), кратковременному (S2) или повторно-кратковременному (S3) S1 – продолжительный режим. Он продолжается столь длительное время, что превышение температуры нагрева всех его частей, а температурой окружающей среды достигает практически установившегося значения tуст. К нему относятся все остальные электроприёмники не попадающие под режимы S2 и S3. S2 – кратковременный режим – характеризуется не большими по времени периодами работы и длительными паузами, с отключением электроприёмника от сети. К режиму S2 относятся электроприёмники, которые работают при ремонте оборудования. S3- повторно-кратковременный режим, при котором кратковременные периоды работы чередуются с паузами. Металлические части не успевают остывать до температуры окружающей среды. К нему относятся: мостовые, грейферные краны, тельферы и кран-балки. В цехе большая часть электроприемников относится ко второй категории, так как они характеризуется не большими по времени периодами работы и длительными паузами, с отключением электроприёмника от сети.

При проектировании системы электроснабжения и реконструкции электрических установок должны рассматриваться следующие вопросы: 1) Перспективы развития энергосистем и систем электроснабжения с учетом рационального сочетания вновь сооружаемых электрических сетей с действующими и вновь сооружаемыми сетями других классов напряжений; 2) Обеспечение комплексного централизованного электроснабжения всех потребителей, расположенных в зоне действия электрических сетей, независимо от их ведомственной принадлежности; 3) Снижение потерь электрической энергии; 4) Ограничение токов короткого замыкания предельными уровнями. При этом должны рассматриваться в комплексе внешнее и внутреннее электроснабжение с учетом возможностей и экономической целесообразности технологического резервирования.

Учитывая, что определяющим параметром технико-экономических показателей является в основном принятое напряжение, рассматриваются возможные варианты электроснабжения, т. е. осуществляется выбор питающего напряжения. Напряжение 10 кВ применяют для внутризаводского распределения энергиина крупных предприятиях с наличием двигателей, допускающих непосредственное присоединение к сети 10 кВ;на предприятиях небольшой и средней мощности при отсутствии или незначительном числе двигателей, которые могут быть присоединены непосредственно к сети 6 кВ а так же при наличии заводской электростанции с напряжением генераторов 10 кВ. Напряжение 6 кВ применяют при наличии на предприятии значительного количества электроприемников на это напряжение, при наличии заводской электростанции на напряжение 6кВ, на реконструируемых предприятиях, имеющих напряжение 6кВ. Для внутрицеховой системы электроснабжения используется напряжение 380 и 660В. Напряжение 380 В применяют для питания силовых общепромышленных электроприемников. Напряжение 660 В рекомендуется для применения в следующих случаях: если по условиям генплана, технологии и окружающей среды не могут быть осуществлены в должной мере глубокие вводы, дробление цеховых подстанций и приближение их к центрам питаемых ими групп электроприемников, и в связи с этим имеют место протяженные и разветвленные сети до 1000 В, а также при крупных концентрированных нагрузках. Целесообразность применения напряжения 660 В должна обосновываться технико-экономическими сравнениями с напряжением 380/220 В с учетом

При проектировании системы электроснабжения необходимо правильно установить характер среды, которая оказывает влияние на степень защиты применяемого оборудования. В помещениях с нормальной средой электрооборудование должно быть защищено от механических повреждений, а также от случайных прикосновений к голым токоведущим частям. Инструментальный цех по степени взрыво – и пожаробезопасности можно отнести к безопасному, так как он не имеет помещений, где бы со-держались опасные вещества. По электробезопасности цех относится к классу без повышенной опасности (сухое, хорошо отапливаемое, помещение с токонепроводящими полами, с температурой 18—20°, с влажностью 40—50%).

Нормирование искусственного или естественного освещения – это установление норм и правил выполнения осветительных установок (ОУ), обеспечивающих требуемые в процессе эксплуатации уровни количественных и качественных показателей этих установок. Правила и нормы освещения регламентируются соответствующими нормативными документами, в основу которых заложены обычно материалы научных исследований, физиологии зрения, гигиены труда, техники и экономики освещения и др. смежных наук, при этом учитывается материальные и энергетические ресурсы страны. Поэтому нормативные документы составляются в каждой стране и отражают уровень развития в ней светотехнической науки и промышленности, а так же техническую политику в области развития производства источников света (ИС) и светотехнических изделий. Целью и задачей нормирования является создание в освещаемом помещении световой среды, обеспечивающей зрительную эффективность ОУ с учётом требований физиологии зрения, гигиены труда, техники безопасности и т. п. при минимальных затратах электроэнергии и других материальных затрат на монтаж и эксплуатацию ОУ. Выбор показателей эффективности ОУ определяется её функциональным назначением. Так же к основным светотехническим величинам относятся:

Световой поток – мощность излучения, оценивается глазом человека, ЛМ.

Освещённость – интенсивность освещения поверхности, которая характеризуется плотностью распределения светового потока

ЛК (люкс) =ЛМ/м^2 . Согласно ПУЭ (6-е изд.) в разд. 1.1.13 определяют в отношении опасности поражения людей электрическим током следующие классы помещений:

1.Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность. 2.Помещения с повышенной опасностью, характеризующиеся наличием в них одного из следующих условий, создающих повышенную опасность:

Токопроводящих полов (металлические, земляные, железобетонные, кирпичные и т. п.)

Возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования – с другой

3.Особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:

Территории размещения наружных электроустановок. В отношении опасности поражения людей электрическим током эти территории приравниваются к особо опасным помещениям. Учитывая вышеперечисленные факторы, определяем категорию помещения как: Помещение без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность. По точности работы производственные помещения разделяются на восемь разрядов, из которых первые шесть (I –VI) характеризуются размером объектов наблюдения, разряд VII регламентируют работы с самосветящими материалами, а разряд VIII относиться к работам, связанным с общим

Инструментальный цех Общее наблюдение за ходом производственного процесса: постоянное XIII Г-08 – 0,6 55 П-IIа

Характеристика помещений согласно ПУЭ. Цех обработки корпусов деталей относится к производственным помещениям с нормальными условиями среды: – ТП, РУ, сварочный цех, бытовка, кабинет начальника цеха, склад, – помещения с нормальной средой. Виды и системы освещения источников света

Вариант№2. ЛПС02 2*40 ЛД 40 Вт. Расчет освещения помещений цеха Рассчитать для производственного помещения методом использования светового потока, а для бытовых методом удельной мощности. Производственное помещение. – Выбрать коэффициент зрительных работ. 2 В +1 – Выбрать нормированную освещенность Е = 300 лк – Выбрать тип светильника с лампами. Вариант 1. ЛСП 02 2*80 ЛД-80 Вт Ф ев =3 865 лм. – Выбрать коэффициент запаса Кзап. согласно I 51. Кзап 1,5 – Выбрать коэффициент минимальной освещенности Z=l,15. – Определить коэффициенты отражения от потолка Sn, стен Sct, рабочей поверхности S р. п., в в зависимости от отделки помещения, Sn=50%, S ст= 30%, S р. п. = 10%. Согласно | 5J Потолок и стены побелены, полы бетонные. – Вычислить индекс помещения i по формуле: I=A*B Hp (A+B) Где, А – длина цеха м, В – ширина цеха м, Нр – расчетная высота м. Нр= Н – (пев + h р. п.), где Н – высота в помещении потолка м. h р. п. – высота свеса светильника м. h р. п. – высота рабочей поверхности м. Нр. = 8-(1+1)=6м.

Определить расстояние между светильниками по ширине. L= X* Нр, где X – величина, характеризующая кривую силу света. L= 1,4*6=9 м. Расстояние между рядами принять 9 м. Вычислить необходимое число светильников по формуле: En*S*Ks*Z U*Фсв*2 Е – нормированная освещенность лк. S – площадь помещения кв. м. Кз – коэффициент запаса. Z – коэффициент минимальной освещенности. U – коэффициент использования светового потока. Ф ев – световой поток лампы лм п св_=300*1 440*1,5*1.15/0,63*3 865*2=15 св Принять к установке 153 светильника. Вычислить фактическую освещенность Еф по формуле: Еф = п св*и*Ф ев/S*Ks*Z Е ф= 15*0,63*2*3 865/1 440*1,5*1,15= 299,96 лк. – Проверить выполнение освещенности Е Е= Е ф – Е нЕм 299.9-300/300=-0,01%. Отклонение расчетной освещенности от нормированной допускается в пределах от минус 10% до 20%. согласно ПУЭ. -10%< -0,01<20:%, Окончательно принять к установке 15 светильника. Окончательное расстояние между торцами принять 42,5 см. – Определить расстояние от стены до крайнего ряда L L <0.3L L=0.3*9=2.7m

Для варианта 2 расчет ведется аналогично, данные приведены таб. 10

Разработать тип схемы освещения Для осветительной сети принять однофазную двухпроводную схему освещения. В цеху установить светильники типа ЛСП 02 со стартернои схемой зажигания. 4.2 Определить осветительные нагрузки Производственное помещение. Вариант 1. £ Рл= п *2*Рл, где £ Рл – суммарная мощность ламп одного ряда, кВт п – число светильников в ряду, шт. Рл – мощность ламп в кВт. 1Рл =4*2*0,8=6 кВт. Рр=1,25*Кс*£Рл, где Рр – расчетная мощность, кВт. Кс – коэффициент спроса для групповых сетей, принять 1 согласно I 51. Рр= 1,25*1*6=7,5 кВт. Для варианта 2 и для остальных помещений расчет ведется аналогично.

Аналогично вычисляем для остальных групп основного и аварийного освещения и заносим в таблицу №4 Вычисляем расчётный ток расцепителя автоматического выключателя по условию:

Для автоматического выключателя Группы 1 I_p^*=0,2×1.25=0.25 А Выбор АВ производим по каталогу [TDM Electric] По току расцепителя выбираем тип автоматического выключателя. Для Группы 1 выбираем автоматический выключатель типа ВА47-29 1Р 1А 4,5кА х-ка В TDM с током расцепителя 1А. Аналогично определяем для остальных групп основного и аварийного освещения и заносим в таблицу № Выбираем головные автоматические выключатели в ЩО и ЩАО по условию: I_p^*≥I_н

Выбираем тип автоматического выключателя ВА47-29 1Р 2А 4,5кА х-ка В TDM с током расцепителя 2 А. Головной автоматический выключатель в ЩАО выбираем аналогично и заносим в таблицу

I_н= P_ном/(U_ном×√3×cos⁡φ )=104/(220×1.73×0.8)=0,4 А По условию механической прочности выбираем кабель по ПУЭ таб.1.3.6 ВВГ 5×1,5. Для ЩАО находим аналогично и заносим результаты в табл.№5

Сечение проводов и кабелей по допустимой потере напряжения определяют главным образом для осветительных сетей. Для силовых сетей этот метод расчёта применяют лишь при сравнительно большой их протяжённости (вне цеховые сети). Сечение проводов и кабелей с одинаковым сечением по всей длине рассчитывают по формуле: s= (P×l)/(c×∆U) где P – расчётная нагрузка, КВт l – общая длина линии, м

∆U – допустимая потеря напряжения сети, % С – коэффициент, зависящий от напряжения и удельного сопротивления. Определяем С по таблице 38 [4] С=77 Из данной выше формулы определяем ∆U: ∆U= (Р×l)/(c×S) Определяем падение напряжения на линии 1 группы осветительной сети. l = длина линии к каждому светильнику 1 группы рабочего освещения, м ∑l=19м. P = 0,052 кВт S = 1,5 мм2 ∆U= (0,052×19,0)/(77×1,5)=0,0016 % Процентное соотношение потери напряжения удовлетворяет нормам и составляет менее 4%. Остальные линии рабочего и аварийного освещения вычисляем аналогично и заносим в сводную таблицу №6.

Создание каждого промышленного объекта начинается с его проектирования, а определение ожидаемых (расчетных) значений электрических нагрузок является первым основополагающим этапом проектирования СЭС. Необходимость определения ожидаемых нагрузок промышленных предприятий вызвана неполной загрузкой некоторых электроприемников (ЭП), не одновременностью их работы, вероятностным случайным характером включения и отключения ЭП. Правильное определение ожидаемых электрических нагрузок и обеспечение необходимой степени бесперебойности их питания имеют большое значение. Также правильное определение электрических нагрузок является основой рационального построения и эксплуатации СЭС промышленных предприятий. От правильной оценки ожидаемых нагрузок зависят капитальные затраты в схеме электроснабжения, расход цветного металла, потери электроэнергии и эксплуатационные расходы. Ошибки при определении электрических нагрузок приводят к ухудшению технико-экономических показателей промышленного предприятия.

Завышение ожидаемых нагрузок приводит к удорожанию строительства, перерасходу проводникового материала сетей и неоправданному увеличению мощности трансформаторов и прочего оборудования. Занижение может привести к уменьшению пропускной способности электрической сети, к лишним потерям мощности, перегреву проводов, кабелей и трансформаторов, а следовательно, к сокращению срока их службы. – электрические нагрузки в узлах электроснабжения определяют для выбора сечения питающих линий, мощности трансформаторов, номинальных токов коммутационных аппаратов, установок защиты. При определении расчетных электрических нагрузок можно пользоваться основными методами: упорядоченных диаграмм (метод коэффициента максимума); – удельного потребления электроэнергии на единицу продукции; – коэффициента спроса; – удельной плотности электрической нагрузки на 1 м2 производственной площади. Метод коэффициента спроса является упрощенным методом, основанным на методе коэффициента максимума. Он применяется при определении электрических нагрузок на шинах подстанций и распределительных устройств. В задании на дипломный проект приведены таблицы установленных мощностей ЭП по инструментальному цеху и их поэтому в данном случае для расчета можно применить метод коэффициента спроса.

В связи с расположением оборудования, и экономических соображений, будет выгодно поставить, два силовых шита ЩУ-14 и ЩУ-15. Далее рассмотрим распределение оборудования по силовым щитам и занесем их в таблицу

1.17. Расчет электрических нагрузок силовых щита инструментального цеха.

Наименование оборудования Кол-во шт Рном кВт Kи Рсм кВА tgϕ Qсм кВАр

1).При определении расчётных нагрузок потребителей работающих в повторно кратковременном режиме Р_ном для расчёта приводиться к постоянному режиму работы:

Для остальных находим аналогично и заносим данные в таблицу 2).Определяем активную сменную мощность по формуле:

Р_см=Р_ном×К_и Находим для гильотины: Р_см=2,5×0,7=1,75 кВА Для остальных находим аналогично и заносим 3).Определяем реактивную сменную мощность по формуле:

Q_см= Р_см×tg⁡φ tgϕ определяем по справочнику [Электроснабжение объектов] (учебник) Приложение 22 или рассчитать через sinφ:

Sinφ=√(1 – cos^2 φ) tg=sinφ/cosφ Находим для сварочного аппарата: Q_см=1,3×0,86 =1,1 КВАр Для остальных находим аналогично и заносим данные в таблицу № 9 4). Расчет максимальных нагрузок электроприемников. Определяем величину отношения наибольшего электроприемника к наименьшему.

К_иа=Р_см/Р_ном =3,4/15=0,22 1).Выбираем самый мощный электроприемник рассматриваемой группы: m_наиб=7,5кВт (Токарный станок ) 2).Выбираем ЭП, номинальные мощности которых равны половине мощности наибольшего или больше ее. По условию таковых электроприемников не имеется, значит число таких электроприемников равно 1.

N_(*1)=n_1/n=1/5=0,2 Р_(*1)=Р_ном1/Р_ном =7,5/15=0,5 Исходя из этого определяем относительное число эффективных ЭП n_(э*) (табл.2.2.) на основе интерполяции. n_(э*)=0,19 4).Далее определяем абсолютное число эффективных ЭП: n_э=n_(э*)×n=0,19×5=0,95 5).Исходя из этого определяем коэффициент максимума активной мощности К_ма (табл.2.1.) по найденным значениям n_э и К_иа с использованием интерполяции. К_ма=2,01 6).Определяем расчетную максимальную активную мощность группы А: P_p=K_мa×P_см; P_p=2,01×3,4=6,83кВт 7).Находим расчетный максимум реактивной мощности по формуле: Q_p=K_мр×Q_см;

Коэффициент максимума реактивной мощности K_мр при эффективном числе ЭП меньше 10 принимается равным 0,5 поэтому: Q_p=0,5×8,65=4,325кВАР 8).Теперь для всего РП вычисляются расчетные суммарные максимальные активные и реактивные мощности по группам А и Б: P_p=P_p (А)+P_см (Б)=6,83+0,4=7,23кВт

9).Находим полную мощность по формуле: S_p=√(〖P_p〗^2+〖Q_p〗^2 )=√(〖7,23〗^2+〖4,625〗^2 )=8,58кВА 10).Находим ток нагрузки получасового максимума: I_p=S_p/(√3×U_ном ) I_p=24,3 А; Исходя из условия механической прочности, выбираем кабель по ПУЭ ВВГ 5×6〖мм〗^2.

Определим токовую нагрузку в каждой линии и выберем сечение проводов по длительному допустимому току согласно ПУЭ таблица 1.3.4. по условию Iдоп.≥ Iн.. Составим сводную таблицу. Определим силу тока номинальную для токарного станка по формуле и заносим в таблицу № 9 I_н= P_ном/(U_(ном )×√3×cos⁡φ )=8400/(380×√3×0.75)=17,01 А Исходя из условия механической прочности выбираем кабель по ПУЭ ВВГ 5×2,5〖мм〗^2. Остальные потребители аналогично и заносим в таблицу № Выбор марки провода. В современном представленном ассортименте, при выборе провода нужно учитывать не только правильность выбранного сечения, но и марку. Марка провода или кабеля – это буквенное обозначение, характеризующее материал токопроводящих жил, изоляцию, степень гибкости и конструкцию защитных покровов. В маркировке отечественных проводов используются следующие обозначения: – первая буква указывает на материал токопроводящей жилы ( А – алюминий), если отсутствует в марке провода буква А – это означает, что токопроводящая жила выполнена из меди;

– вторая буква обозначает провод; – третья буква – материал изоляции (например, Р – резина, В – поливинилхлорид, П – полиэтилен). Марку провода выбираем по номинальному току по справочнику.

В марках проводов могут также присутствовать буквы, характеризующие другие элементы конструкции:

№/п Наименование оборудования Р_н, кВт I_н, А Марка провода и сечение, 〖мм〗^2 d_трубы, мм

D_т=7×100/60=11,6мм Выбираем трубу диаметром 14мм для кабеля ВВГ 5×2,5. Остальные находим аналогично и их результаты заносим в таблицу № 10

Сечение проводов и кабелей по допустимой потере напряжения определяют главным образом для осветительных сетей. Для силовых сетей этот метод расчёта применяют лишь при сравнительно большой их протяжённости (вне цеховые сети). Сечение проводов и кабелей с одинаковым сечением по всей длине рассчитывают по формуле: s= (P×l)/(c×∆U) где P – расчётная нагрузка, кВт l – общая длина линии, м ∆U – допустимая потеря напряжения сети, % С – коэффициент, зависящий от напряжения и удельного сопротивления. Определяем С по таблице 38 (С = 77 для меди) Из данной выше формулы определяем ∆U: ∆U= (Р×l)/(c×S) Для токарного станка: l= 14 м. Р=8,4 кВт S=2,5 〖мм〗^2 ∆U= (8,4×14)/(77×2,5)=0.5 % Остальные потребители вычисляем аналогично и заносим в таблицу №12. Процентное соотношение потери напряжения удовлетворяет нормам и составляет менее 4%. Остальные линии рабочего и аварийного освещения вычисляем аналогично и заносим в сводную таблицу №12.

Назначение аппаратов защиты: для защиты от коротких замыканий; для защиты двигателей (в т. ч. с функцией реле защиты от перегрузки); для защиты электроустановок; для защиты пусковых сборок от коротких замыканий; для защиты трансформаторов; как главные и аварийные выключатели; для коммутирования постоянного тока; как аппарат защиты трансформаторов напряжения во взрывоопасных зонах. Автоматические выключатели выбирают по номинальному току из таблицы № 10 Для токарного станка выбираем автоматический выключатель по условию: I_р^*≥I_н×1,25; I_р^* = 17,01 × 1,25 = 21,26А

Выбираем расчётный ток расцепителя автоматического выключателя по справочнику: I_р^* – расчётный ток расцепителя. I_р^* = 21,2А Так как по условию данного дипломного проекта мы используем во всех ЭП пятипроводную систему питания, то автоматические выключатели следует выбирать трехполюсные. Поэтому: I_р^* = 50А По току расцепителя выбираем тип автоматического выключателя. Для токарного станка выбираем автоматический выключатель типа ВА47-63 3Р 50А 4,5кА х-ка С TDM, и заносим в таблицу № 12. Остальные аналогично. Из этого следует:

2 Сверлильный станок 8,2 16,6 20,75 50А ВА47-63 3Р 50А 4,5кА х-ка С TDM

3 Сварочный аппарат 5,2 10,5 13,12 16А ВА47-63 3Р 16А 4,5кА х-ка С TDM

4 Приточная вентиляция 0,5 0,95 1,2 6А ВА47-63 3Р 6А 4,5кА х-ка С TDM

Выбор числа и мощности силовых трансформаторов для главных понизительных подстанций (ГПП) промышленных предприятий должен быть технически и экономически обоснован, так как это оказывает существенное влияние на рациональное построение схем промышленного электроснабжения. При выборе числа и мощности силовых трансформаторов используют методику технико-экономических расчетов, а также учитывают такие показатели, как надежность электроснабжения потребителей, расход цветного металла и потребная трансформаторная мощность. Для удобства эксплуатации систем промышленного электроснабжения стремятся к применению не более двух-трех стандартных мощностей трансформаторов, что ведет к сокращению складского резерва и облегчает взаимозаменяемость трансформаторов. Выбор трансформаторов следует производить с учетом схем электрических соединений подстанций, которые оказывают существенное влияние на капитальные вложения и ежегодные издержки по системе электроснабжения в целом, определяют ее эксплуатационные и режимные характеристики. В данном дипломном проекте мы рассматриваем инструментальный цех ООО «Авек» На территории завода находится

К ТП-200 протянут силовой питающий кабель, который разветвляется на ввод каждого трансформатора. Постоянно работает только 1 трансформатор.

Степень защиты IР00 (открытые): для установки в отапливаемых помещениях на панелях, в закрытых шкафах и других местах, защищенных от попадания воды, пыли и посторонних предметов.

Степень защиты IP40 (в оболочке): для установки внутри не отапливаемых помещений, в которых окружающая среда не содержит значительного количества пыли и исключено попадание воды на оболочку пускателя.

Степень защиты IP54 (в оболочке): для внутренних и наружных установок в местах, защищенных от непосредственного воздействия солнечного излучения и атмосферных осадков.

Могут быть замыкающими (з) или размыкающими (р) в разных комбинациях, дополнительные контакты могут быть встроены в пускатель или изготовлены в виде отдельной приставки. Часть дополнительных контактов может быть использована в схеме пускателя, например, в реверсивном пускателе – для осуществления электрической блокировки.

Нормируется для режима работы пускателя АС-1, АС-3 или АС-4 отдельно

Для каждого из значений напряжения главной цепи, т. е. рабочего напряжения пускателя;

Может быть выбрано из ряда 24, 36, 42, 110, 220, 380 В переменного тока. Некоторые типы пускателей изготавливаются с магнитной системой с питанием катушки управления постоянным током, при этом их включают в цепь переменного тока через выпрямитель.

Исчисляется в миллионах циклов включения-выключения. Для определения коммутационной износостойкости необходимо задать режим работы пускателя, напряжение главной цепи, ток главной цепи (или мощность управляемого двигателя) и, по соответствующей номограмме, приведенной в техническом описании пускателя, определить гарантированное число включений-отключений. При этом необходимо учесть, что режим работы пускателя учитывает частоту его включений-отключений в час. Таким образом, надежная работа пускателя определяется целым рядом факторов, которые необходимо правильно оценить на этапе его выбора.

-Мощность, потребляемая втягивающей катушкой (указывается в ваттах).

При выборе пускателя широко применяется термин «величина пускателя». Термин этот условный и характеризует допустимый ток контактов главной цепи пускателя. При этом подразумевается, что напряжение главной цепи составляет 380В и пускатель работает в режиме АС-3.

Для токарного станка выбираем пускатель второй величины 50А марки ПМЛ.

Для остальных находим аналогично и результаты заносим в таблицу №13

Пускатели серии ПМЛ выпускаются сразу с тепловым реле. Ток теплового реле пускателя соответствует номинальному току пускателя

Вторая цифра – характер работы электродвигателя и наличие теплового реле:

Третья цифра – исполнение пускателя по степени защиты и наличию кнопок:

Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.

Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств (рис.4)

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т. п.).

1). Возьмем стержни длиной 2 метра (l_ct=2м.) и диаметром диаметром 1 сантиметр (d=1см.)

2). Определяем сопротивление грунта с учетом коэффициента сезонности.

По справочнику [Методические указания по контролю состояния заземляющих устройств электроустановок], по таблице 3.5. выбираем коэффициент сезонности для 1-ой климатической зоны, с нормальной влажностью.

3). Определяем сопротивление растекания тока с одиночного стержня:

Возьмем расстояние от поверхности земли до стержней H=0,7 м., тогда:

В установках до 1000В нормированное сопротивление заземляющего устройства R_(з. норм.) принимают равным 4 Ома (R_(з..)=4 Ом), тогда предварительное количество заземлителей равно:

Далее по таблице 3.6. выбираем коэффициент взаимного экранирования вертикальных стержней:

5). Рассчитаем длину соединительной полосы. Стержни будем располагать в ряд.

6). Определим удельное сопротивление грунта для соединительной полосы:

Отсюда видно, что предварительная оценка стержней была достаточно точной. Оставляем конечное число стержней (N=5 шт.), то есть берем 5 электродов.

R_(З. РАСЧ.)≤R_(З. НОРМ.) – условие выполняется, следовательно расчет выполнен верно.

Http://www. sesiya. ru/diplomnaya-rabota/elektrika/770-elektrosnabjenie-i-elektrooborudovanie-svarochnogo-ceha/

Электроснабжение механического цеха должно обеспечивать его максимальные потребности в электроэнергии. А также – учитывать перспективы развития производства, его реконструкции или модернизацию. Это на годы обеспечит экономичное и безотказное Электроснабжение цеха. Курсовая работа позволяет определить ежедневные и перспективные характеристики электрической сети, ее компонентов, оборудования для контроля и управления.

Метод анализа дает возможность разработать полноценное электроснабжение цеха. Курсовая работа рассчитывает:

– общие электрические нагрузки от всех станков, осветительных приборов, ручных инструментов, оборудования или приборов обогревания, если такие используются на территории цеха. Для этого создается диаграмма, показывающая сегмент каждого вида в общей электрической нагрузке;

– показатели трансформаторного оборудования, необходимого для понижения и распределения напряжения по сети;

– мощность линий электропитания, вид и протяженность кабелей, схему их расположения, разводки, размещение и тип шкафов управления с автоматической системой защиты. Для защиты электросети учитывают возникающее в сети импульсное напряжение и мощность автоматов защиты.

– необходимое количество осветительных приборов, их мощность и схему расположения;

– устройство контура заземления, обеспечивающего защиту от атмосферного электричества, молний;

– систему аварийного подключения к альтернативному источнику электроэнергии, в случае невозможности использования основного.

Завершается Проект электроснабжения цеха проверкой расчетов, определением потерь в сети за год эксплуатации. Вследствие чего предусматриваются мероприятия по повышению энергетической эффективности. Немаловажно также учесть потребность в квалифицированном энергетике, который должен будет обслуживать контрольные и распределительные устройства, проводить инструктаж по технике безопасности технического персонала. Квалификацию, уровень допуска, определяет соответствующая нормативная база.

Подборка не содержит всех проектов, не нашли по метке воспользуйтесь поиском по каталогу проектов.

Http://chertezhi. ru/modules/files/viewlabel. php? aid=152

Повышение уровня электрификации производства и эффективности использования энергии основано на дальнейшем развитии энергетической базы, непрерывном увеличении электрической энергии.

В настоящее время при наличии мощных электрических станций, объединённых в электрические системы, имеющих высокую надёжность электроснабжения, на многих промышленных предприятиях продолжается сооружение электростанций. Необходимость их сооружения обуславливается большой удалённостью от энергетических систем, потребностью в тепловой энергии для производственных нужд и отопления, необходимостью резервного питания ответственных потребителей.

В настоящее время разработаны метода расчётов и проектирования цеховых сетей, выбора мощности цеховых трансформаторов, методика определения цеховых нагрузок и т. д. В связи с этим большое значение приобретают вопросы подготовки высококвалифицированных кадров, способных успешно решать вопросы проектирования электроснабжения и практических задач.

Сварочный участок предназначен для подготовительных работ с изделиями. Он является частью крупного механического цеха завода тяжелого машиностроения.

На сварочном участке предусмотрены работы различного назначения: ручая электродуговая сварка и наплавка, полуавтоматическая и автоматическая импульсная наплавка под слоем флюса.

Он оборудован электроустановками: термическими сварочными, вентиляционными, а также металлообрабатывающими станками.

Участок имеет механическое, термическое отделение, сварочные посты, отделение импульсной наплавки, где размещено основное оборудование.

Электроприемники, обеспечивающие жизнедеятельность (вентиляция и кондиционирование) относятся к 2 категории надежности электроснабжения, а остальные – к 3. Количество рабочих смен – 2.

Таблица 1 – Перечень электрооборудования сварочного участка цеха.

Http://stud24.ru/radionics/jelektrosnabzhenie-svarochnogo-uchastka-ceha/203267-594355-page1.html

Курсовой проект состоит из расчетно-пояснительной записки и графической части, состоящей из 2 листов: план расположения оборудования цеха, однолинейная схема электроснабжения цеха. Записка с необходимыми эскизами, расчетными схемами, графиками, таблицами имеет объем 50-70 листов формата А4 (А4, размер 297х210 мм, ГОСТ 2.301-68).

1.2 Определение категорий надежности и выбор схемы электроснабжения

1.3 Мероприятия безопасного проведения работ в электроустановках

2.3 Компенсация реактивной мощности и выбор компенсирующих устройств

2.4 Выбор типа, числа и расчет мощности силовых трансформаторов на подстанции

2.6 Выбор основного оборудования на подстанции и аппаратов защиты

Задание на курсовое проектирование выдается студентам после сдачи и получения положительных оценок по контрольным работам и зачетам за расчетно-практические работы. Задания выдаются каждому студенту индивидуально. При получении задания студент обязан внимательно изучить текстовую часть задания и план расположения электрооборудования цеха. Выяснить у руководителя проекта сроки и часы консультаций и дату защиты проекта. После получения темы курсового проекта студент обязан расписаться в ведомости выдачи заданий.

Повышение уровня электрификации производства и эффективности использования энергии основано на дальнейшем развитии энергетической базы, непрерывном увеличении электрической энергии.

В настоящее время при наличии мощных электрических станций, объединённых в электрические системы, имеющих высокую надёжность электроснабжения, на многих промышленных предприятиях продолжается сооружение электростанций. Необходимость их сооружения обуславливается большой удалённостью от энергетических систем, потребностью в тепловой энергии для производственных нужд и отопления, необходимостью резервного питания ответственных потребителей.

В настоящее время разработаны метода расчётов и проектирования цеховых сетей, выбора мощности цеховых трансформаторов, методика определения цеховых нагрузок и т. д. В связи с этим большое значение приобретают вопросы подготовки высококвалифицированных кадров, способных успешно решать вопросы проектирования электроснабжения и практических задач.

Разработка курсового проекта: «Электроснабжение. цеха» выполняется с целью проектирования надежной, безопасной и удобной в эксплуатации схемы электроснабжения цеха, выбор современного устойчивого к любым режимам оборудования позволит создать безопасные и комфортные условия труда для обслуживающего персонала.

Для достижения поставленной цели необходимо решить следующие задачи: рассчитать электрические нагрузки; разработать оптимальную схему низковольтного электроснабжения цеха; выбрать электрооборудование, в том числе: силовые трансформаторы, компенсирующие устройства, проводники, коммутационную аппаратуру.

В данном разделе после тщательного изучения текстовой части задания и плана цеха обобщаются сведения о потребителях электроэнергии, дается их энергетическая характеристика и место в технологическом процессе. Дается полный перечень электрооборудования с указанием места на плане и величины активной мощности электроприемника, краткая характеристика электроприемников, план расположения электрооборудования цеха (схема А4).

Сварочный участок цеха предназначен для ремонта и настройки электромеханических приборов, выбывших из строя.

Сварочный участок цеха относится к вспомогательным цехам завода. Он обслуживает все цеха основного и вспомогательного производства завода, производит текущий и капитальный ремонт и изготавливает запасные части к оборудованию.

Он является одним из цехов металлургического завода, выплавляющего и обрабатывающего металл. Сварочный участок цеха имеет два участка, в которых установлено необходимое для ремонта оборудование: токарные, строгальные, фрезерные, сверлильные станки и др. В цехе предусмотрены помещения для трансформаторной подстанции (ТП), вентиляторной, инструментальной, складов, сварочных постов, администрации и пр.

Сварочный участок цеха получает ЭСН от главной понизительной подстанции (ГПП). Расстояние от ГПП до цеховой ТП – 0,9 км, а от энергосистемы (ЭС) до ГПП – 14 км. Напряжение на ГПП – 6 и 10 кВ.

Количество рабочих смен – 2. Потребители цеха имеют 2 и 3 категорию надежности ЭСН. Грунт в районе РМЦ – чернозем с температурой +20 С. Каркас здания цеха смонтирован из блоков – секций длиной 6 м каждый.

Мощность электропотребления (Рэп) указана для одного электроприемника.

Таблица 1 – Перечень электрооборудования сварочного участка цеха.

Http://lektsia. com/6xe9ee. html

По [3,с 271] определили значение коэффициентов спроса и учета потерь мощности в пускорегулирующей аппаратуре для люминесцентных ламп и ламп ДРЛ: Кс=0,95; КПРА Л = 1,2; КПРА Д = 1,1. Следовательно, осветительная нагрузка цеха:

Таким образом, полная нагрузка цеха, с учетом осветительной нагрузки составляет:

Принимаем, что на рассматриваемом объекте имеется складской резерв трансформаторов, тогда с учетом того что потребители цеха имеют только 2 и 3 категории по надежности электроснабжения, принимаем что подстанция выполняется однотрансформаторной [3,с.106].

Здесь Кз = 0,9 –рекомендуемый коэффициент загрузки для однотрансформаторной ТП [3,с. 103].

Определяем реактивную мощность, которую целесообразно передавать через силовой трансформатор из сети 10 кВ в сеть 0,4 кВ [3,с.106]:

Находим мощность низковольтных компенсирующих установок (НКУ) [3.с.106]:

Мощность НКУ, необходимых для сведения потерь электроэнергии в распределительной сети к минимуму:

Расчетный коэффициент γ зависит от схемы питания цеховой подстанции и расчетных параметров Кр1 и К р2, которые определяются по [3,с.108-109,таблицы 4.6и4.7]: Кр1=9 Кр2 =2 (при длине питающей линии 50 м). Принимаем, что цеховая ТП получает питание по радиальной схеме, тогда по[3,c.108-109,рисунок 4.86] найдено, что γ =0,42, следовательно:

– обеспечивать необходимую надежность электроснабжения приемников электроэнергии в зависимости от их категории;

– иметь оптимальные технико – экономические показатели (минимум приведенных затрат);

– иметь конструктивное исполнение, обеспечивающие применение индустриальных и скоростных методов монтажа.

Схемы цеховых сетей делят на магистральные и радиальные. Линию цеховой электрической сети, отходящую от распределительного устройства низшего напряжения цеховой ТП и предназначенную для питания отдельных наиболее мощных приемников электроэнергии и распределительной сети цеха, называют главной магистральной линией (или главной магистралью). Главные магистрали рассчитывают на большие рабочие токи (до 6300 А); они имеют небольшое количество присоединений. Рекомендуется применять магистральные схемы с числом отходящих от ТП магистралей, не превышающим числа силовых трансформаторов.

Распределительные магистрали предназначены для питания приемников малой и средней мощности, равномерно распределенных вдоль линии магистрали. Такие схемы выполняют с помощью комплектных распределительных шинопроводов серии ШРА на токи до 630А. Питание их осуществляют от главных магистралей или РУ низшего напряжения цеховой подстанции.

Магистральные схемы обеспечивают высокую надежность электроснабжения, обладают универсальностью и гибкостью (позволяют заменять технологическое оборудование без особых изменений электрической сети). Поэтому их применение рекомендуется во всех случаях, если тому не препятствуют территориальные расположения нагрузок, условия среды и технико-экономические показатели.

Радиальная схема электроснабжения представляет собой совокупность линий цеховой электрической сети, отходящих от РУ низшего напряжения ТП и предназначенных для питания небольших групп приемников электроэнергии, расположенных в различных местах цеха.

Распределение электроэнергии к отдельным потребителям при радиальных схемах осуществляют самостоятельными линиями от силовых пунктов, располагаемых в центре электрических нагрузок данной группы потребителей. Рекомендуется использовать как наиболее дешевые силовые пункты с предохранителями (типов СП, СПУ, ШРСУЗ). Радиальные схемы обеспечивают высокую надежность электроснабжения. Однако они требуют больших затрат на электрооборудование и монтаж, чем магистральные схемы.

Для данного проекта выбрана радиальная схема электроснабжения, расчет которой выполняется по алгоритму, показанному в главе 1 данного проекта. Разница заключается в том, что электроприемники распределяются по подключениям, для каждого из которых расчетная нагрузка определяется по отдельности. При этом коэффициенты расчетной нагрузки находятся по [2,табл. 1] в зависимости от средневзвешенного коэффициента использования и эффективного числа электроприемников для данного подключения Кр=f(Ки. ср, nэ). Расчет выполнен в таблице 4.1.

Http://yaneuch. ru/cat_33/jesn-i-jeo-svarochnogo-uchastka/419744.2807146.page2.html

Просмотров: 2791 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно Скачать

5.1 Предварительный выбор количества цеховых трансформаторов на предприятии

5.2 Определение мощности конденсаторов напряжением до 1 кВ и выше

9 Расчет основных технико-экономических показателей Спроектированной сети

11.1 Общие требования безопасности к производственному оборудованию

13.5 Выбор типа и расположения группового щитка, компоновка сети и её выполнение

На долю ЕЭС России приходится около 95 % производства электроэнергии страны. Она образовалась 1991 г., выделившись из состава ЕЭС бывшего советского союза.

В состав ЕЭС России входит шесть объединенных энергосистем (ОЭС): Северо – Запада, Центра, Средней Волги, Северного Кавказа, Урала и Сибири. ОЭС Востока работает изолированно.

Установленная мощность электростанций ЕЭС России на конец 2005 г. составила 197,3млн. кВт. Выработка электроэнергии всеми электростанциями ЕЭС России достигает 890,8 млрд. кВт ч.

ЕЭС России формировалась в составе ЕЭС СССР, поэтому размещение электростанций и подстанций, их структура, единичная мощность и схема сетей создавались из эффективности работы всего большого объединения.

ЕЭС СССР была крупнейшей единой энергосистемой в мире и представляла собой высшею форму интеграции электроэнергетики благодаря централизованному управлению ее функционированием и развитием и на протяжении многих летобеспечивала надежное и эффективное электроснабжение страны.

С распадом Советского союза и переходом России к рыночной экономике электроэнергетика должна была функционировать в рыночной среде. В 1991 г. По инициативе Минэнерго и в соответствии с Указом Президента РФ электроэнергетика была приватизирована с контрольным пакетом акций у государства. При этом была создана двухуровневая регулируемая монополия: РАО “ЕЭС России” на федеральном уровне и 74 «АО-энерго» на уровне регионов.

С 2000г., по инициативе РАО ЕЭС России началось новое реформирование электроэнергетики с созданием свободного конкурентного рынка электроэнергии, мощности и системных услуг.

В 2003г.,на базе крупных электростанции РАО “ЕЭС России” началось создание оптовых генерирующих компаний, на основе тепловых и гидравлических электростанций, региональных (ОГК)на базе ТЭЦ. Кроме того, уже существует государственная корпорация, объединяющая все атомные электростанции – Федеральное государственное унитарное предприятие «Росэнергоатом».

После выделения ЕЭС России из состава СССР возникли большие трудности с осуществлением параллельной работы. Часть объединений ЕЭС России таких как Северный Кавказ, Сибирь, а также Янтарьэнерго, оказались связанными с остальной частью ЕЭС через сети Украины, Казахстана и Балтии. Это создало большие трудности в функционировании ЕЭС и электроснабжении потребителей. До 1994г. ЕЭС России в составе шести объединенных систем работала синхронно с энергосистемами Балтии, Беларуси, Украины, Закавказья и Казахстана.

С 1995г. в связи с экономическим кризисом в странах СНГ и по ряду других причин связи ОЭС Центра Украиной и Северным Кавказом были отключены. В 1996 г. были отключены также связи Урала с Казахстаном, а 1999г. – Казахстана с Сибирью. Сохранялась синхронная работа ЕЭС России только с Беларусью и Балтией. Эти обстоятельства вызвали большие трудности в электроснабжении дефицитного объединения Северного Кавказа, а также Омской энергосистемы ОЭС Сибири, которые соединялись с ЕЭС только слабыми связями 220 кВ. В результате при наличии мощных электрических сетей, проходящих по территориям Украины и Казахстана, в ЕЭС России потребовалось усиление усиление электрических сетей между северным Кавказом и Волгоградом, а также Сибирью и Уралом, проходящих по территории России.

В 2000г. была востановлена синхронная работа с ОЭС Сибири через ОЭС Казахстана, а с 2001 г. – с Украиной и Молдовой, Закавказьем. В настоящее время ЕЭС России работает синхронно на территории, превышающей территорию бывшей ЕЭС Советского союза.

Таким образом, параллельная работа объединений ЕЭС России стала зависеть от загрузки сетей соседних государств, что в ряде случаев может приводить к ограничению пропускной способности сетей между объединениями ЕЭС.

В ближайшее время около 70% мощности тепловых электростанций ЕЭС России достигнут 30 – летнего срока службы. Продление его не позволяет улучшить экономические показатели работы станций, и отставание технического уровня нашей энергетики только увеличится. Масштабное техническое перевооружение энергетики потребует огромных финансовых и материальных ресурсов, что при современном состоянии нашей промышленности практически не реализуемо в ближайшие 15-20 лет.

Уже в 2001 г. число аварий и отказов резко увеличилось. КА и не доотпуск электроэнергии из-за них. После 2001 г. полные данные по надежности не приводятся. Указываются только отказы оборудования различных типов без пояснения последствий. Значительное снижение надежности работы ЕЭС было подтверждено тяжелейшей системной аварией в г. Москве и ОЭС Центра 25 мая 2005 г., подобных которой не было с начала создания ЕЭС в 1948 г. Развитие этой аварии в течении почти двух суток и не неудачные попытки ее ликвидации обнаружили низкие уровни эксплуатации и профессионализма, а также безответственность персонала всех звеньев.

Создание специальной службы ЦДУ ЕЭС по мониторингу и предотвращению системных аварий представляется совершенно бесполезным. Пока основной деятельностью этой структуры был сбор данных о запасе топлива на электростанциях и воды на ГЕС, состоянии всего оборудования энергетических объектов до их мельчайших деталей. По этим данным новой службой давались указания о необходимости устранения недостатков, т. е. выполнения технологических правил эксплуатации.

Стало очевидным, что свободный рынок в электроэнергетике в обычном понимании этого слова не может быть создан. Процесс реструктуризации в развитых странах замедлился, так начался поиск новых форм организации рыночных отношений в этой отрасли с учетом своих конкретных условий и сложившейся структуры электроэнергетики.

Очевидно, что в России организация эффективного свободного рынка столкнется с большими проблемами. К этому приведут неразвитость цивилизованных рыночных отношений в стране, огромная территория, техническая отсталость и изношенность оборудования промышленных предприятий и некоторые “национальные особенности“, выражающееся, в частности, в невыполнении правил и даже законов. Не ясна и экономическая эффективность перехода к “свободному” рынку от высшей формы интеграции электроэнергетики.

Следует оценить, хотя бы приближенно. Эффективность предлагаемых преобразований, а так же их последствия для населения. Необходимо также разработать такие способы государственного регулирования, которые обеспечат функционирование и развитие электроэнергетики страны в интересах государства и общества.

Процесс каталитического крекинга является основным процессом переработки вакуумного газойля с целью получения высококачественных компонентов моторных топлив и сырья для нефтехимических процессов.

Вакуумный газойль представляет собой сложную смесь углеводородов, сильно отличающиеся между собой как по химическому составу, так и по физико-механическим свойствам.

Сущность процесса каталитического крекинга основана на расщеплении высокомолекулярных компонентов вакуумного газойля на более мелкие молекулы в присутствии микросферического цеолитсодержащего катализатора при высокой температуре.

Сырье – вакуумный газойль по трубопроводу поступает на установку в буферную емкость.

Из емкости вакуумный газойль подается в межтрубное пространство теплообменника, где нагревается за счет I циркуляционного орошения

Вакуумный газойль после теплообменника направляется в однопоточную трубчатую печь, где нагревается до 280 0 С. После печи подается в прямоточный реактор, где происходит реакция каталитического крекинга.

Регенерированный катализатор с температурой 670-680 0 С по линии регенерированного катализатора поступает из регенератора в основание прямоточного реактора. Вакуумный газойль, нагретый в сырьевой печи, поступает в раздаточный кольцевой коллектор узла ввода сырья и через пять сырьевых форсунок вводится в прямоточный реактор.

Из прямоточного реактора пары продуктов реакции крекинга в смеси с водяным паром и катализатором поступают в разгружающие циклоны реактора. После разделения от отработанного катализатора пары направляются в отстойную зону реактора и затем в доочищающие одноступенчатые высокоэффективные циклоны.

Регенерированный катализатор из кипящего слоя регенератора поступает в узел вывода и далее по линии поступает в прямоточный реактор.

Для аэрации катализатора в линии регенерированного катализатора подается технический воздух.

Узел фракционирования предназначен для отмывки поступающих из реактора паров продуктов крекинга от катализаторной пыли, охлаждения перегретых паров с последующим разделением продуктов крекинга, а также для концентрирования катализатора в шламе, возвращаемом в прямоточный реактор.

Пары продуктов крекинга из реактора по трансферной линии поступают в промывочно-сепарационную секцию основной фракционирующей колонны, оборудованную в нижней части тремя сетчатыми двухпоточными тарелками (33, 34, 35 тарелки). На сетчатых тарелках происходит контакт перегретых и загрязненных катализатором паров, поступающих из реактора. Жидкость с катализаторной пылью с каждой сетчатой тарелки по внутренним переточным трубам поступает в кубовую часть колонны.

Тяжелый газойль в смеси с катализаторной пылью с низа колонны подается в шламоотстойник, в котором происходит отстаивание катализатора. С низа шламоотстойника шлам направляется в прямоточный реактор. Отстоявшийся от катализаторной пыли тяжелый газойль в постоянном количестве возвращается на 33 тарелку колонны, а балансовый избыток по уровню в кубе выводится из цеха после охлаждения в сырьевом теплообменнике, в аппарате воздушного охлаждения и откачивается в товарные резервуары.

Фракция легкого газойля с глухой тарелки 20а колонны боковым погоном выводится в стриппинг.

Пары верха колонны ( углеводородный газ, нестабильный бензин, водяной пар) поступают в конденсаторы-холодильники, водяные доохладители и далее в рефлюксную емкость, где происходит разделение на нестабильный бензин, жирный газ и воду.

Газоразделение предназначено для очистки жирного газа от H2 S и CO2 15 % раствором моноэтаноламина, фракционирующей абсорбции жирного газа, повторной абсорбции сухого газа, доочистки сухого газа 15 % раствором моноэтаноламина, стабилизации бензина, разделения “головки” стабилизации на пропан-пропиленовую и бутан-бутиленовую фракции.

Из газосепаратора жирный газ направляется на сероочистку в абсорбер.

Жирный газ поступает под 24 тарелку, а регенерированный раствор МЭА подается на пятую тарелку колонны. В результате абсорбции из жирного газа извлекается сероводород и углекислота. Для отмывки жирного газа от унесенного моноэтаноламина на первую тарелку подается химобессоленная вода.

Жирный сероочищенный газ из колонны направляется на компрессию через сепаратор, установленный на приеме газового компрессора ГК-301 для защиты компрессора от попадания жидкой фазы.

1,1 МПа поступает в воздушные холодильники на охлаждение и частичную конденсацию.

Регулирование температуры после каждого холодильника осуществляется регуляторами, которые регулируют частоту вращения лопастей воздушных холодильников.

Унесенные из К-301 пары воды, сконденсировавшиеся, отстаиваются в отстойнике сепаратора и выводятся по уровню раздела фаз из отстойника под собственным давлением в емкость загрязнённого технологического конденсата.

Газ из сепаратора с давлением приблезительно 1,0 мПа подается во фракционирующий абсорбер под 12 тарелку.

Нестабильный бензин от насоса поступает в межтрубное пространство теплообменника и подается на 16 тарелку стабилизатора, где происходит стабилизация бензина за счет выделения из нестабильного бензина фракций. Подогрев поступающего нестабильного бензина в теплообменнике осуществляется стабильным бензином, отходящим под избыточным давлением из кубовой части стабилизатора на всас насоса.

Тепло в колонну подается через термосифонные рибойлеры подачей в них в качестве теплоносителя IV ЦО колонны после теплообменника.

С куба стабилизатора стабильный бензин выводится на блок гидроочистки. Вывод стабильного бензина из куба колонны осуществляется по уровню, значение которого является корректирующим для регулятора расхода стабильного бензина от насоса на блок гидроочистки.

Для очистки бензина от серы предусмотрен блок гидроочистки бензина каталитического крекинга. В качестве катализатора используется высокоактивный алюмо–кобальт–молибденовый катализатор.

Процесс гидроочистки ведется в токе водорода высокой чистоты и парциального давления. Высокое парциальное давление водорода в реакторе увеличивает скорость реакции гидрообессеривания и уменьшает скорость дезактивации катализатора.

Бензин каталитического крекинга характеризуется значительным содержанием сернистых соединений – сульфидов и тиофенов и непредельных углеводородов – олефинов и диенов. Наблюдается также качественное присутствие меркаптанов. Основная часть непредельных углеводородов концентрируется в легких фракциях крекинга-бензина, выкипающих при температурах до 120 о С, в то время как содержание сернистых соединений резко возрастает с утяжелением фракционного состава.

Сущность процесса стабилизации бензина заключается в разделении углеводородных газов ректификацией на фракции в результате многократного двухстороннего массообмена при кипении и конденсации между противоточно движущимися парами и жидкостью. При ректификации происходит диффузия высококипящего компонента из пара в жидкость и низкокипящего из жидкости в пар в результате неравновесной разности концентраций между контактирующими потоками.

Очистка циркулирующего водородсодержащего газа (ЦВСГ), производимая раствором моноэтаноламина (МЭА), основана на процессе химического поглощения сероводорода (абсорбция с протеканием химических реакций).

Образовавшиеся соединения при нормальных условиях имеют заметное давление насыщенных паров. При повышении температуры давление насыщенных паров этих соединений быстро растет. С учетом того, что реакция поглощения сероводорода раствором МЭА экзотермическая (на 1 кг поглощенного сероводорода выделяется приблизительно 300 ккал тепла), повышение температуры насыщенного раствора МЭА сдвинет равновесие в сторону обратных реакций, что позволяет десорбировать сероводород из раствора МЭА.

Сырье – стабильный бензин каталитического крекинга, поступает на гидроочистку в межтрубное пространство теплообменника, предварительно смешиваясь с водородсодержащим газом (ВСГ), поступающим от циркуляционного компрессора

Смесь сырья и ВСГ проходит последовательно межтрубное пространство теплообменников, где за счет тепла смеси продуктов реакции гидроочистки и ВСГ нагревается до температуры 200-300 о С.

После, газосырьевая смесь двумя потоками поступает в печь, где нагревается до температуры 250-350 о С за счет сжигания топливного газа в горелках печи.

Из печи, нагретая до температуры 250-350 о С, газосырьевая смесь направляется последовательно в реакторы гидроочистки, где на алюмокобальмолебденовом катализаторе протекает реакция гидрогинолиза серосодержащих соединений и гидрирование непредельных углеводородов, содержащихся в сырьевом потоке.

В реакторе идут реакции глубокого гидрообессеривания сульфидной и тиофеновой серы, насыщения углеводородов, превращения сернистых соединений и насыщения ароматических углеводородов. Реакции гидрообессеривания экзотермические (проходят с выделением тепла), что может привести к неуправляемому повышению температуры в реакторе. Далее газопродуктовая смесь с температурой 120-260 о С и давлением 2,6 МПа поступает на охлаждение в аппараты воздушного охлаждения и далее в водяной холодильник.

Газопродуктовая смесь после холодильника с температурой 40-50 о С поступает в сепаратор высокого давления. В сепараторе происходит разделение газопродуктовой смеси на жидкие углеводороды, ВСГ и отстой кислой воды.

Водородсодержащий газ (ВСГ), отделенный от нестабильного гидрогенизата, поступает под нижнюю (20-ю) тарелку абсорбера К‑502, где происходит поглощение раствором МЭА сероводорода, содержащегося в ВСГ.

ВСГ проходит через абсорбер снизу вверх противотоком подаваемому 15 %-ному водному раствору моноэтаноламина (МЭА).

Регенерированный раствор МЭА насосом подается в емкость. Из емкости раствор МЭА с расходом 2,8 м 3 /ч подается насосом на верхнюю (1-ю) тарелку. Очищенный от сероводорода ВСГ с верха абсорбера поступает в сепаратор, где происходит сепарация из ВСГ унесенных капель МЭА, который выводится в емкость.

Далее ВСГ поступает в сепаратор, где происходит отделение из газа жидкой фазы. После сепаратора ВСГ поступает в буферные емкости всасывания 1-го и 2-го цилиндра компрессора ПК-501/1,2.

После сжатия газа в 1-ом и 2-ом цилиндрах до давления не более 38,0 кгс/см 2 , сжатый газ после нагнетательных клапанов 1-го и 2-го цилиндров компрессора через буферные емкости нагнетания с температурой не более 75 ºС подается на узел гидроочистки бензина.

Свежий водород, поступает с НПЗ в емкость и далее на всас компрессора.

Нестабильный бензин снизу сепаратора поступает в межтрубное пространство теплообменников, где нагревается за счет тепла, приносимого стабильным бензином из куба колонны.

В колонне на 24 трапециевидно-клапанных тарелках (6 шт. – однопоточные, 18 шт. – двухпоточные) происходит процесс стабилизации бензина. Тепло, необходимое для процесса ректификации, в колонну подводится стабильным бензином из печи.

Легкие газы и пары бензина с верха колонны с температурой 100-125 С поступают в воздушный холодильник, в котором происходит охлаждение смеси и частичная конденсация бензиновых фракций.

Из основной кубовой части колонны стабильный бензин подается на циркуляцию для подогрева через печь, а из кармана после охлаждения в выводится в цех.

Стабильный бензин насосом двумя параллельными потоками поступает в печь, где последовательно проходит конвекционную и радиантную камеры и нагревается до температуры 200-235 °С за счет тепла, получаемого от сгорания топливного газа в печи.

Для регулирования разрежения в топке печи и работы горелок предусмотрена шиберная заслонка с электроприводом на выходе дымовых газов после конвективной зоны печи в атмосферу.

Стабильный бензин с куба колонны проходит трубное пространство, где охлаждается нестабильным бензином, поступающим в колонну, до температуры 70‑110 °С, в воздушном холодильнике и в водяном холодильнике до температуры 30‑50 °С. Стабильный бензин отправляется на склад.

Для повышения эффективности системы электроснабжения и экономии электроэнергии при ее проектировании следует стремиться к сокращению числа ступеней трансформации, повышению напряжения питающей сети, внедрению подстанций без выключателей с минимальным количеством оборудования, применению магистральных линий и токопроводов. Если при взаимном расположении производств и потребляемой ими мощности оптимальное число понизительных подстанций 35. 220/6. 10 кВ оказывается больше единицы, то по территории предприятия следует проложить воздушную линию (ВЛ) или кабельную вставку с ответвлениями к подстанциям глубокого ввода (ПГВ), которые располагают в центрах нагрузок групп цехов, территориально обособленных на данном предприятии. При этом распределительные устройства напряжением 6. 10 кВ ПГВ используют в качестве распределительных пунктов (РП) цехов.

Напряжение каждого звена системы электроснабжения нужно выбирать с учетом напряжений смежных звеньев.

Выбор напряжения питающей сети проводят на основании технико-экономических сравнений вариантов в случаях, когда:

– имеется возможность получения энергии от источника питания при двух и более напряжениях;

– предприятие с большой потребляемой мощностью нуждается в сооружении или значительном расширении существующих районных подстанций, электростанций или сооружения собственной электростанции;

Предпочтение отдают варианту с более высоким напряжением, даже при экономических преимуществах варианта с низшим из сравниваемых напряжений в пределах до 5. 10% по приведенным затратам.

На первых ступенях распределения энергии для питания больших предприятий применяют напряжения 110, 220 и 330 кВ.

Напряжение 35 кВ применяют для частичного внутризаводского распределения электроэнергии при:

– наличии удаленных нагрузок и других условий, требующих для питания потребителей повышенного напряжения;

– схеме глубокого ввода для питания группы подстанций 35/0,4. 0,66 кВ малой и средней мощности.

Напряжение 10 кВ применяют для внутризаводского распределения энергии:

– на крупных предприятиях с наличием двигателей, допускающих непосредственное присоединение к сети 10 кВ;

– на предприятиях небольшой и средней мощности при отсутствии или незначительном числе двигателей, которые могут быть присоединены непосредственно к сети 6 кВ;

– при наличии заводской электростанции с напряжением генераторов 10 кВ.

– при наличии на предприятии значительного количества электроприемников на это напряжение;

– если применение напряжения 6 кВ предопределяется условиями поставки электрооборудования, технико-экономическими расчетами или другими особыми соображениями;

– на реконструируемых предприятиях, имеющих напряжение 6 кВ в качестве основного для внутризаводского распределения электроэнергии.

При напряжении распределительной сети 10 кВ и небольшом числе двигателей средней мощности (350. 800 кВт) следует применять напряжение 6 кВ с использованием схемы блока трансформатор — двигатель.

Напряжение 3 кВ в качестве основного напряжения распределительной сети на новых предприятиях не применяют. Оно не рекомендуется также и в качестве подсобного для питания электродвигателей средней мощности при основном напряжении распределительной сети 10 кВ.

Напряжение 380 В применяют для питания силовых общепромышленных электроприемников.

Напряжение 660 В рекомендуется для применения в следующих случаях:

– если по условиям генплана, технологии и окружающей среды не могут быть осуществлены в должной мере глубокие вводы, дробление цеховых подстанций и приближение их к центрам питаемых ими групп электроприемников и в связи с этим имеют место протяженные и разветвленные сети напряжением до 1000 В, а также при крупных концентрированных нагрузках; такое положение может быть в некоторых отраслях химической промышленности, на лесопромышленных комплексах и в аналогичных производствах;

– при первичном напряжении распределительной сети 10 кВ и при отсутствии на данном предприятии двигателей таких мощностей, которые не изготовляются на напряжение 660 В (за исключением мелких), т. е. в тех случаях, когда не потребуется введение промежуточного напряжения между 10 и 0,66 кВ;

– при больших плотностях нагрузок и мощных цеховых трансформаторах (более 1000 кВА), при которых токи короткого замыкания на стороне вторичного напряжения возрастают до недопустимых для аппаратов величин при напряжении 0,4 кВ.

Проектируемый завод бензинов расположен от источника питания на расстоянии 2 км, следовательно потери в линии небольшие, поэтому мой выбор на первой ступени распределения электроэнергии пал на напряжение 110кВ.

На предприятии имеются в наличии элктроприемники на напряжение 6 кВ, поэтому на второй ступени выбираю 6кВ.

Обеспечение качества электроэнергии на зажимах приемников электроэнергии — одна из наиболее сложных задач, решаемых в процессе проектирования и эксплуатации систем электроснабжения. Появление в системах электроснабжения мощных электродвигателей, вентильных преобразователей и других приемников с резкопеременной нагрузкой создало проблему их электромагнитной совместимости с системой электроснабжения, успешное решение которой обеспечивает рациональную работу как этих приемников, так и приемников со спокойной нагрузкой, присоединенных к той же системе (освещение, электродвигатели длительного режима работы и др.).

Показатели качества электроэнергии регламентируются требованиями ГОСТ 13109—97.

К показателям качества электроэнергии для трехфазных сетей переменного тока относятся следующие:

Соответствие перечисленных параметров ГОСТу способствует увеличению выпуска продукции и общей рентабельности производства.

Отклонение напряжения V— это разность действительного значения напряжения Uи его номинального значения Uн для сети, возникающая при сравнительно медленном изменении режима работы, когда скорость изменения напряжения меньше 1% в секунду:

При понижении напряжения возрастает скольжение и уменьшается частота вращения асинхронных двигателей, являющихся основными приемниками электроэнергии. При этом возрастает сила потребляемого тока, двигатели перегреваются и быстрее изнашивается изоляция. Вращающий момент асинхронного двигателя пропорционален квадрату напряжения, поэтому при его понижении затрудняются пуск и самозапуск двигателей под нагрузкой. В связи с этим установлены пределы отклонения напряжения на зажимах электродвигателей, станций управления от — 5 до +10%.

Весьма чувствительны к изменению напряжения косинусные конденсаторы. Их реактивная мощность пропорциональна квадрату подводимого напряжения. Таким образом, при понижении напряжения на 10% мощность конденсатора снизится до 81%. Повышение напряжения на 10% увеличивает реактивную мощность конденсатора до 121% и приводит к его перегрузке, поэтому для конденсаторов допускается увеличение напряжения не более чем на 10%.

Значительное влияние отклонение напряжения оказывает на работу электросварочных установок, ухудшая качество сварки. Для рационального ведения этого процесса отклонение напряжения на сварочных установках должно составлять +5%.

Высокие требования к качеству напряжения предъявляют осветительные установки. При отклонениях напряжения изменяются сила света ламп накаливания и срок их службы. Сила света изменяется при этом пропорционально изменению напряжения в третьей — четвертой степени. Повышение напряжения на 10% сокращает срок службы ламп накаливания примерно в 3 раза.

ГОСТ 13109—97 допускает отклонения напряжения на зажимах электроосветительных приборов от — 2,5 до +5%.

Под колебанием напряжения Vt, подразумевается изменение напряжения в сети со скоростью более 1%:

Где Uнб и Uнм — соответственно наибольшее и наименьшее действующие напряжения в кратковременном процессе его изменения, %.

Колебания напряжения ограничиваются частотой их возникновения. Для зрительного восприятия наиболее опасными считаются колебания с частотами в пределах 1. 10 Гц. Их значение при этом ограничивается величиной порядка 1%. Если число колебаний в час не превышает 10, то это значение возрастает до 1,5%, при числе колебаний не более 1 раза в час — до 4%.

Допустимые значения колебаний напряжения в сетях, от которых питаются электроосветительные установки и радиоприборы, определяют по формуле

Где т — частота колебаний в час, 1/ч; ∆t— средний интервал между последовательными колебаниями, мин.

Для обеспечения нормируемого ГОСТ 13109—97 режима напряжения применяются различные способы и средства регулирования напряжения.

– изменение коэффициента трансформации трансформаторов и автотрансформаторов (линейных регуляторов).

– синхронные двигатели с автоматическими регуляторами возбуждения.

Кроме того, можно использовать трансформаторы с переключением без возбуждения (ПБВ), неуправляемые батареи конденсаторов, синхронные двигатели без автоматического регулирования возбуждения.

Несимметрия напряжений и токов трехфазной системы один из важнейших показателей качества электрической энергии. Причина появления несимметрии, напряжений и токов — различные несимметричные режимы системы электроснабжения. Широкое применение однофазных установок значительной мощности различного рода привело к значительному увеличению доли несимметричных нагрузок. Подключение таких мощных несимметричных однофазных нагрузок к трехфазным сетям вызывает в системах электроснабжения длительный несимметричный режим, характеризующийся несимметрией напряжений и токов.

В системах электроснабжения различают кратковременные (аварийные) и длительные (эксплуатационные) несимметричные режимы. Кратковременные несимметричные режимы обычно связаны с различными аварийными процессами, например несимметричными короткими замыканиями, обрывами одного или двух проводов воздушной линии с замыканием на землю и т. п. Длительные несимметричные режимы обычно обусловлены несимметрией элементов электрической сети или подключением к системе электроснабжения несимметричных нагрузок.

Несимметрия напряжений и токов, обоусловленная несимметрией элементов электрической сети, называется продольной. Примером продольной несимметрии могут служить неполнофазные режимы воздушных линий. Несимметрия характерна также для специальных систем электропередачи: два провода — земля (ДПЗ); два провода — рельсы (ДПР), два провода — труба (ДПТ) и т. д.

Несимметрия напряжений и токов, вызванная подключением к сети много – и однофазных несимметричных нагрузок, называется поперечной.

Несимметрия характеризуется коэффициентом несимметрии напряжения Кн — отношение напряжения обратной последовательности основной частоты U2 к номинальному линейному напряжению U1 :

И коэффициентом неуравновешенности напряжения — отношением напряжений нулевой последовательности основной частоты Uo к номинальному фазному напряжению Uн :

Коэффициент несимметрии напряжений служит нормированным показателем качества электрической энергии. В соответствии с ГОСТ 13109—97 % длительно допустим на зажимах любого трехфазного симметричного приемника электрической энергии. В случаях, когда коэффициент несимметрии оказывается больше, должны быть приняты меры к его снижению.

Несимметрия напряжений в системах электроснабжения оказывает значительное влияние на работу отдельных элементов сети и приемников электрической энергии. При несимметрии напряжений, обусловленных несимметричной нагрузкой, в статорах синхронных машин проходят токи прямой, обратной и нулевой последовательности, что вызывает нагрев ротора и увеличение вибрации, в некоторых случаях опасной для конструкции машин.

Особенно неблагоприятно несимметрия напряжений сказывается на работе и сроке службы асинхронных машин. При несимметрии напряжений конденсаторные установки неравномерно загружаются реактивной мощностью по фазам, мощность многофазных выпрямителей снижается.

При несимметричном режиме токи нулевой последовательности постоянно проходят через заземлители и отрицательно сказываются на их работе, вызывая высушивание грунта и увеличение сопротивления растеканию. Они оказывают значительное влияние на низкочастотные каналы проводной связи, сигнализации и автоблокировки.

Несинусоидальность формы кривой напряжения и тока. Широкое внедрение приемников электрической энергии с нелинейными вольт-амперными характеристиками, определяемое потребностями увеличения экономической эффективности производства, привело к отрицательному влиянию этих приемников на электрические параметры режима сети.

К элементам систем электроснабжения (СЭС) с нелинейными вольт-амперными характеристиками относятся вентильные преобразователи (ртутные и полупроводниковые), установки электросварки, газоразрядные источники света, а также трансформаторы и электродвигатели. Характерная особенность этих устройств — потребление ими из сети несинусоидальных токов при подведении к их зажимам несинусоидального напряжения.

Высшие гармонические токи и напряжения обусловливают дополнительные потери электроэнергии, приводят к нагреву электрооборудования и увеличивают интенсивность старения его изоляции и изоляции кабелей. Особенно неблагоприятное влияние эти гармоники оказывают на работу конденсаторных батарей, вызывая дополнительные потери и даже выход их из строя.

Токи высших гармоник, проходя по элементам сети, вызывают падения напряжения в сопротивлениях этих элементов, которые, накладывала на основную синусоиду напряжения, приводят к искажению формы кривой напряжения.

Степень несинусоидальности напряжения сети принято характеризовать коэффициентом несинусоидальности напряжения Кнс, который представляет собой отношение действующего значения гармонической составляющей несинусоидального напряжения к напряжению основной частоты, %:

Где Uv, U1 — действующие значения соответственно v-й и 1-й гармоник напряжения.

ГОСТ 13109—97 нормирует форму кривой напряжения у приемников электроэнергии, допуская отклонение действующего напряжения всех высших гармоник от действующего напряжения основной частоты не более 5%.

Для снижения уровня влияния высших гармоник на напряжение устанавливают силовые фильтры, уменьшают число фаз I выпрямления.

Отклонение частоты ∆f—разность действительного f и номинального fн значений основной частоты:в Гц

В нормальном режиме работы энергетической системы допускаются отклонения частоты, усредненные за 10 мин, ±0,1 Гц. Допускается временная работа энергетической системы с отклонением частоты, усредненным за 10мин, ±0,2 Гц.

Колебания частоты — это изменения частоты, происходящие со скоростью 0,2 Гц/с. Колебания частоты δf— разность наибольшего fнб и наименьшего fнм значений основной частоты за определенный промежуток времени: в Гц

В установившемся режиме частота во всей энергетической системе (связанной сетями переменного тока) одинакова и определяется частотой вращения генераторов. Однако частота вращения генераторов определяется частотой вращения первичных двигателей — турбин, которые имеют специальный регулятор частоты вращения (первичное регулирование), обладающий сравнительно большой инерцией (до 5%). Это значит, что частота вращения турбин зависит от механической нагрузки на ее валу и определяется расходом энергоносителя (пар, вода). Электрическая нагрузка турбин непрерывно изменяется, поэтому должна изменяться и частота вращения генераторов (турбогенераторов); при росте нагрузки частота вращения (и частота сети) снижается, а при уменьшении возрастает.

В настоящее время поддержание допустимого размаха колебаний частоты в энергетических системах во время аварийного отключения источников питания обеспечивается устройствами аварийной автоматической разгрузки по частоте (ААРЧ), которые отключают часть менее ответственных потребителей.

Нормализация параметров качества электроэнергии в каждом отдельном случае решается по-разному.

Значения показателей качества электроэнергии должны находиться в допустимых пределах с вероятностью 0,95 за установленный период времени. Показатели качества, выходящие за допустимые пределы с верояностью не более 0,05, должны в случае необходимости ограничиваться по величине и длительности по согласованию с энергоснабжающей организацией.

Согласно ГОСТу, проектные и эксплуатирующие организации должны предусматривать применение экономически обоснованных устройств и мероприятий, обеспечивающих нормированное качество электроэнергии у ее приемников. Решения отдельных организаций по размещению регулирующих и компенсирующих устройств в питающих и распределительных сетях, а также по снижению колебаний, несимметрии и несинусоидальности напряжения должны быть взаимно согласованы на основе технико-экономических обоснований.

Для обеспечения показателей качества электроэнергии у приемников по согласованию между электроснабжающей организацией и потребителем должны быть установлены значения показателей качества электроэнергии на границе раздела балансовой принадлежности электрических сетей. Контроль качества электроэнергии на границе раздела балансовой принадлежности должен осуществляться энергоснабжающей организацией и потребителем. Следует отметить, что практически все показатели качества электроэнергии по напряжению зависят от потребляемой промышленными электроприемниками реактивной мощности. Поэтому вопросы качества электроэнергии необходимо рассматривать в непосредственной связи с вопросами компенсации реактивной мощности.

Начальным этапом проектирования системы электроснабжения является определение электрических нагрузок. От правильной оценки ожидаемых нагрузок зависят капитальные затраты на систему электроснабжения, эксплуатационные расходы, надежность работы электрооборудования.

Определение электрических нагрузок производится для правильного выбора количества и мощности трансформаторов, проверки токоведущих элементов по нагреву и потери напряжения, правильного выбора защитных устройств и компенсирующих установок.

Результаты расчетов нагрузок являются исходными материалами для всего последующего проектирования. Для определения расчетных нагрузок групп приемников необходимо знать установленную мощность (сумма номинальных мощностей всех электроприемников группы) и характер технологического процесса.

Расчетная нагрузка определяется для смены с наибольшим потреблением энергии данной группы электроприемников, цехом или предприятием в целом для характерных суток.

Расчет ведется по коэффициенту спроса и установленной активной мощности.

Насосы: ,

4.2.1 Определение расчетных электрических нагрузок на низшем (0,38кВ) напряжении

Коэффициент спроса и cosφ зависят от технологии производства и приводятся в отраслевых инструкциях и справочниках.

КВт; ; cosφ=0,8;

4.2.2 Определение расчетных электрических нагрузок на высшем (6кВ) напряжении

В проектируемом предприятии будет 2 потребителя на 6кВ. Расчет производится по коэффициенту использования (КИ ).

В качестве источников электрического света на промышленном предприятии используются газоразрядные лампы и лампы накаливания.

Коэффициент спроса для расчета освещения цехов принимаем равным 0,8

17 кВт; ; М 2 .

Для остальных цехов расчет аналогичен. Результаты расчета сведены в таблицу 3.3

Таблица 4.3 – Расчетные нагрузки электрического освещения цехов завода

Расчетная нагрузка электрического освещения территории предприятия

КВт; ; М 2 .

Суммарные потери активной и реактивной мощности в трансформаторах, цеховых подстанциях и цеховых сетях до 1 кВ принимаем равным 3℅ и 10℅ полной мощности трансформируемой мощности.

Коэффициент одновременности максимумов для шин ГПП КОМ выбираем из В зависимости от величины средневзвешенного коэффициента использования КИ всей группы электроприемников, подключенной к шинам ГПП.

Расчетная полная, активная и реактивная мощности завода бензинов

Реактивная мощность QC, поступающая от питающей энергосистемы к шинам низшего напряжения ГПП, определяется исходя из условий задания на проект и вычисленной выше расчетной активной мощности.

Так как Число отрицательное, компенсирующие устройства на стороне 6 кВ не устанавливаю.

5.1 Предварительный выбор количества цеховых трансформаторов на предприятии

Количество трансформаторов при практически полной компенсации реактивной мощности в сети до 1 кВ Nmin и при отсутствии компенсации в сети Nmax вычисляется следующим образом:

Так как проектируемое предприятие 1 категории электроснабжения коэффициент загрузки цеховых трансформаторов, принимаем КЗТ =0,6

Так как удельная плотность нагрузки больше 0,2÷0,3 кВА ∕м 2 , то рекомендуется применять трансформаторы мощностью 1000 и 1600 кВА. Число типоразмеров рекомендуется ограничить до одного – двух, так как большое их разнообразие создает неудобство в эксплуатации и затруднения в отношении резервирования и взаимозаменяемости.

То есть необходимо рассмотреть варианты с количеством трансформаторов NТ =10…18.

Число трансформаторов определяет наибольшую реактивную мощность, которая может быть передана со стороны 6 кВ в сеть низшего напряжения, при NТ =15.

Мощность компенсирующего устройства в сети напряжением до 1кВ определяется по условию баланса реактивной мощности на шинах низшего напряжения, цеховых подстанциях.

В качестве компенсирующих устройств принимаем батареи конденсаторов, мощность которых определяем из уравнения баланса реактивных мощностей.

Мощность компенсирующего устройства в сети напряжением выше 1кВ определяется по условию баланса реактивной мощности на шинах вторичного напряжения ГПП.

Количество трансформаторов с вторичным напряжением до 1 кВ выбирается на основании технико-экономического расчета.

Удельные приведенные затраты на компенсацию реактивной мощности в сетях до и выше 1 кВ.

Как видно из расчета, самым экономичным является вариант с 15-ю трансформаторами SНОМ. Т =1000 кВА.

Мощность, местоположение и другие параметры ГПП в основном обуславливаются величиной и характером электрических нагрузок, размещением их на плане, а также производственными, архитектурно-строительными и эксплуатационными требованиями. Важно, чтобы ГПП находилась возможно ближе к центру, питаемых от нее нагрузок. Это сокращает протяженность, а следовательно, стоимость и потери в питающих и распределительных сетях электроснабжения предприятия

См

Центр нагрузок попадает на территорию, занимаемую производственными помещениями, поэтому расположение ГПП смещаю в сторону внешнего источника питания. Поскольку в данном случае глубокий ввод невозможен, то новое место расположения ГПП определяю условиями минимальной длины кабельных линий, питающих цеховые РУ, минимального расстояния до питающей ЛЭП и условиями электробезопасности, то есть выбираю расположение ГПП на западной стороне проектируемого предприятия.(Приложение 3)

℅;

Количество трансформаторов, необходимое для каждого подразделения

Как видно из таблицы 5.1 в цехах 1,3,6 и 7 можно обойтись без установки трансформаторов (NРАСЧ <0,5), т. е. Питание будет осуществлятся от других цехов. В результате расстановки трансформаторов получаем, что избыточная мощность, которую могут трансформировать трансформатор 2-го цеха будет передаваться по низшему (0,38 кВ) напряжению цеху 1; трансформаторы 4-го цеха 6- му;8-го – 3-му, от 4-го – 7-му.

Расчет токов короткого замыкания проводится для выбора высоковольтного оборудования и для проверки чувствительности и селективности защиты на характерном участке внутризаводской сети.

Система С: Мощность трехфазного короткого замыкания на стороне высшего напряжения подстанции энергосистемы

Технические данные цеховых трансформаторов и расчетные характеристики кабельных линий внутризаводских распределительных сетей приведены соответственно:

Для расчета составляется схема замещения, в которую входят все сопротивления цепи КЗ.

Определяются параметры схемы замещения в относительных единицах.

MBA,КВ,КВ, Sк =2000 MBA, X0=0,4Ом/км

;

;

Схемы электрических сетей могут выполняться радиальными и магистральными. Схема межцеховой сети должна обеспечивать надежность питания потребителей ЭЭ, быть удобной в эксплуатации. Радиальные схемы распределения электроэнергии применяются главным образом в тех случаях, когда нагрузки расположены в различных направлениях от центра питания, а также для питания крупных электроприемников с напряжением выше 1 кВ.

Магистральные схемы целесообразны при распределенных нагрузках, при близком к линейному расположению подстанций на территории предприятия, благоприятствующем возможно более прямому прохождению магистралей от ГПП до ТП.

7.2 Выбор сечений жил кабелей распределительной сети для обоих вариантов схем

При проектировании кабельных линий используется экономическая плотность тока. В ПУЭ установлены величины экономических плотностей тока jЭК зависящие от материала, конструкции провода, продолжительности использования максимума нагрузки ТНБ и региона прокладки.

Экономически целесообразное сечение определяют предварительно по расчетному току линии IРАС. НОРМ нормального режима и экономической плотности тока:

Найденное расчетное значение сечения округляется до ближайшего стандартного.

Для обеспечения нормальных условий работы кабельных линий и правильной работы защищающих аппаратов выбранное сечение должно быть проверено по допустимой длительной нагрузке, по нагреву в нормальном и послеаварийном режимах, а также по термической стойкости при токах КЗ.

Проверка по допустимой токовой нагрузке по нагреву в нормальном и послеаварийном режимах производится по условию Iрас ≤ Iдоп. факт,

Где Sкаб – мощность, передаваемая по кабельной линии в нормальном или послеаварийном режиме работы; Uном – номинальное напряжение сети.

Фактическая допустимая токовая нагрузка в нормальном и послеаварийном режимах работы вычисляется по выражению

Где Iдоп. табл – допустимая длительная токовая нагрузка, при FСТ =50мм 2 ÷ IДОП =165А; FСТ =70мм 2 ÷ IДОП =210А; FСТ =95мм 2 ÷ IДОП =255А;

Кt – коэффициент, учитывающий фактическую температуру окружающей среды, нормативная температура для кабелей, проложенных в земле +15°С;

Кпр – коэффициент, учитывающий количество проложенных кабелей в траншее;

Кпер – коэффициент перегрузки, зависящий от длительности перегрузки и способа прокладки (в земле или в воздухе), а также от коэффициента предварительной нагрузки.

Проверка сечений по термической стойкости проводится после расчетов токов КЗ. Тогда минимальное термически стойкое токам КЗ сечение кабеля:

Где – суммарный ток КЗ от энергосистемы и синхронных электродвигателей: tп =0,7 – приведенное расчетное время КЗ; С – термический коэффициент (функция) для кабелей 6 кВ с алюминиевыми жилами: поливинилхлоридная или резиновая изоляция С=78 Ас2/мм2; полиэтиленовая изоляция С=65 Ас 2 /мм 2 , бумажная изоляция – 83 Ас 2 /мм 2 [4]

Из четырех полученных по расчетам сечений – по экономической плотности тока, нагреву в нормальном и послеаварийных режимах и стойкости токам КЗ – принимается наибольшее, как удовлетворяющее всем условиям.

Экономическая плотность тока jЭК, необходимая для расчета экономически целесообразного сечения одной КЛ определяется по нескольким условиям.

А) в зависимости от числа часов использования максимума нагрузки Тнб=6200 ч/год.

Б) в зависимости от вида изоляции КЛ – изоляция из сшитого полиэтилена.

В) в зависимости от материала, используемого при изготовлении жилы кабеля – медные.

Проверка кабелей по допустимому нагреву в нормальном и послеаварийном режимах работы.

Условие Iрас. пав < Iдоп. пав выполняется. Результаты расчета для других линий в таблице 7.2

Расчетное значения тока короткого замыкания в точке 2 равно 13,5 кА.

TП – приведенное расчетное время КЗ, tП =0,7. Для кабелей, отходящих от ГПП, tП =1.25с.

Таким образом, минимальное допустимое сечение кабельной линии составляет 185 мм 2 .

В системе электроснабжения завода применяются всего три вида сечений КЛ, поэтому требуется производить унификацию. Таким образом для прокладки внутризаводской сети используем кабели следующих сечений:

Подбор совокупности электроприемников выполняем для насосной № 2. План цеха представлен в графической части проекта. Нагрузка этогоцеха питается от ТП 3,ТП 4 Распределение нагрузки показано в таблице 7.6

Для защиты оборудования подстанции от набегающих с линии импульсов грозовых перенапряжений, на стороне высшего напряжения трансформаторов Т1 и Т2, устанавливаются ограничители перенапряженийОПН-110.

Результаты выбора измерительных трансформаторов тока сведены в таблицу 7.1

Для выработки сигналоизмерительной информации для электрических измерительных приборов и цепей учета, защиты и сигнализации выбираем трансформатор напряжения НКФ-110-58У1.

9 Расчет основных технико – экономических показателей спроектированной сети

В этом разделе определяются основные показатели, характеризующие полные расходы денежных средств и электрооборудование, необходимое для сооружения и эксплуатации сети.

Ктп – стоимость КТП, включая трансформатор, дополнительное оборудование и постоянную часть затрат.

Трансформаторная подстанция 110/6 кВ выполнена по схеме мостик с разъединителями в перемычке и в цепях трансформаторов, Кору =2000 тыс. руб,

∆Р∑ =24673,8-2079,25-2035,32-1184,82-2055,22-1195,62-1591-2102-528-426,22-472,86-773-1133,5-491,22-2103-1231,22-2134-2504=633,55 кВт.

∆Р∑ =24673,8-2079,25-2035,32-1184,82-2055,22-1195,62-1591-2102-528-426,22-472,86-773-1133,5-491,22-2103-1231,22-2134-2504=633,55 кВт.

Виды повреждений. Основными видами повреждений в трансформаторах и автотрансформаторах являются: замыкания между фазами внутри кожуха трансформатора (трехфазного) и на наружных выводах обмоток; замыкания в обмотках между витками одной фазы (витковые замыкания); замыкания на землю обмоток или их наружных выводов; повреждения магнитопровода трансформатора, приводящие к появлению местного нагрева и "пожару стали". Опыт показывает, что КЗ на выводах и витковые замыкания в обмотках происходят наиболее часто. Междуфазные повреждения внутри трансформаторов возникают значительно реже. В трехфазных трансформаторах они хотя и не исключены, но маловероятны вследствие большой прочности междуфазной изоляции. В трансформаторных группах, составленных из трех однофазных трансформаторов, замыкания между обмотками фаз практически невозможны.

При витковых замыканиях токи, идущие к местам повреждения от источников питания, могут быть небольшими. Чем меньше число замкнувшихся витков wa, тем меньше будет ток, приходящий из сети.

Виды ненормальных режимов. Наиболее частым ненормальным режимом работы трансформаторов является появление в них сверхтоков, т. е. токов, превышающих номинальный ток обмоток трансформатора. Сверхтоки в трансформаторе возникают при внешних КЗ, качаниях и перегрузках. Последние возникло вследствие самозапуска электродвигателей, увеличения нагрузки в результате отключения параллельно работающего трансформатора, автоматического подключения нагрузки при действии АВР и т. п.

Внешние КЗ. При внешнем КЗ, вызванном повреждением на шинах трансформатора или не отключившимся повреждением на отходящем от шин присоединении, по трансформатору проходят токи КЗ JK > /Н ом> которые нагревают его обмотки сверх допустимого значения, что может привести к повреждению трансформатора. В связи с этим трансформаторы должны иметь РЗ от внешних КЗ, отключающую трансформатор.

Защита от внешних КЗ осуществляется при помощи МТЗ, МТЗ с блокировкой минимального напряжения, дистанционной РЗ, токовых РЗ нулевой и обратной последовательностей. В зону действия РЗ от внешних КЗ должны входить шины подстанций (I участок) и присоединения, отходящие от этих шин (II участок). Эти РЗ являются также резервными от повреждений в трансформаторе.

Перегрузка. Время действия РЗ от перегрузки определяется только нагревом изоляции обмоток. Масляные трансформаторы допускают длительную перегрузку на 5%. В аварийных режимах допускается кратковременная перегрузка в следующих пределах:

Из этих данных видно, что перегрузку порядка (1,5-2)Iном можно допускать в течение значительного времени, измеряемого десятками минут. Наиболее часто возникают кратковременные, само ликвидирующиеся перегрузки, неопасные для трансформатора ввиду их непродолжительности, напримерперегрузки, вызванные самозапуском электродвигателей или толчкообразной нагрузкой (электропоезда, подъемники и т. п.). Отключения трансформатора при таких перегрузках не требуется. Более длительные перегрузки, вызванные, например, автоматическим подключением нагрузки от АВР, отключением параллельно работающего трансформатора и др., могут быть ликвидированы обслуживающим персоналом, который располагает для этого достаточным временем. На подстанциях без дежурного персонала ликвидация длительной перегрузки должна производиться автоматически от РЗ отключением менее ответственных потребителей или перегрузившегося

Таким образом, РЗ трансформатора от перегрузки должна действовать на отключение только в том случае, когда перегрузка не может быть устранена персоналом или автоматически.

Токовая отсечка – простая быстродействующая РЗ от повреждений в трансформаторе. Зона действия отсечки ограничена, она не действует при витковых замыканиях и замыканиях на землю в обмотке, работающей на сеть с малым током замыкания на землю.

Принцип действия и устройство газового реле. Газовая защита получила широкое распространение в качестве весьма чувствительной защиты от внутренних повреждений трансформаторов. Повреждения трансформатора, возникающие внутри его кожуха, сопровождаются электрической дугой или нагревом деталей, что приводит к разложению масла и изоляционных материалов и образованию летучих газов. Будучи легче масла, газы поднимаются в расширитель, который является самой высокой частью трансформатора и имеет сообщение с атмосферой. При интенсивном газообразовании, имеющем место при значительных повреждениях, бурно расширяющиеся газы создают сильное давление, под влиянием которого масло в кожухе трансформатора приходит в движение, перемещаясь в сторону расширителя.

Таким образом, образование газов в кожухе трансформатора и движение масла в сторону расширителя могут служить признаком повреждения внутри трансформатора.

Особенности защиты трансформаторов, не имеющих выключателей на стороне высшего напряжения:

Основные принципы выполнения РЗ на ЛЭП с ответвлениями, трансформаторы которых подключены к ЛЭП без выключателей. Широкое распространение получили схемы с короткозамыкателями и отделителями. При этом важной частью РЗ трансформаторов является схема действия на короткозамыкатель и отделитель.

Действие РЗ на короткозамыкатель и отделитель должно происходить в определенной последовательности, обеспечивающей работу отделителя в бес токовую паузу АПВ ЛЭП, т. е. в тот момент, когда по отделителю не проходит ток. Схема управления отделителя выполняется таким образом, чтобы импульс на его отключение подавался после срабатывания короткозамыкателя при условии, что питающая ЛЭП отключилась, и ток КЗ прекратился.

Для защиты трансформатора с низшей стороны используется расцепитель автоматического выключателя типа ВА.

Наибольший расчетный ток нагрузки, длительно протекающий по защищаемому элементу определяется по следующему выражению:

Для полупроводникового расцепителя селективного автоматического выключателя ВА 75-45 ( Iа ном =2500 А ) ближайшее устанавливаемое значение номинального тока Iрц. ном. =2500 А

Первая ступень защиты – токовая отсечка без выдержки времени. Уставка тока срабатывания первой ступени у полупроводникового расцепителя автоматического выключателя ВА75-45 не регулируется и зависит от его номинального тока. Для ВА75-45 он равен 40 кА. Токовая отсечка данного расцепителя чувствительна к повреждениям со стороны низшего напряжения трансформатора, так как значение тока трехфазного КЗ I (3) KB =17,64кА

Вторая ступень – токовая отсечка с выдержкой времени. Для исключения срабатывания второй ступени защиты при кратковременных перегрузках необходимо выполнить условие:

При наличий УАВР учитывается режим кратковременной перегрузки после АВР, когда потребители второго трансформатора цеховой трансформаторной подстанций подключаются через секционный выключатель к защищаемому трансформатору:

Где: К – коэффициент, учитывающий некоторое значения тока электродвигателей секции 1 при снижений напряжения на секции вследствие подключения к ней само запускающихся электродвигателей секции 2.

Так как у полупроводникового расцепителя автоматического выключателя ток срабатывания второй ступени связан с номинальным током расцепителя коэффициентом кратности (к=2,3,5,7 для ВА75-45)[13], то выбирается ближайшее устанавливаемое значение. Требуемый коэффициент кратности:

Выбирается ближайшее стандартное значение к=3 , тогда ток срабатывания второй ступени и определяется по следующей формуле:

Выдержка времени второй ступени защиты может быть установлена равной 0,1; 0,2: 0,3 с. Принимается среднее время срабатывания защиты t II с. з.( SF13) =0,2 с.

Третья ступень – максимальная токовая защита. У полупроводниковых расцепителей уставка тока срабатывания третей ступени связана с номинальным током расцепителя:

В сетях, защищаемых от токов КЗ, расцепитель с выбранными уставками тока срабатывания должен удовлетворять требованию чувствительности.

Чувствительность выбранного полупроводникового расцепителя достаточна, т. к. I (2) п. о.к =15,28кА.

Где Котс – коэффициент отстройки зависящий от типа применяемого реле тока, Котс =1,2 – 1,3 при РТ-40;

I (3) пок3 – ток протекающий в месте установке защиты при 3 х фазном КЗ на стороне НН вмаксимальном режиме работы системы приведенное к 6кВ,

Коэффициент чувствительности защиты определяется для случая 2 х фазного КЗ в месте ее установки.

Ток срабатывания максимальной токовой защиты на стороне высшего напряжения IСЗ :

Кзап – коэффициент самозапуска электродвигателей обобщенной нагрузки; если двигатели не оборудованы устройством самозапуска, Кзап применяется 1,2 – 1,3;

Где Iраб. макс. резерв. – максимальный рабочий ток секции 0,4 кВ, который подключается к рассчитываемому трансформатору при срабатывании АВР; принимается равным 0,6-0,7 Iном. тр.

Время срабатывания максимальной токовой защиты применяем на ступень селективности ∆t = 0.4c, чем время срабатывания 1 ступени ввода 0,4кВ (tc. з. =0,6с).

Tс. з. =1,0c – реле времени с замыканием, замыкающим контактом на постоянном токе РВ – 112 или РВ – 122, РВ – 01.

10.4 Специальная токовая защита нулевой последовательности трансформаторов со схемой соединения обмоток ∆/Y-11 -10(6)/0,4кВ

При однофазном КЗ для трансформатора расчетный ток в реле определяется по току однофазного короткого замыкания, который обычно вычисляется без учета сопротивления питающей сети по выражению:

Для трансформаторов со схемой соединения обмоток ∆/Y-11 ток, поскольку у этих трансформаторов , (причем этот ток вычислен с учетом сопротивления питающей сети), т. е.для трансформаторов 1000кВА.

Выбирается ток и время срабатывания специальной защиты нулевой последовательности на стороне 0,4кВ.

Кп – коэффициент учитывающий кратковременную перегрузку трансформатора по ГОСТ 1402-69 и ПУЭ.

Где – минимальное значение тока однофазного КЗ на сборных шинах или вблизи них на стороне НН ТП

11.1 Общие требования безопасности к производственному оборудованию

В данном разделе рассматриваются вопросы обеспечения безопасности жизнедеятальности в проектируемом предприятии. Машины, аппараты и другое оборудование, применяемое в нефтехимической промышленности, чрезвычайно разнообразно по принципу действия, конструкции, типам и размерам. Однако существуют некоторые общие требования, соблюдение которых при конструировании оборудования позволяет обеспечить безопасность его эксплуатации. Эти требования сформулированы в ГОСТ 12.2.003-74.

Безопасность производственного оборудования обеспечивается правильным выбором принципов действия, конструктивных схем, материалов, рабочих процессов и т. п.; максимальным использованием средств механизации, автоматизации, дистанционного управления; применением в конструкции специальных защитных средств; выполнением эргономических требований; включением требований безопасности в техническую документацию по монтажу, эксплуатации, ремонту, транспортированию и хранению.

В процессе эксплуатации оборудование не должно загрязнять окружающую среду вредными веществами выше установленных норм и не должно представлять опасности с точки зрения взрыва и пожара.

Представляющие опасность движущиеся части оборудования должны быть ограждены или снабжены средствами защиты, за исключением частей, ограждение которых не допускается их функциональным назначением. В этом случае нужно предусматривать специальные меры защиты.

Оборудование не должно служить источником выделения в рабочую, зону производственных помещений вредных веществ, различного рода излучений выше предельно допустимых уровней (концентраций) больших количеств теплоты и влаги. Для функционального удаления и аварийного сброса вредных, взрыво – и пожароопасных веществ оборудование следует оснащать специальными устройствами.

Конструкция оборудования должна обеспечивать исключение или снижение до регламентированных уровней шума, ультразвука, инфразвука, вибраций.

Элементы оборудования, с которыми может контактировать человек, не должны иметь острых кромок, углов, неровных, горючих и переохлажденных поверхностей.

Входящие в конструкцию оборудования рабочие места и их элементы должны обеспечивать удобство и безопасность работающему.

При необходимости передвижения оператора во время обслуживания оборудования оно должно быть снабжено безопасными проходами, площадками, переходами, лестницами, перилами и т. п.

Оборудование должно иметь средства сигнализации о нарушении нормального режима работы, а в необходимых случаях – средства автоматического останова, торможения и отключения отключения от источников энергии.

Для предотвращения опасности при внезапном отключении источником энергии все рабочии органы, захватывающие, зажимные и подъемные устройства оборудования или их приводы должны быть снабжены специальными защитными приспособлениями. Причем нужно предотвращать возможность самопроизвольного включения приводов рабочих органов при восстановлении подачи энергии.

Конструкция оборудования должна обеспечивать защиту человека от поражения электрическим током.

Органы управления оборудованием должны соответствовать следующим основным требованиям: иметь форму, размеры и поверхность, безопасные и удобные для работы; удобно располагаться в рабочей зоне; размещаться с учетом требуемых для их перемещения усилий, не превышающих установленных стандартами, а также последовательности и частоты использвания; исключать возможность непроизвольного и самопроизвольного включения и выключения оборудования.

Управление однородным оборудованием должно быть унифицировано, а направление вращения маховичков, штурвалов, перемещение рычагов, педалей и т. п. — соответствовать установленным правилам.

Во всех функционально возможных случаях направление перемещения органов управления должно быть естественно связано с направлением движения рабочих органов оборудования.

Органы управления своей конструкцией (блокировками) должны исключать возможность осуществления неправильной последовательности операций или иметь схемы и надписи, наглядно указывающие правильную последовательность операций.

Органы аварийного выключения (кнопки, рычаги и т. п.) должны быть красного цвета, иметь указатели, облегчающие их поиск, надписи о назначении и быть легкодоступными для обслуживающего персонала.

Основные требования к зданиям производственного назначения изложены в СН 245-71 и СНиП И-90-81.При планировке производственных помещений нужно учитывать санитарную характеристику производственных процессов, соблюдать нормы полезной площади для работающих, а также нормативы площадей для размещения оборудования и необходимую ширину проходов, обеспечивающих безопасную работу и удобное обслуживание оборудования.

Объем производственного помещения на одного работающего должен составлять не менее 15 м 3 , площадь — не менее 4,5 м 2 .

Устройство рабочих помещений в подвальных этажах, как правило, запрещается. Для исключения пересечения технологических потоков наиболее целесообразно располагать помещения с учетом последовательности производственных операций.

Высота цехов выбирается в зависимости от характера технологического процесса такой, чтобы было обеспечено удаление избыточной теплоты, влаги и газов, но не менее 3,0 м. Помещения, в которых предполагается устройство естественной организованной вентиляции (аэрации), для обеспечения необходимого теплового напора должны иметь высоту не менее 4…6 м от расположения теплоизлучающей поверхности.

Производственные процессы, сопровождающиеся шумом, вибрацией, а также выделением пыли, вредных газов, необходимо изолировать, размещая их в кабинах или специальных помещениях.

Конструкция стен, потолков, полов и т. п. в производственных помещениях должна предусматривать создание для работающих наиболее благоприятных условий труда. С этой же точки зрения санитарные нормы, например, ограничивают площадь остекления промышленных зданий требованием создания необходимой естественной освещенности, учитывая при этом, что слишком большая площадь остекления «имеет свои недостатки, связанные с избытком солнечного освещения в южных районах страны и возможностью значительного охлаждения зимой в северных районах рабочих мест, расположенных вблизи окон. В случае, если оконные проемы заполнены стеклоблоками или стеклопрофилитом, должны быть предусмотрены устройства для естественного проветривания. В зданиях с верхним светом, при наличии больших площадей остекления, нужно предусматривать специальные механизированные устройства для открывания окон и фрамуг.

В последние годы все большее распространение получают производственные здания очень большой площади, имеющие определенные экономические и технологические преимущества. Однако при этом значительно затрудняется устройство аэрации и механической вентиляции. Внутренние части таких зданий обычно имеют недостаточную естественную освещенность, усложняется изоляция участков с вредными выделениями. Поэтому в таких зданиях реко-мендуется располагать производства с незначительными выделениями вредных веществ (например, инструментальные, механосборочные, деревообрабатывающие и т. п.). В таких зданиях цехи, где имеются теплоизбытки или выделяются вредные вещества, должны располагаться у наружных стен, а в многоэтажных корпусах — на верхнем этаже.

Большое значение имеет рациональная цветовая отделка производственных помещений, которую следует производить в соответствии с «Указаниями по проектированию цветовой отделки интерьеров производственных зданий промышленных предприятий» (СН 181 – 70).

Пожарная профилактика основывается на исключении условий, необходимых для горения, и использовании принципов обеспечения безопасности. При обеспечении пожарной безопасности решаются четыре задачи: предотвращение пожаров и загораний, локализация возникших пожаров, защита людей и материальных ценностей, тушение пожаров. Пожарная безопасность обеспечивается предотвращением пожаров и пожарной защитой. Предотвращение пожара достигается исключением образования горючей среды и источников зажигания, а также поддержанием параметров среды в пределах, исключающих горение.

Предотвращение образования источников зажигания достигается следующими мероприятиями: соответствующим исполнением, применением и режимом эксплуатации машин и механизмов; устройством молниезащиты зданий и сооружений; ликвидацией условий для самовозгорания; регламентацией допустимой температуры и энергии искрового разряда и др.

Пожарная защита реализуется следующими мероприятиями: применением негорючих и трудногорючих веществ и материалов, ограничением количества горючих веществ, ограничением распространения пожара, применением средств пожаротушения, регламентацией пределов огнестойкости; созданием условий для эвакуации людей, а также применением противодымной защиты, пожарной сигнализации и др.

Взрывопожарная и пожарная опасность. Производства (помещения) по взрывопожарной и пожарной опасности делятся на категории в соответствии с «Общесоюзными нормами технологического проектирования ОНТП 24-86» (Приложение VII).

Огнестойкость зданий и сооружений. Сопротивляемость зданий огню оценивается огнестойкостью. По огнестойкости здания делятся на пять степеней (I—V). Степень огнестойкости зданий и сооружений характеризуется группой горючести и пределом огнестойкости.

Предел огнестойкости конструкции — это время, выраженное в часах, от начала испытания ее по стандартному температурному режиму до возникновения одного из следующих признаков: 1) образования в конструкции сквозных трещин или отверстий; 2) повышения температуры на необогреваемой поверхности конструкции в среднем более, чем на 140°С или в любой точке этой поверхности более, чем на 180 °С; 3) потери конструкцией несущей способности.

Предел огнестойкости определяется экспериментально. Зная предел огнестойкости, можно определить требуемый предел огнестойкости строительных элементов проектируемого здания и группу возгораемости материалов. Сгораемые конструкции не имеют пределов огнестойкости.

Повысить огнестойкость зданий можно облицовкой или оштукатуриванием строительных конструкций. Особое значение имеет защита деревянных конструкций. Защищенные известково-цементной, асбесто-цементной или гипсовой штукатуркой такие конструкции относятся к трудносгораемым. Эффективным видом огнезащитной обработки древесины является пропитка антипиренами, которые представляют собой химические вещества, снижающие горючесть. Антиперенами являются фосфорнокислый аммоний (NH4 )2 HPO4 , сернокислый аммоний (NH4 )2 SO4 .

Взрывоопасные и пожароопасные зоны. В соответствии с ПУЭ выбор и установку электрооборудования производят с учетом классификации взрывоопасных и пожароопасных зон.

Зона класса В-1. К ней относят помещения, в которых могут образовываться взрывоопасные смеси паров и газов с воздухом при нормальных условиях работы (например, помещения, в которых производится слив ЛВЖ в открытые сосуды).

Зона класса В-Ia. В эту зону входят помещения, в которых взрывоопасные смеси не образуются при нормальных условиях эксплуатации оборудования, но могут образовываться при авариях или неисправностях.

Зона класса B-I6. К этому классу относят: а) помещения, в которых могут содержаться горючие пары и газы с высоким нижним пределом воспламенения (15 % и более), обладающие резким запахом (например, помещения аммиачных компрессоров); б) помещения, в которых возможно образование лишь локальных взрывоопасных смесей в объеме менее 5 % от объема помещения.

Зона класса В-1г. В эту зону входят наружные установки, в которых находятся взрывоопасные газы, пары и легко воспламеняющиеся жидкости (ЛВЖ) (например, газгольдеры, сливоналивные эстакады и т. п.).

Зона класса В-II. К ней относят помещения, в которых производится обработка горючих пылей и волокон, способных образовывать взрывоопасные смеси с воздухом при нормальных режимах работы (например, открытая загрузка и выгрузка из оборудования мелкодисперсных горючих материалов).

Зона класса В-IIa. В эту зону входят помещения, в которых взрывоопасные пылевоздушные смеси могут образовываться только в результате аварий и неисправностей (например, разгерматизация пневмотранспортирующего оборудования с применением азота, сепарационные установки с механической загрузкой и т. п.).

Помещения и установки, в которых содержатся горючие жидкости (ГЖ) и горючие пыли, нижний концентрационный предел которых выше 65г/м 3 , относят к пожароопасным и классифицируют. Классификационные зоны и установки приводятся ниже.

Зона класса П-I. К ней относят помещения, в которых содержатся ГЖ (например, минеральные масла).

Зона класса П-II. В эту зону входят помещения, в которых содержатся горючие пыли с нижним концентрационным пределом выше 65 г/м 3 .

Зона класса П-II а. К ней относят помещения, в которых содержатся твердые горючие вещества, неспособные переходить во взвешенное состояние.

Установки класса П-III. К ним относят наружные установки, в которых содержатся ГЖ (с температурой вспышки выше 61°С) или твердые горючие вещества.

Рассмотрим противопожарные требования к системам отопления, вентиляции, освещения и электроустановок. Наибольшую пожарную опасность представляет местное отопление, когда печи устанавливаются непосредственно в помещениях. При этом нагрев наружной поверхности может достигать 500°С. Наиболее безопасны в пожарном отношении центральные системы отопления и воздушное калориферное отопление. Дымовые трубы котельных, из которых могут вылетать искры, необходимо оборудовать искроуловителями. Значительную пожарную опасность имеют рециркуляционные системы, так как продукты горения из них поступают в проточную камеру, откуда нагнетаются во все помещения.

Защита от распространения пламени в вентиляционных установках достигается с помощью огнепреградителей, быстродействующих заслонок, шиберов, отсекателей и т. п. Действие огнепреградителей основано на том, что струя горючей смеси разбивается на большое число струек с таким малым диаметром, при котором пламя взрыва распространяться не может. Существуют различные конструкции огнепреградителей.

По данным статистики из общего числа пожаров, происходящих от электрооборудования, около 45 % возникает из-за коротких замыканий, 35 % от электронагревательных приборов, 13 % — от перегрузки электродвигателей и сетей, 5 % — от больших переходных сопротивлений.

Выбор общепромышленного или взрывозащищенного электрооборудования зависит от класса помещения. К взрывозащищенному относится электрооборудование, которое имеет устройства, обеспечивающие безопасность его применения в условиях взрывоопасных помещений и наружных установок.

Взрывозащищенное электрооборудование делится на взрывонепроницаемое, повышенной надежности против взрыва, маслонаполненное, продуваемое, искробезопасное и специальное. Взрывозащищенное оборудование имеет более высокую стоимость. Значительную пожарную опасность представляют светильники. Лампы накаливания более пожароопасны, чем лампы дневного света, так как температура поверхности колб первых достигает 500°С, а вторых — только 40—50°С. К противопожарным мероприятиям в электроосвещении относится правильный выбор типов светильников с учетом условий, в которых они эксплуатируются. Светильники делятся на открытые, защищенные (лампа закрыта стеклянным колпаком), пыленепроницаемые, взрывозащищенпые (допускается применение во взрывоопасной среде). Важное значение имеют правильный выбор и соблюдение режима эксплуатации электросетей, которые подбираются по допустимым токовым нагрузкам, потерям напряжения и нагреву.

К числу основных противопожарных мер в электросистемах относится правильный подбор аппаратов защиты.

Средства пожаротушения. Различают первичные, стационарные и передвижные средства пожаротушения.

К первичным средствам пожаротушения относятся огнетушители, гидропомпы (небольшие поршневые насосы), ведра, бочки с водой, лопаты, ящики с песком, асбестовые полотна, войлочные маты, кошмы, ломы, пилы, топоры. Огнетушители бывают химические пенные (ОХП-10, ОХПВ-10 и другие), углекислотные (ОУ-2, ОУ-5, ОУ-8), углекислотно-бромэтиловые (ОУБ-3, ОУБ-7), порошковые (ОПС-6, ОПС-10).

Для различных объектов и помещений существуют нормы первичных средств пожаротушения. На каждые 100 м 2 пола производственных помещений обычно требуется 1—2 огнетушителя. Время действия пенных огнетушителей 50—70 с, длина струи 6—8 м, кратность пены 5, стойкость 40 мин.

Углекислотные огнетушители наполнены сжиженным углекислым газом, находящимся под давлением 6МПа. Для приведения их в действие достаточно открыть вентиль. Углекислый газ выходит в виде снега и сразу превращается в газ. Применяется для тушения в электроустановках.

Порошковые огнетушители применяются для тушения горящих щелочных металлов. Выброс порошкового заряда из баллона производится с помощью сжатого воздуха, подаваемого из баллончика.

Для безопасного ведения технологического процесса и защиты обслуживающего персонала на проектируемом предприятии предусмотрены следующие технические решения:

– технология процесса организуется таким образом, чтобы предотвратить возможность взрыва при регламентированных значениях параметров;

– аппаратурное оформление, конструкция технологических аппаратов, их материальное исполнение подобрано таким образом, чтобы максимально снизить уровень взрывопожароопасности;

– в аппаратах, где возможно превышение технологического давления выше расчетного давления аппарата, предусматривается регулирование давления клапанами КиА и защита аппарата предохранительными клапанами

– выбросы от предохранительных клапанов направляются в факельную систему через емкость-сепаратор, установленный на границе установки, откачивание жидкости из сепаратора автоматическое

– все непрерывно работающие насосы имеют 100% резерв для обеспечения непрерывности и надежности процесса

– на нагнетательных и всасывающих трубопроводах установлена запорная арматура

– на нагнетательных трубопроводах насосов установлены обратные клапаны, предотвращающие перемещение продуктов обратным ходом, на линиях всасывания установлены отсечные клапаны с дистанционным управлением;

– центробежные насосы имеют двойные торцевые уплотнения, разработанные фирмой «Анод»

– центробежные насосы с торцевыми уплотнениями оснащены системой контроля температуры подшипников с сигнализацией предельных значений и блокировкой при превышении параметра

– для защиты от статического электричества проектом предусмотрено заземление всей аппаратуры и оборудования

– оборудование выбрано в соответствии с технологическими требованиями и производительностью

– по всей территории, во всех насосных устанавливаются сигнализаторы на ПДК по сероводороду в соответствии с ТУ-газ-86 и сигнализаторы довзрывной концентрации

– для удобства обслуживания на аппаратах предусматриваются стационарные площадки

– постаменты и этажерки имеют ограждение в виде бортиков высотой не менее 150 мм

– для защиты обслуживающего персонала от вредных воздействий предусматриваются средства защиты ;

– углеводороды периодически отводятся в закрытую дренажную систему легких углеводородов

– для технологических блоков I категории взрывоопасности предусмотрена установка автоматических быстродействующих запорных, запорнорегулирующих и отсекающих устройств с временем срабатывания не более 12 сек

– особо важные потребители блока обеспечиваются энергией от трех независимых источников

– используется закрытая система дренирования из технологического оборудования;

– для исключения ожогов обслуживающего персонала все трубопроводы и оборудование в местах обслуживания изолируются

– все этажерки и отдельно стоящие постаменты оборудованы лестницами и площадками для обслуживания в соответствие с действующими нормативными документами

– в местах, где используется щелочь, предусмотрены душевые кабины и раковины самопомощи

– постоянное пребывание обслуживающего персонала на территории блока не предусматривается.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.

Предполагается сооружение заземлителя с внешней стороны здания с расположением вертикальных электродов по периметру. В качестве вертикальных заземлителей принимаются стальные стержни диаметром 16мм и длиной 2,5м, которые погружаются в грунт методом ввертывания. Верхние концы электродов располагаются на глубине 0,7м от поверхности земли. К ним приваривают горизонтальные электроды стержневого типа из той же стали, что вертикальные электроды. Прилегающая КТП включается в общий контур заземления. Внутренняя сеть заземления выполняется горизонтальной полосой 40х4 мм.

Для стороны 10 кВ в соответствии с ПУЭ сопротивление заземляющего устройства определяется по формуле:

R3 , (11.1)

R3 =4,9Ом.

Сопротивление заземляющего устройства для электроустановок напряжением до 1 кВ не должно быть больше 4Ом [9], поэтому за расчетное сопротивление принимаю R3 =4Ом. Сопротивление искусственного заземлителя, при отсутствии естественных принимается равным допустимому сопротивлению заземляющего устройства Ru = R3 =4 Ом.

Определим расчетное удельное сопротивление грунта с учетом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание его зимой:

Где: – удельное сопротивление грунта (суглинок – от 40 до 150Ом∙м);

Kc – коэффициент сезонного изменения (для II климатической зоны принимается kc =1,45 [16]).

R0 =(Ом) , (11.3)

Где: I – длина вертикального заземлителя, (от 3 до 5м); d – диаметр вертикального заземлителя, (0,015м); t – расстояние от поверхности земли до середины вертикального заземлителя, (0,7+L/2,м).

R0 ==31,78 Ом.

Ориентировочное число вертикальных заземлителей (влияние горизонтальных заземлителей не учитывается, полагая что их проводимость будет идти в запас надежности):

Потребное число вертикальных заземлителей с учетом их взаимного экранирования (при коэффициенте использования =от 0,78 до 0,82, принятым из табл.7.5 [16] при N=40 и , где р=280 м – периметр контура расположения электродов):

Окончательно принимается к установке 10 вертикальных электродов, расположенные по контуру цеха.

I— производственные здания и сооружения со взрывоопасными помещениями классов B-Iи В-П по ПУЭ; здания электростанций и подстанций;

II — другие здания и сооружения со взрывоопасными помещениями, не относимые к Iкатегории;

III— все остальные здания и сооружения, в том числе и пожароопасные помещения.

А) от прямых ударов молний отдельно стоящими стержневыми и тросовыми молниеотводами, обеспечивающими требуемую зону защиты

Б) от электростатической индукции — заземлением всех металлических корпусов, оборудования и аппаратов, установленных в защищаемых зданиях через специальные заземлители с сопротивлением растеканию тока не более 10Ом;

В) от электромагнитной индукции — для протяженных металлических предметов (трубопроводов, оболочек кабелей, каркасов сооружений). В местах сближения с источником индукции и через 20 м длины на параллельных трассах кабелей и трубопроводов ставят металлические перемычки, позволяющие избежать появления разомкнутых металлических контуров.

Молниезащита зданий и сооружений IIкатегории от прямых ударов молнии выполняется одним из следующих способов: а) отдельно стоящими или установленными на зданиях неизолированными стержневыми или тросовыми молниеотводами, обеспечивающими защитную зону; б) молниеприемной заземленной сеткой размером 6 х 6 м, накладываемой на неметаллическую кровлю; в) заземлением металлической кровли. Защита от электростатической и электромагнитной индукций выполняется аналогично защите сооружений Iкатегории.

Молниезащита зданий IIIкатегории выполняется, как и для IIкатегории, но при этом молниеприемная сетка имеет размер ячеек 12 х 12 или 6 х 24 м, а величина сопротивления заземлителя от прямых ударов молнии повышается до 20 Ом. В соответствии с вышеуказанными требованиями защита зданий и сооружений на объектах электроснабжения выполняется следующим образом. При расчете молниеотводов учитывается необходимость получения определенной зоны защиты, которая представляет собой пространство, защищаемое от прямых ударов молний (рисунок 11.1).

Для одиночного стержневого молниеотвода при высоте молниеотвода до 60 м, радиус защиты

Где h – hx = ha — разность высот молниеотвода и защищаемого объекта, или активная высота; h— высота молниеотвода; hх —высота защищаемогообъекта. Из (11.6) следует, что наибольший радиус защиты получается на поверхности земли, где rx = 1,5h, при угле защиты α = 40°.

При длине цеха – 191м, и ширине цеха – 118м, необходимо установить 4 мониеотвода высотой 60м. (графическая часть)

Работа с насосамиотносятся к работам малой точности, для общего освещения принимаем газоразрядные лампы.

Минимальная освещенность при комбинированном освещении составляет для разряда зрительных работ Vв 300лк. При этом освещенность от общего освещения в системе комбинированного – 200лк.

Также в цехе предусмотрена система аварийного освещения. Наименьшая освещенность рабочих поверхностей производственных помещений к территории предприятий, требующих обслуживания при аварийном режиме, должна составлять 5% от освещенности рабочего освещения при системе общего освещении.

Для создания равномерного распределения освещенности по всей площади цеха принимаем равномерное размещение светильников. Светильники располагаются рядами параллельно продольной оси цеха с разрывами для подвески светильников аварийного освещения.

Для рабочего освещения цеха использую светильники с металлогалогеновой лампой ДРЛ-250

Количество светильников в цехе n = 30шт., что немного меньше расчетной величины, поэтому рассчитаем среднюю фактическую освещенность:

Повторим расчет светового потока для аварийного освещения. Аварийное освещение выполнено светильниками В3Г с лампой накаливания 200Вт

Количество светильников аварийного освещенния в цехе принимаем 8 шт., что несколько больше расчетной величины, поэтому расчитываем фактическую аварийную освещенность цеха:

Iд. д. – допустимая длительная токовая нагрузка на кабель. Так как ремонтно-механический цех относится к помещениям с нормальной средой, то

Где: Iд. д. – длительно допустимый ток для кабелей при нормальных условиях прокладки, который приводится в таблицах ПУЭ.

Выбираем кабель, питающий щиток рабочего освещения основного помещения механического цеха. Расчетная нагрузка внутреннего освещения здания Рр определяется по установленной мощности освещения Ру и коэффициенту спроса Кс :

Установленная мощность Ру определяется суммированием мощности ламп всех стационарных светильников, при этом для учета потерь в пускорегулирующих аппаратах разрядных ламп ДРЛ умножаем на 1,1:

Осветительных и силовых нагрузок трансформаторов с низшим напряжением 400/230В (напряжение сети 380/220В).

Для распределения электроэнергии для рабочего и аварийного освещения, а также от защиты сетей от токов короткого замыкания применяем распределительный пункт ВЩО с автоматическими выключателями типа АЕ.

Осветительная сеть цеха предусматривает наличие двух групповых щитков, к котором групповыми линиями присоединяются светильники. В случае прекращения действия освещения предусмотрено аварийное освещение, обеспечивающее возможность продолжения работы и безопасную эвакуацию людей из цеха.

Управление рабочим освещением осуществляется автоматическими выключателями, установленными на групповом щитке. Для удобства эксплуатации и безопасности производства ремонтных работ и замены отдельных элементов схемы электроосвещения необходимо предусмотреть возможность отключения группового щитка. Эту функцию выполняет выключатель, установленный у ввода в здание.

13.5 Выбор типа и расположения группового щитка компоновка сети и ее выполнение

Питание электрического освещения производится от общих для силовых и осветительных нагрузок трансформаторов с низким напряжением 400/230В (напряжение сети 380/220В)

Для питания ламп применяют кабели проложенные на тросах. В качестве осветительных щитков применяем распределительные пункты серии ПР с автоматическими выключателями. Шкафы серии ПР предназначены для распределения электрической энергии, для защиты электрических установок напряжением до 660В переменного тока частоты 50Гц. при перегрузках и коротких замыканиях для нечастых включений и отключений электрических цепей, а также для защиты людей и животных от поражения электрическим током и предотвращения пожаров от электрического тока.

Выбираем щитки освещения и ЩОС для рабочего освещения основного помещения:

Светильники рабочего освещения расположены в 3 рядов по 10светильников в ряду.

Для распределения электроэнергии и защиты сетей от токов короткого замыкания применяем 2 распределительных шкафа ПР-8503 с автоматическими выключателями.

Групповые щитки, располагаемые на стыке питающих и групповых линий, предназначены для установки аппаратов защиты и управления электрическими осветительными сетями.

Выбираем щитки освещения и ЩОС для аварийного освещения основного помещения:

Светильники аварийного освещения расположены в 2 рядов по 4 светильников. Светильники распределены равномерно по фазам

Для распределения электроэнергии и защиты сетей от токов короткого замыкания применяем групповой распределительный шкаф ПР8503 с IНОМ =до 100А,

План расположения светильников представлен в графической части проекта.

При проектировании предприятия решаются вопросы экономических затрат на сооружение электрической сети, затраты на потребление электрической энергии, организацию обслуживания подстанций питаемых данное предприятие. Величена удельных затрат характерезует энергоемкость и энерговооруженность производства. Она может быть использована в качестве критерия при сопоставлении энергетических показателей аналогичных предприятий, построенных в разное время.

Где, Суммарная мощность потребителей предприятия, МВт.

Где, Часы использования максимума нагрузки

Где, удельное сопротивление Ом/км

Среднее значение коэффициента мощности по сети в режиме нагрузок:

=+(14.12)

=16000+8000+570+1500+450=26520тыс. руб

Организация обслуживания подстанций и определение количества обслуживающего персонала. Для данной подстанции выбирается круглосуточное дежурство – смена по 8 часов, четырехбригадка. Количество оперативного персонала – 4 человека, ремонтного персонала – 20 человек. Из них 10 человек работают по 6 разряду и 14 человек – по 5 разряду.

Оплата повременная. Расчет производим по средней наработке 22 смены в месяц. Среднемесячный фонд рабочего времени 176 часов. Основная заработная плата рабочих:

Где β – коэффициент, учитывающий затраты на ремонт и обслуживание оборудования (1,1÷1,18), – амортизационные отчисления:

Где δ =1 – коэффициент учитывающий дорожные эксплуатационные расходы в районе с умеренным климатом.

Технико-экономические показатели работы проектируемой электрической сети:

В данном разделе были произведены расчеты затрат на сооружение и эксплуатацию электрической сети, для обеспечения электроэнергией проектируемое предприятие. Были рассчитаны энергетические и экономические показатели, средневзвешенный КПД сети равен 97%.

Монтаж распредустройств и подстанций начинается с приемки от строителей по акту помещения РУ или территории подстанции под монтаж. В электропомещениях (щитовых, пультовых, подстанциях и распределительных устройствах, машинных залах, кабельных туннелях и каналах, кабельных полуэтажах) должны быть выполнены чистые полы с необходимым уклоном и гидроизоляцией и отделочные работы (штукатурные и окрасочные); установлены закладные детали и оставлены монтажные проемы; смонтированы предусмотренные проектом грузоподъемные и грузоперемещающие механизмы и устройства; подготовлены блоки труб, отверстия и проемы для прохода труб и кабелей, борозды, ниши и гнезда; выполнен подвод питания для временного освещения во всех помещениях.

В зданиях должны работать системы отопления и вентиляции, должны быть смонтированы и испытаны мостики, площадки и конструкции подвесных потолков, предусмотренные проектом для монтажа и обслуживания электроосветительных установок, расположенных на высоту; проложены снаружи и внутри зданий асбоцементные трубы и трубные блоки для прохода кабелей.

На ОРУ напряжением 35 кВ и выше строительная организация должна закончить сооружение подъездных путей, подходов и подъездов, должны быть установлены шинные и линейные порталы, сооружены фундаменты под электрооборудование, кабельные каналы с перекрытием, ограждения вокруг ОРУ, подземные коммуникации и закончена планировка территории. В конструкциях порталов и фундаментов под оборудование должны быть установлены закладные части и крепежные детали, необходимые для крепления гирлянд изоляторов и оборудования. В кабельных каналах и туннелях должны быть установлены закладные детали для крепления кабельных конструкций и воздухопроводов. Должно быть закончено сооружение водопровода и других противопожарных устройств.

Монтаж комплектных распредустройств, камер КСО и КТП начинается с приемки этого оборудования от заказчика, проверки его комплектности, наличия технической документации предприятия-изготовителя (паспорта, технического описания и инструкции по эксплуатации, электрических схем главных и вспомогательных цепей). На рабочее место КРУ, КСО и КТП устанавливают на основания, закладные части, опорные рамы, выверенные по уровню на проектной отметке; КТП можно устанавливать непосредственно на бетонном полу без крепления. Установку камер производят в соответствии со схемой заполнения, на которой указывают взаимное расположение камер и схему соединений всего РУ. Работы по монтажу ведутся в две стадии. На первой стадии монтажники контролируют правильность установки строителями закладных элементов, устанавливают конструкции для отдельно стоящих панелей и щитков, выполняют монтаж внутренней сети заземления, монтируют сеть общего освещения помещения РУ. Поверхность всех конструкций для установки камер должна быть в одной горизонтальной плоскости, стыки конструкций должны быть сварены с помощью накладок из полосовой стали для обеспечения непрерывности цепи заземления. Помещение РУ должно быть очищено от строительного мусора, высушено и приведено в состояние, при котором исключается возможность увлажнения монтируемого электрооборудования.

После приемки под монтаж строительной части помещения РУ приступают к монтажным работам второй стадии. Устанавливают камеры КРУ и КСО на рабочее место, каждую камеру КСО приваривают к закладным конструкциям по четырем углам, у камер КРУ приваривают к закладным конструкциям не менее чем в двух местах каждый из трех опорных швеллеров. После окончания монтажа первичных цепей проверяют уровень масла в бачках выключателей, проверяют работу выключателей, разъединителей, вспомогательных и блокировочных устройств. Эта проверка производится в соответствии с требованиями инструкции предприятия-изготовителя.

Одновременно с работами по первичным цепям на второй стадии монтажных работ выполняют монтаж вторичных цепей: устанавливают приборы и аппараты защиты, управления, сигнализации, измерения и учета; прокладывают в коробе провода межкамерных соединений и производят их подсоединение; прокладывают, разделывают и подключают контрольные кабели, кабели питания оперативным током и кабели освещения.

Силовые кабели прокладывают в каналах в помещениях РУ или ТП после установки камер на место. В каналах кабели раскладывают в соответствии с кабельным журналом. После монтажа концевых заделок у каждой заделки вешают маркировочную бирку с надписью в соответствии с кабельным журналом. Жилы кабелей, по которым может быть подано напряжение, подключают к РУ только после окончания всех монтажных работ и приемки РУ в эксплуатацию.

Перед сдачей в эксплуатацию восстанавливают поврежденную отделку камер, окрашивают дополнительно установленные монтажные изделия и конструкции и места сварок. На фасадах камер, а при наличии прохода позади камер и с заднейстороны, выполняют четкие надписи в соответствии с проектом, где указывают наименование присоединений. У всех приводов выключателей и разъединителей делают надписи с указанием "Включено" и "Отключено". В камерах КСО рядом с приводами разъединителей завод-изготовитель выполняет надписи, поясняющие, к какому разъединителю относится данный привод. На фазах каждой секции шин РУ предусматриваются места для наложения переносного заземления. На дверях, выходящих из помещения РУ или ТП наружу или в другое помещение, с внешней стороны делают надписи с наименованием РУ или ТП и закрепляют стандартные металлические предупредительные плакаты «Высокое напряжение – опасно для жизни!»

Монтаж КТП выполняют аналогично монтажу КРУ. Сборка КТП включает: соединение выводов трансформатора с РУ; установку автоматического выключателя на вводе низкого напряжения; выполнение заземления; подсоединение отходящих линий; подсоединение кабеля к трансформатору или шкафу ввода. Распределительное устройство, состоящее из нескольких блоков, собирают поочередно.

Автоматические выключатели устанавливают в шкафы КТП после проверки их исправности и соответствия их технических данных указанным на схеме в проекте. Автоматические выключатели выдвижной конструкции вкатывают сначала вручную до упора роликов в опорные скобы, а затем с помощью рукоятки, вращаемой по часовой стрелке. Заземление выключателей выполняют специальными скользящими контактами.

После установки автоматических выключателей укрепляют ду-гогасительные камеры и проверяют ход подвижных контактов.

Максимально возможное количество указанных работ второй стадии выполняют вне зоны монтажа в период строительства помещения КТП и в период монтажных работ первой стадии.

Монтаж силовых трансформаторов. Трансформаторы доставляют на место установки полностью собранными и подготовленными к включению в работу. Только в случаях, когда не позволяет грузоподъемность транспортных средств и стесненность габаритов, трансформаторы большой мощности доставляются со снятыми радиаторами, расширителем и выхлопной трубой.

Правила предусматривают, что все трансформаторы должны допускать включение их в эксплуатацию без осмотра активных частей, при условии транспортирования и хранения трансформаторов в соответствии с требованиями ГОСТ и "Инструкции по транспортированию, хранению, монтажу и вводу в эксплуатацию без ревизии активных частей". Все операции по транспортировке и хранению силовых трансформаторов оформляются актами и протоколами: осмотра трансформатора и его демонтированных узлов после выгрузки и доставки к месту монтажа; хранения трансформатора до передачи в монтаж. Подготовительные работы к монтажу трансформаторов включают в себя разгрузку и доставку трансформатора к месту ревизии и установки и, в случае необходимости, сушку обмоток и масла. Разгрузку трансформаторов выполняют помощью кранов, а при их отсутствии – с помощью домкратов, путем выкатки на предварительно сложенную из железнодорожных шпал клетку с использованием электрической или ручной лебедки.

Ревизию трансформаторов выполняют по инструкции завода-поставщика. Трансформаторы мощностью до 1600кВА напряжением до 35кВ поступают с завода заполненными маслом с установленными на них расширителями. Трансформаторы мощностью более 1600кВА и напряжением 220кВ поступают заполненными маслом, но без расширителя. Не более чем через 6 месяцев после отправки с завода должен быть установлен расширитель и долито масло. Перед доливкой масла трансформатор испытывают на электрическую прочность, проводят химический анализ, проверяют герметичность бака и снимают электрические изоляционные характеристики трансформатора. Герметичность трансформаторов, поступивших с маслом, но без расширителя, проверяют давлением столба масла высотой 1,5м или посредством установки на баке вертикальной трубы диаметром 25-40мм с резьбой и уплотняющей гайкой и избыточным давлением осушенного воздуха 15кПа. Она будет удовлетворительной, если в течение 3ч избыточное давление не становится ниже 13кПа. Радиаторы перед навеской на бак трансформатора испытывают нагретым маслом или сухим воздухом при избыточном давлении 50кПа в течение 30мин, а затем промывают чистым трансформаторным маслом, нагретым до 50-60°С.

Маслоохладительную систему с принудительной циркуляцией масла и водяным охлаждением перед монтажом очищают от грязи и ржавчины, промывают маслом и после сборки испытывают маслом при давлении масла 500кПа в течение 30мин, при этом же давлении испытывают водой задвижки водяной системы. Маслоохладительную систему с принудительной циркуляцией масла и обдувом воздуха после очистки секций также испытывают маслом при давлении 500кПа в течение 30мин, проверяя работу вентиляторов и масляного насоса.

Специальные трансформаторы разделяются на герметизированные масляные, совтоловые и сухие. Герметизированные трансформаторы могут быть заполнены совтолом (ТНЗ) или трансформаторным маслом (ТМЗ, ТМУ). Такие трансформаторы устанавливают без ревизий, проверяют лишь наличие герметичности по показаниям установленного на трансформаторе мановакуумметра, которые сверяют с паспортными данными; кроме того отбирают пробы для испытания масла (или совтола) на пробивное напряжение.

Сухие трансформаторы до включения осматривают, проверяя надежность контактных соединений и прочих креплений. После проверки обмотки магнитопровод продувают сухим сжатым воздухом, затем измеряют сопротивление изоляции обмоток и стяжных шпилек; снижение изоляции против нормы не должно быть более 30%. При неудовлетворительной изоляции сухой трансформатор подвергают сушке горячим воздухом от воздуходувки или в вакуумном шкафу с обогревом обмотки током короткого замыкания при пониженном напряжении.

Сушка трансформатора производится в баке без масла при отсутствии вакуума с естественной или принудительной вентиляцией и под вакуумом с подсосом воздуха. Применяют следующие методы сушки: индукционными потерями, токами нулевой последовательности, инфракрасным излучением вне бака, обдувом горячим воздухом в утепленном укрытии или сушильном шкафу.

Самыми распространенными методами являются: метод обдува горячим воздухом без вакуума и метод сушки индукционными потерями в баке под вакуумом, при этом намагничивающую обмотку размещают на наружной поверхности бака. Для ускорения процесса сушки подогревают днище бака.

Сушку токами нулевой последовательности применяют для трансформаторов небольшой мощности (до 400кВА). При этом способе вторичные обмотки трансформатора подключают к сети. Поскольку обмотка высшего напряжения остается разомкнутой, должны быть приняты меры безопасности, так как на ней может появиться высокое напряжение. В результате воздействия одинаковых по значению и совпадающих по фазе магнитных потоков в меди и магнитопроводе будет выделяться теплота. Влага, испаряющаяся из изоляции, удаляется естественной вытяжкой через трубу, установленную на крышке. Данный способ отличается простотой, но не применяется при соединении вторичных обмоток в треугольник.

Меры безопасности при монтаже электрооборудования распределительных устройств станций и подстанций

Перед монтажными работами территорию ОРУ очищают от строительного мусора, кабельные каналы покрывают временными или постоянными плитами, а при открытых каналах делают переходы. Закрытые РУ освобождают от опалубки, строительных лесов и подмостей. Монтажные проемы, предусмотренные в ППР, ограждают надежными съемными перилами, которые разрешается снимать на время такелажа тяжелого оборудования, комплектных РУ, крупных блоков и т. п. с последующей установкой перил на место.

При монтаже РУ на рабочей площадке обычно перемещают электрооборудование, а также поднимают тяжелые детали на высоту, выполняют слесарные работы, при которых возможны механические травмы. Кроме того, при опробовании установленного электрооборудования под напряжением имеется опасность поражения людей электрическим током.

Подъем колонн порталов и приставок для установки на них аппаратов, гирлянд изоляторов, колонок разъединителей и других деталей электрооборудования производится с помощью механизмов. Подъем деталей оборудования или конструкций, имеющих массу более 20 кг, при монтаже их на высоте производится двумя рабочими. При массе конструкции или оборудования более 50 кг их поднимают с помощью блоков или лебедки. При подъеме и перемещении щитов, камер и блоков сборных РУ и другого оборудования применяют оттяжки, которые предотвращают возможное опрокидывание и повреждение оборудования. Опрокидывание оборудования может вызвать травмы работающих.

Рабочие места и проходы к ним на высоте 1,3 м и более и расстоянии менее 2 м от границы перепада по высоте ограждают временными защитными ограждениями. Их высота должна быть не менее 1,1 м. Ограждения содержат бортики, предотвращающие падение инструментов.

Перед установкой оборудования и аппаратуры проверяют надежность и прочность опорных конструкций и крепежных деталей. При установке различных конструкций закрытых РУ, закрепляемых в стенах, потолках и полах зданий с помощью цементного раствора поддерживающие их приспособления сохраняют до полного затвердения раствора Преждевременное удаление подпорок и растяжек может разрушить крепление, и конструкции упадут. Поднятые на высоту для монтажа различные элементы аппаратуры немедленно закрепляются на определенных местах во избежание их падения.

Во время монтажа электрооборудования, изоляторов и т. д. при подгонке болтовых отверстий необходимо пользоваться шпильками или специальными ломами; проверять овпадение отверстий руками не разрешается.

Значительный объем работ при монтаже РУ приходится на транс-форматоры. Работа по перемещению трансформатора выполняется под руководством инженерно-технического персонала, отвечающего как за перемещение, так и за технику безопасности при перемещении. Перед началом работ ответственный лично убеждается в исправности необходимых подъемных, тяговых механизмов и приспособлений, домкратов, полиспастов, тросов и т. п.

Нахождение людей на крышке трансформатора, на трейлере (кроме оператора) или на санях во время перемещения трансформатора (движения колонны) запрещается.

Если производится подъем или опускание сердечника трансформа-гора из бака или в бак, то при этом запрещается производить на трансформаторе и сердечнике какие-либо работы; необходимые работы производятся только после полного удаления сердечника от бака трансформатора и установки его на прочном основании.

При производстве работ по погрузке, разгрузке, перемещению, монтажу, сушке и прогреву трансформатора принимают меры противопожарной безопасности, так как трансформаторное масло является горючей жидкостью. При газосварочных работах принимают меры, исключающие возможность соединения масла с кислородом. При прогревах и сушках трансформатора необходимо получить разрешение пожарной инспекции на производство таких работ и организовать круг, лосуточный противопожарный пост, снабдив его противопожарным имуществом

Если проводятся работы внутри баков трансформаторов, заполненных на время транспортировки азотом, то предупреждают персонал об опасности, так как азот опасен для жизни (он вытесняет необходимый для дыхания кислород). Перед проведением работы азот удаляют. За состоянием работающих внутри бака во всех случаях устанавливают постоянное наблюдение.

Выводы первичных и вторичных обмоток силовых трансформаторов и трансформаторов напряжения после их монтажа и присоединения к шинам закорачивают и заземляют. Эта мера необходима на случай ошибочной подачи напряжения на трансформатор. Снимают переносные заземления с выводов трансформаторов только при сдаче оборудования в наладку.

Монтируемые в РУ аппараты также представляют собой источники опасностей, в основном механических травм. Это в первую очередь относится к приводам аппаратов и ножам разъединителей. Поэтому при перемещении, подъе-ме на конструкции и установке разъединителей, отделителей и короткозамыкателей их необходимо устанавливать во включенном положении, так как при таком положении ножа исключается возможность травмирования рабочих ножевыми контактами рубящего типа.

Все выключатели, электромагнитные приводы и другие аппараты, снабженные возвратными пружинами или механизмами свободного расцепления, следует перемещать с места на место в отключенном положении. Если на монтаж поступили приводы во включенном положении, то их с большой осторожностью отключают. У выключателей напряжением выше 1 кВ все подвижные части выключателя и привода необходимо застопорить, чтобы при случайном их перемещении не возникла травма.

При регулировании выключателей и разъединителей с автоматическими приводами принимают меры против непредвиденного включения или отключения приводов случайным лицом или самопроизвольно, так как при этом возможны ушибы рабочего, производящего регулировку, движущимися частями механизма выключателя. Для этого плавкие вставки предохранителей в цепях управления приводом снимают. Если при регулировании потребуется включить оперативный ток, то установка вставок предохранителей допускается только после удаления всех людей от привода выключателя и вывешивания предупреждающих плакатов.

Во время регулирования ножей и хода тяг между разъединителем и его приводом работающие должны строго согласовывать свои действия, чтобы не травмировать руки подвижными контактами аппарата. Особую осторожность следует проявлять, регулируя ножи выключателей нагрузки ВН-16. При недостаточном внимании и несогласованности действий подвижные контакты дугогасительной системы могут нанести тяжелые травмы.

Перед тем как производить дистанционное включение и отключение выключателя, необходимо снять рукоятку (рычаг) ручного управления, чтобы случайным поворотом рукоятки не вызвать работу аппарата. Нельзя находиться в баке выключателя, просовывать голову в бак или дотрагиваться руками до подвижных частей при оперировании выключателем.

Для проверки одновременного замыкания и размыкания дугогасительных контактов и момента размыкания вспомогательных контактов привода допускается применять напряжение не выше 12 В. Проверка зазоров механизма привода производится только шаблоном; проверка руками запрещается.

Большую опасность на монтажном участке может представлять наличие напряжения. Поэтому подают напряжение на вновь смонтированные электротехнические устройства только после сдачи объекта в наладку. Использовать монтируемые РУ, щиты, панели или их отдельные присоединения в качестве временных электроустановок для обслуживания строительных и монтажных работ запрещается.

В дипломном проекте, темой которого является электроснабжение завода бензинов, были рассмотрены следующие вопросы: краткие сведения о проектируемом предприятии и о питающей энергосистеме, описание технологического процесса, выбор номинального напряжения, расчет электрических нагрузок предприятия, компенсация реактивной мощности с помощью конденсаторных установок, выбор мощности силовых трансформаторов ГПП и внутризаводских подстанций, выбор сечения питающей линии напряжением выше 1000 В, расчет токов короткого замыкания, с учетом величин токов короткого замыкания выбрано оборудование; расчёт освещения. Произведен выбор оптимального варианта схемы межцеховой сети.

Для обеспечения надежности и безопасности применены средства защиты и автоматики

Общие требования безопасности к производственному оборудованию. Производственная санитария и пожарная безопасность

В экономической части курсового проекта произведен расчёт по определению себестоимости передачи и распределения 1 кВт. ч электроэнергии.

На основе произведенных расчетов можно сделать вывод, что выбран наиболее оптимальный и рациональный вариант электроснабжения завода бензинов.

1 Электротехнический справочник: В 4-х т. Т4/ под общ. ред. профессоров МЭИ В. Г.Герасимова и др. (гл. ред. А. И.Попов). – 8-е изд., испр. и доп. – М.: Издательство МЭИ 2002. – 696 с.

2 Шеховцов В. П. Расчет и проектирование схем электроснабжения. Методическое пособие для курсового проектирования. – М.: ФОРУМ: ИНФРА – М.,2003. – 214с.

3 Федоров А. А., Каменева В. В. Основы элетроснабжения промышленных предприятий: Учебник для вузов.

4 Справочник по проектированию электроснабжения/ Под ред. Ю. Г. Барыбина и др. – М.: Энергоатомиздат,1990. – 576с.

5 Неклепаев Б. Н., Крючков И. П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования: Учебное пособие для вузов. – 4-е изд., перераб. и доп. – М.: Энергоатомиздат, 1989. – 608с.: ил.

6 Чернобровов Н. В., Семенов В. А. Релейная защита энергетических систем: Учеб. пособие для техникумов. – М.: Энергоатомиздат,1998. – 800с.: ил.

7 Справочник по электроснабжению промышленных предприятий. Под общ. ред. А. А. Федоров и Г. В. Сербиновского. В 2-х кн. Кн – 1. Проектно – расчетные сведения. М., «Энергия». 1973.

8 Белоруссов Н. И. и др. Электрические кабели провода и шнуры: Справочник/ Н. И. Белоруссов, А. Е. Саакян, А. И. Яковлева; Под ред. Н. И. Белоруссова. – 5 изд., прераб. и доп. – М.: Энергоатомиздат,1987. – 536с.;ил.

9 Правила устройства электроустановок/ Минэнерго СССР. – 6-е изд., перраб. и доп. – М.: Энергоатомиздат.

10 Электротехнический справочник: В 4-х т. Т1 Общие вопросы. Электротехнические материалы/ под общ. ред. профессоров МЭИ В. Г.Герасимова и др. – 9-е изд., стер.– М.: Издательство МЭИ 2003. –440 с. ил.

11 Электротехнический справочник: В 4-х т. Т2 Электротехнические изделия и устройства/ под общ. ред. профессоров МЭИ В. Г.Герасимова и др. (гл. ред. И. Н. Орлов). – 9-е изд., стер. – М.: Издательство МЭИ 2003. – 518 с.

12 Электротехнический справочник В 4-х т. Т3 Производство, передача и распределение эл. энергии/ под общ. ред. профессоров МЭИ В. Г.Герасимова и др. (гл. ред. А. И.Попов). – 8-е изд., испр. и доп. – М.: Издательство МЭИ 2002. – 964 с.

13 Григорьев В. В., Киреева Э. А. Справочные материалы по электрооборудованию систем электроснабжения промышленных предприятий. – М.:Энергоатомиздат. 2002.

14 Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов: Учебное пособие для студентов электроэнергетических специальностей вузов, 2-е изд., перераб. И доп./В. М. Блок. – М.: Высш. шк., 1990. – 380с. ил.

15 Э. И. Басс, В. Г. Дорогунцев. Релейная защита электроэнергетических систем (Учебное пособие для вузов). – М. Издательство МЭИ, 2002.

16 Рожков Электрооборудование станций и подстанций М.:Энергоатомиздат. 2002.

17 Идельчик В. Н. Электротехнические системы и сети: Учебник для вузов. – М.: Энергоатомиздат, 1989. – 592с.: ил.

18 Правила технической эксплуатации электроустановок потребителей. Госэнергонадзор Минэнерго России – СПб: ООО Альтернативная полиграфия. 2003. – 312с.

Http://www. bestreferat. ru/referat-170131.html

Настоящий дипломный проект разработан на строительство резервуарного парка 2 пускового комплекса Антипинского НПЗ.

Проектные и технические решения в принятые данном дипломе соответствуют самым прогрессивным и экономичным видам строительства, соответствуют требованиям НТД, экологическим нормам, а так же нормам промышленной безопасности.

1.1.2 Природные и климатические условия в месте расположения объекта

2.2.2 Требования к квалификации сварщиков и руководителей сварочного производства

2.2.4 Требования к подготовке, хранению и использованию сварочных материалов

2.2.5 Основные положения при сборке под сварку и сварке монтажных сварных соединений

2.2.7 Рекомендации по сварочно-монтажным работам в условиях отрицательных температур

2.2.9 Технологическая последовательность монтажа металлоконструкций резервуара

2.2.16 Порядок производства работ по теплоизоляции резервуаров мазута

4.1 Расчет сметной стоимости для проведения строительства резервуарного парка

5.1 Характеристики пожаровзрывоопасности нефтей и нефтепродуктов

5.3 Требования безопасности при производстве погрузочно-разгрузочных работ

5.4 Требования безопасности при производстве газорезательных работ

5.5 Требования безопасности при производстве электросварочных работ

5.9 Определение вероятных параметров ударной волны при взрыве газовоздушной смеси вне здания, сооружения

Проект I пускового комплекса Антипинского НПЗ «Блочная нефтеперерабатывающая установка производительностью 400 тыс. т/год» был разработан институтом «Нефтехимпроект» в 2005 году.

Второй очередью строительства Антипинского НПЗ предполагается увеличение производственной мощности предприятия по первичной переработке нефти до трех миллионов тонн в год. Также предполагается расширение номенклатуры выпускаемой продукции вследствие применения технологии смешения продуктов первичной переработки нефти.

Для обеспечения увеличения производительности и номенклатуры выпускаемой продукции требуется строительство ряда новых объектов и реконструкция части существующих сооружений, а именно:

1) строительство технологических объектов по переработке нефти и перевалки нефтепродуктов:

– установка электрообессоливания и атмосферной разгонки нефти (ЭЛОУ-АТ2) производительностью 2.5 млн. т/год;

– установка стабилизации бензина, с учётом поступающей бензиновой фракции с ранее запроектированной установки «Петрофак» (АТ-1);

2) строительство объектов складского назначения (товарно-сырьевой склад):

В административном отношении ЗАО «Антипинский НПЗ» находится в лесной зоне, в п. Антипино Тюменской области в 6 км от г. Тюмени. Климат лесной зоны влажный, с умеренно теплым летом и холодной снежной зимой. Высокий снежный покров защищает почву от глубокого промерзания. Сильные ветры здесь наблюдаются реже, чем на остальной территории Тюменской области.

Работы проводятся на территории ЗАО «Антипинский НПЗ». Площадка проводимых работ представляет собой застроенную территорию действующего промышленного предприятия.

1.1.2 Природные и климатические условия в месте расположения объекта

Район строительства характеризуется следующими климатическими данными:

Инженерно-геологические изыскания на площадке строительства проводились в августе-сентябре 2007 года ОАО «Нефтехимпроект».

По данным инженерно-геологических изысканий сводный геологический разрез участка представлен следующими слоями:

ИГЭ № 1 Насыпной грунт, состоит из песка, пылеватого, маловлажного светло-коричневого цвета; вблизи строящихся зданий и сооружений с включением строительного мусора; мощностью от 0.0 до 2.2 м;

ИГЭ № 2 Супесь, светло-коричневая, твердая, плотная, легкая, песчанистая, с линзами и промазками пылеватого, маловлажного песка; мощностью от 0.0 до 3.2 м;

ИГЭ № 3 Супесь светло-коричневая, пластичная, легкая, песчанистая, с маломощными линзами пылеватого влажного песка; мощностью от 1.3 до 9.1 м;

ИГЭ № 4 Песок, светло-коричневый, светло-желтый, пылеватый, маловлажный; мощностью от 0.0 до 3.2 м;

ИГЭ № 5 Песок, светло-коричневый, пылеватый, влажный, с маломощными линзами пластичной супеси; мощностью от 0.0 до 0.8 м;

ИГЭ № 6 Суглинок, светло-коричневый, коричневый, твердый, плотный, песчанистый, с маломощными линзами пылеватого, маловлажного песка; мощностью от 2.2 до 6.7 м;

Работы по строительству должна осуществлять специализированная подрядная организация, имеющая опыт выполнения подобных работ и лицензию Ростехнадзора России на право выполнения этих работ, а также для монтажа систем пожаротушения, соответствующую лицензию.

К руководству работ допускаются инженерно-технические работники, прошедшие аттестацию на знание «Правил устройства вертикальных цилиндрических стальных резервуара для нефти и нефтепродуктов» [1] в соответствии с положением о порядке подготовки и аттестации работников организаций, эксплуатирующих опасные производственные объекты, подконтрольные Ростехнадзору «России».

Руководство сварочными работами и работами по контролю качества сварных соединений должно возлагаться на специалистов, имеющих специальное образование и прошедших аттестацию на знание «Правил устройства вертикальных цилиндрических стальных резервуара для нефти и нефтепродуктов» [1] и «Правил аттестации сварщиков и специалистов сварочного производства», утвержденных Ростехнадзором России.

К сварочным работам допускаются сварщики, аттестованные в соответствии с действующими «Правилами аттестации сварщиков и специалистов сварочного производства»[2].

Технология производства работ определяется проектом производства работ. Проект производства работ утверждается Заказчиком и согласовывается заинтересованными организациями в соответствии со [3] «Строительные нормы и правила. Организация строительного производства».

Для обеспечения безопасности и качества работы рекомендуется выполнение следующих мероприятий:

-преимущественное использование элементов конструкций резервуара, трубных узлов заводского и базового изготовления;

-использование машин и механизмов с наименьшим удельным давлением ходовой части на грунт;

-применение инвентарных временных вспомогательных сборочных приспособлений минимальным использованием сварки при их установке;

Использование сварочных выпрямителей, электрифицированного монтажного оборудования;

-применение безогневых способов резки труб на местах подключения к существующим трубопроводам.

СМР должны производиться в строгом соответствии с требованиями рабочего проекта, проекта производства работ, правила устройства вертикальных цилиндрических стальных резервуара для нефти и нефтепродуктов [1], нормативно-технической документации.

В процессе подготовки к производству работ выполняются следующие мероприятия:

-организация связи между подрядчиком и ЗАО «Антипинский НПЗ» на время проведения строительно-монтажных работ;

-комплектация оборудованием и материалами согласно рабочего проекта и проекта производства работ;

-организация устройства временных бытовых и производственных помещений (мест для переодевания и кратковременного внутрисменного отдыха рабочих, хранения оборудования, материалов и инструмента), питания персонала;

-обеспечение персонала оснасткой, инструментом, вспомогательными материалами, согласно проекта производства работ;

-сварщики и специалисты должны быть аттестованы до начала производства работ;

-устройство освещения зоны производства работ и внутренней поверхности резервуара.

-произвести устройство не менее двух временных въездов на монтажную площадку;

-подготовить площадки вокруг основания резервуара для работы кранов и других механизмов в соответствии с требованиями по монтажу конструкций резервуара;

-грунтовые площадки в местах работы крана при подъеме листового металла и других конструкций резервуара должны быть уплотнены до состояния, соответствующего требованиям технических характеристик применяемых кранов;

-обеспечить отвод поверхностных ливневых вод из зоны монтажной площадки;

-оградить и обозначить зону монтажа предупредительными знаками согласно «Ограждения инвентарные строительных площадок и участков производства строительно-монтажных работ» [4];

Перед началом монтажа уточнить расположение подземных коммуникаций, при необходимости уложить над ними дорожные плиты по слою из песчано-гравийной смеси в местах движения транспорта и по осям движения монтажных кранов.

Для монтажа конструкций резервуара приняты автомобильный кран КС3579, МКГ -25 и KATO NK750.

Приобъектный склад резервуарных и других конструкций располагают на спланированной площадке, где погрузо-разгрузочные работы выполняет кран КС3579. Грузовысотные характеристики крана кс 3579 можно посмотреть на Рис. 1.1. На площадке складирования конструкций выполняется также подготовка отдельных элементов конструкций к монтажу.

Все работы по монтажу конструкций необходимо выполнять в строгом соответствии с рабочим проектом и проектом производства работ при соблюдении требований по монтажу [1], [5] и безопасности [6] и [7].

Бытовое и медицинское обслуживание работающих людей предусматривается в существующем административно-бытовом корпусе и в вновь проектируемом лабораторном корпусе № 2.

Состав бытовых помещений принят на основании численности работающих (общей и в максимальную смену) и в соответствии с требованиями норм [8].

Питание работающих предусматривается в столовой, расположенной в существующем административно-бытовом корпусе.

Для медицинского обслуживания в административно-бытовом корпусе предусматривается медпункт.

При проведении работ в охранной зоне действующих коммуникаций необходимо соблюдать требования безопасности, изложенные в следующих документах:

– Правила охраны электрических сетей напряжением свыше 1000 вольт;

– Инструкция по производству строительных работ в охранных зонах магистральных трубопроводов Министерства нефтяной промышленности [9].

Перед началом работ необходимо получить письменное разрешение эксплуатирующей организации ЗАО «Антипинский НПЗ» на производство работ в охранной зоне действующих коммуникаций. Производство работ без разрешения или по разрешению, срок действия которого истек, запрещается.

До начала работ необходимо вызвать представителя эксплуатирующей организации НПЗ для установления и обозначения точного местонахождения и фактической глубины заложения действующих коммуникаций, определения их технического состояния, а также взаиморасположения действующих коммуникаций с новым запроектированным трубопроводом, сооружением.

Оси действующих коммуникаций в границах зоны производства работ должны быть закреплены знаками высотой 1,5-2,0 м, с указанием фактической глубины заложения.

До обозначения осей коммуникаций знаками безопасности, производство работ не допускается.

По результатам проведенной работы по уточнению местоположения действующих коммуникаций и их сооружений составляется акт с участием представителей генподрядной и эксплуатирующей организации. К акту прилагается ситуационный план (схема) участка с указанием местоположения, диаметра и глубины заложения действующих коммуникаций и их сооружений, а также их необходимые характеристики, привязки коммуникаций, сооружений, вырытых шурфов и установленных закрепительных знаков, а также стадий работ, на каких должен присутствовать представитель эксплуатирующей организации. В ситуационном плане (схеме) должны быть четко указаны расстояния между действующими и строящимися коммуникациями. После подписания акта ответственность за сохранение коммуникаций и предупреждающих знаков при проведении работ несет организация, выполняющая работы.

Перед началом работ приказом по подрядной организации из числа инженерно-технических работников должно быть назначено лицо, ответственное за производство работ, под постоянным руководством которого в охранной зоне действующих коммуникаций должны выполняться все виды работ.

Весь персонал, занятый в работах в охранной зоне действующих коммуникаций, должен пройти дополнительное обучение по безопасным методам труда, инструктаж по последовательности безопасного выполнения технологических операций и проверку знаний независимо от сроков предыдущего обучения. Обучение, инструктаж и проверка знаний по промышленной безопасности должны быть оформлены документально (журналы инструктажа, протоколы по проверке знаний, удостоверения и т. д.). Персонал, не прошедший обучения, инструктажа и проверки знаний по охране труда, к работе в охранной зоне не допускается.

Кроме этого, всем рабочим следует выдать на руки производственные инструкции, которые должны быть изучены и строго выполняться, при производстве работ, всех работающих необходимо также ознакомить с местонахождением действующих коммуникаций и их сооружений, с их обозначением на местности и с проектом производства работ.

Перед началом работ на действующем объекте на бригаду выдается наряд-допуск. Наряд-допуск выдается также машинистам бульдозеров, экскаваторов, трубоукладчиков, тракторов, водителям автомашин и машинистам всех других механизмов, применяемых в охранной зоне действующих коммуникаций.

Объём и содержание подготовительных работ, последовательность их выполнения, меры безопасности при выполнении огневых работ, порядок проведения анализа воздуха, средства защиты, а также ответственные лица за подготовку и проведение огневых работ определяются совместным приказом подрядной организацией и НПЗ.

Наряд-допуск составляется в двух экземплярах и передается ответственному за подготовку и проведение работ для выполнения намеченных мероприятий.

Наряд-допуск согласовывается с пожарной охраной объекта в части обеспечения мер пожарной безопасности и наличия на месте проведения огневых работ первичных средств пожаротушения.

Исполнители приступают к проведению работ только при наличии наряд-допуска, после получения указания ответственного лица за проведение работ. При подготовке к огневым работам ответственные по совместному приказу за подготовку и проведение этих работ определяют опасную зону, границы которой чётко обозначаются предупреждающими и запрещающими знаками и надписями.

Площадки металлоконструкций, конструктивные элементы зданий, которые находятся в зоне проведения огневых работ, должны быть очищены от пожаро-взрывоопасных продуктов. Сливные воронки, выходы из лотков и другие устройства, связанные с канализацией, в которых могут быть горючие газы и пары, должны быть перекрыты.

Место проведения огневых работ должно быть очищено от горючих веществ и материалов в зависимости от высоты расположения точки сварки (резки). Сгораемые настилы полов, конструкции из горючих материалов, должны быть защищены от попадания на них искр экранами, асбестовым полотном, металлическими листами, пенами или другими негорючими материалами, а при необходимости политы водой.

Места проведения огневых работ должны быть обеспечены необходимыми первичными средствами пожаротушения. Перед началом производства огневых работ, после перерывов в работе и во время проведения работ не реже одного раза в час производить замеры загазованности. Места отбора проб, проведения анализа газо-воздушной среды определены лицом, выдающим наряд-допуск. Концентрация паров не должна превышать ПДК (300 мг/м3).

Проезд строительной техники и автотранспорта над действующими технологическими трубопроводами и коммуникациями допускается только по специально оборудованным переездам в местах, согласованных с эксплуатирующей организацией. На участках, где действующие коммуникации заглублены менее 0,8 м, должны быть дополнительно установлены знаки с надписями, предупреждающими об особой опасности.

Над кабелями выполняется подсыпка щебня шириной 6 м. При этом общая толщина слоя над кабелем должна быть не менее 0,9 м. Проезд техники и машин в необорудованных переездами местах запрещается.

При пересечениях с подземными коммуникациями земляные работы следует производить только вручную в присутствии представителей эксплуатирующих организаций. Разрабатывать грунт механизмами на расстоянии ближе 2 м от трубопроводов и кабелей запрещается.

Для выполнения земляных работ ответственный за проведение работ, обязан показать машинисту бульдозера или экскаватора обозначенные вешками границы работ механизма и расположение действующих трубопроводов.

При работе вблизи воздушных электрических линий машинисты строительных машин должны следить за тем, чтобы из-за неровности местности не произошло резкого наклона рабочего органа машин в сторону проводов воздушных линий, и их опор.

Не допускается работа грузоподъемных машин вблизи воздушных линий при ветре, вызывающем отклонение на опасное расстояние свободных (без груза) тросов и канатов.

Не допускается пребывание на месте работы в охранной зоне людей, не имеющих прямого отношения к проводимой работе.

Необходимым условием начала строительных работ является наличие зарегистрированного в территориальном органе Ростехнадзора проекта.

Строительные работы на объекте должны вестись подрядчиком, имеющим соответствующую лицензию, выданную Госстроем России.

Подрядная организация составляет, и не менее чем за 10 дней до начала работ, направляет на согласование эксплуатирующей организации:

– приказ о назначении ответственных лиц за организацию и безопасное производство работ;

– документы, подтверждающие квалификацию инженерно-технического персонала и рабочих;

– документы подтверждающие исправность применяемых при работе машин и механизмов и наличие их технического освидетельствования.

ЗАО «Антипинский НПЗ» за 5 дней до начала строительных работ обязано уточнить и обозначить ось прохождения, фактическую глубину заложения подземных коммуникаций, зданий и сооружений и по результатам составляет акт закрепления и акт передачи площадки и передает их подрядчику.

-ведомость глубины заложения действующего трубопровода, его сооружений;

-необходимые характеристики, привязки трубопроводов, сооружений, коммуникаций, вырытых шурфов и установленных закрепительных знаков;

ЗАО «Антипинский НПЗ» совместно с представителями подрядчика должны оформить акт-допуск по форме стандарта [6] (приложение 3). В акте-допуске должны быть указаны мероприятия по охране труда, промышленной и пожарной безопасности, обеспечивающие безопасность проведения работ.

Ответственность за соблюдение мероприятий, предусмотренных актом – допуском, несет подрядная организация.

При наличии согласованного проекта производства работ, оформленных акта закрепления площадки, акта передачи площадки и акта-допуска. ЗАО «Антипинский НПЗ» оформляет «Разрешение на производство работ в охранной зоне нефтепровода».

После передачи объекта подрядчику ответственность несет подрядчик.

-маршруты движения и места переезда техники через действующий нефтепровод, оборудование переездов;

-меры, предупреждающие просадку трубопровода и грунта при его разработке в непосредственной близости от действующего трубопровода;

Разрешение на производство работ оформляется в двух экземплярах и утверждается главным инженером ЗАО «Антипинский НПЗ». Один экземпляр разрешения хранится в ЗАО «Антипинский НПЗ», другой передается подрядчику.

ЗАО «Антипинский НПЗ», перед началом производства работ обязано назначить приказом и обеспечить своевременную явку к месту работ руководителя или специалиста, ответственного за подготовительные работы и надзор за производством работ. Ответственность за соблюдение мер безопасности и сохранность оборудования на территории, переданной для строительных работ, несет руководитель подрядчика.

Все работники подрядчика (руководители, специалисты, рабочие), допускаемые к работам должны пройти вводный инструктаж по охране труда, пожарной безопасности и первичный инструктаж по обеспечению безопасности производства работ на объекте ЗАО «Антипинский НПЗ».

После оформления всех разрешительных документов необходимо оформить «Ордер на право производство работ в охранной зоне инженерных коммуникаций», в котором за подписями владельцев земли и инженерных коммуникаций удостоверяется выполнение всех необходимых мероприятий по обеспечению безопасности производства работ.

Ордер оформляется в двух экземплярах. По одному экземпляру хранятся у производителя работ и в ЗАО «Антипинский НПЗ». Срок хранения ордера 6 месяцев.

При привлечении сторонней подрядной организации к проведению огневых, газоопасных и других работ повышенной опасности:

– издается совместный приказ ЗАО «Антипинский НПЗ» и подрядной организации, в котором назначаются руководящие работники и ИТР эксплуатирующей организации обязанные утверждать наряды-допуски, ответственные за организацию и безопасное производство работ, обязанные выдавать наряды-допуски и допускать к работам, ответственные за подготовку работ, а также ИТР подрядной организации, ответственные за проведение работ и лица, обязанные проводить анализ воздушной среды;

– выдавать наряд-допуск, проводить подготовку объекта к проведению работ и допускать к работам обязан начальник структурного подразделения или лицо, его замещающее;

– ИТР подрядной организации, ответственные за проведение работ по наряду допуску, должны пройти проверку знаний правил и норм безопасности в комиссии филиала с участием представителя Ростехнадзора и выдачей протокола.

Эта обязанность подрядчика должна быть включена в особые условия договора подряда.

Запрещается назначение лица, ответственного за подготовку к работам из числа ИТР другого структурного подразделения или подрядной организации.

При нарушении подрядчиком мероприятий, указанных в разрешении на производство работ, наряде-допуске, представитель ЗАО «Антипинский НПЗ» должен немедленно остановить работы.

При возникновении в процессе выполнения работ опасных или вредных производственных факторов, не предусмотренных нарядом-допуском, или изменении условий производства работ подрядчик или представитель ЗАО «Антипинский НПЗ» должны остановить работы и аннулировать наряд-допуск.

Работы могут быть возобновлены только после устранения причин и оформления нового наряда-допуска в установленном порядке.

Проектные решения по установке атмосферной разгонки нефти ЭЛОУ-АТ-2 разработаны субподрядной организацией ЗАО «ИПН» г. Москва. Исходные данные для проектирования технологического процесса атмосферной разгонки нефти разработаны фирмой «КОХ-ГЛИТЧ» по прямому договору с Заказчиком.

Состав и основные параметры технологических сооружений комплекса объектов общезаводского хозяйства (резервуарные парки, насосные, эстакады налива нефтепродуктов) предусмотренные настоящим проектом, рассчитаны и приняты на основании действующих норм технологического проектирования и приведены на принципиальных технологических схемах.

Технологическая схема предусматривает выполнение следующих технологических операций:

-приготовление различных нефтепродуктов методом смешения в потоке с применением системы автоматизированного управления;

-автоматизированный налив нефти и нефтепродуктов в ж. д. цистерны с помощью грузовых насосов;

-внутрипарковая перекачка в пределах группы резервуаров, занятых одним типом продукта;

Для надёжного выполнения технологических операций проектом предусмотрена установка резервного оборудования.

Объемно-планировочные и конструктивные строительные решения зданий и сооружений разработаны в соответствии с требованиями

Блокировка производственных и вспомогательных зданий и сооружений выполнена с учетом требований технологии производства, санитарно-гигиенических и противопожарных норм, а также в увязке с построенными сооружениями по ранее выданному проекту по первому пусковому комплексу.

Основное технологическое оборудование располагается на открытых площадках, имеющих твердое покрытие с ограждением бортиком из бордюрного камня или бетонных блоков с уклоном покрытия площадок к трапам. Размещение оборудования, для которого необходима положительная температура и защита от атмосферных воздействий, предусмотрено в зданиях. Технологические насосные располагаются под навесами.

-капитальные, с кирпичными несущими стенами и железобетонными конструкциями;

-легкие, с несущим металлическим каркасом арочного типа и ограждающими конструкциями «сэндвич».

Фундаменты под здания и оборудование приняты свайными с монолитными ж. б. ростверками или со стальными оголовками, из буронабивных свай (вблизи существующих сооружений) и из сборных бетонных блоков по монолитной ж. б. плите.

-на естественном основании с устройством монолитного ж. б. кольца под стенку резервуара на песчаной и грунтовой подушках. Высота подушек принята в соответствии с характеристикой и мощностью грунтов для каждого резервуара;

-на свайном основании с укладкой сборных ж. б. плит по металлическим ростверкам из прокатных профилей, установленных на стальные оголовки свай. Высота фундаментов принята не менее 1.5 м от уровня земли для обеспечения естественного проветривания.

Существующие железнодорожные наливные эстакады подлежат реконструкции:

-односторонняя ж. д. эстакада налива светлых нефтепродуктов удлиняется и расширяется в связи с устройством второго наливного фронта. Для эвакуации через эстакаду предусматривается переходной мост;

-для эстакады налива нефти и темных нефтепродуктов предусматривается устройство дополнительных фундаментов под оборудование и креплений для трубопроводов.

Площадки обслуживания ж. д. эстакад приняты из стальных прокатных профилей и элементов по серии 1.450.3-7.94 на свайных фундаментах. Несущие конструкции оштукатуриваются по сетке для обеспечения требуемой степени огнестойкости по аналогии с ранее выпущенным проектом.

Проектом предусматривается расширение ряда существующих зданий и сооружений:

Реконструкция существующих зданий и сооружений предусматривается по следующим позициям:

Для сооружения инженерных сетей принята совмещенная надземная прокладка трубопроводов и кабельных трасс по отдельным несгораемым опорам и стойкам. Стойки и траверсы приняты из стальных прокатных профилей. Фундаменты приняты свайными с металлическими оголовками из труб. Над узлами задвижек проектом предусматривается устройство навесов с грузоподъемным оборудованием.

Разработанные проектом здания и сооружения содержат полный комплекс мероприятий по взрывопожарной безопасности:

-в принятых проектом решениях обеспечивается необходимая степень огнестойкости зданий;

-во всех зданиях и сооружениях предусматриваются эвакуационные выходы с учетом количества эвакуируемых людей и требованиями норм;

-в помещениях с категорией «А» обеспечена нормативная площадь легко сбрасываемых ограждающих конструкций – окон и легкой сбрасываемой кровли;

-опоры под емкости и технологические трубопроводы предусматриваются из несгораемых материалов;

-для конструкций технологических эстакад предусматривается огнезащита металлоконструкций: штукатурка цементным раствором по сетке или окраска огнезащитной краской «Силотерм ЭП-6»;

-ограждение каре резервуаров выполняется из сборных бетонных блоков высотой по расчету на розлив;

-несущие конструкции площадок обслуживания эстакад налива оштукатуриваются по сетке для обеспечения требуемого предела огнестойкости;

-в соответствии с требованиями норм и правил территория, занятая наливной ж. д. эстакадой, ограждается бортиком и имеет твердое бетонное покрытие, усиленное в зоне расположения ж. д. путей;

-навесы открытых насосных (категории А) ограждаются по периметру стальным профилированным настилом, площадь которого составляет не более 50% площади боковой поверхности навеса из условия обеспечения естественной вентиляции.

-технологические площадки имеют твердое покрытие – бетонное или железобетонное (в отдельных случаях с устройством антикоррозийной защиты);

-по периметру площадки ограждаются бордюрным камнем или бетонными блоками (для предотвращения попадания в грунт нефтепродуктов при их разливе в аварийных ситуациях);

-помещения насосных имеют плинтус и бортик в дверных проёмах с устройством пандусов.

-марка стали для металлоконструкций принимается в зависимости от расчетной температуры наружного воздуха в соответствии с таблицей 50* [10];

-металлоконструкции имеют антикоррозийное покрытие из лакокрасочных материалов;

-для защиты бетона от воздействия щёлочи (NaОН с концентрацией 42%) в проекте предусматривается покрытие «Полиплан 108», выпускаемое ЗАО «НМГ-Поликом» г. Обнинск.

Для приёма, хранения и отгрузки нефти и нефтепродуктов проектом предусматривается расширение товарно-сырьевого склада. Объёмы хранения нефти и нефтепродуктов на складе определены исходя из требований норм технологического проектирования.

Номенклатура используемых резервуаров (РВС-11000, РВС-7000, РВС-6000) определена из условия размещения максимально возможных объёмов хранения на ограниченной территории Антипинского НПЗ.

Каждый резервуар оснащен оборудованием, необходимым для его эксплуатации, в соответствии с правилами [1] в составе:

-люками-лазами монтажными в стенке резервуаров и световыми на крыше с шарнирно-поворотными устройствами;

-люками на крыше резервуара для установки контрольно-измерительных приборов.

Резервуары для мазута теплоизолируются и оборудуются греющими регистрами, которые устанавливаются на днище резервуара и мешалками (по три мешалки на резервуар).

Все резервуары оборудованы приборами для измерения температуры продукта, контроля уровня, сигнализаторами минимального, максимального уровня.

По максимальному аварийному уровню продукта отключаются подающие продукты насосы в резервуар. По минимальному уровню – происходит отключение насосов подачи продуктов на ж. д.эстакады.

Дренаж подтоварной воды производится в систему производственно-дождевой канализации.

Каждая группа резервуаров окружена защитным бетонным ограждением.

Площадка внутри ограждения имеет водонепроницаемое основание и регулируемый выпуск атмосферных осадков в производственно-дождевую канализацию.

Коренные ручные задвижки устанавливаются у резервуаров и находятся в открытом положении. Управляющие электроприводные задвижки устанавливаются за обвалованием с дистанционным управлением и автоматическим закрытием при максимальном уровне в резервуарах соответствующих задвижек.

Трубопроводная обвязка резервуаров обеспечивает возможность перекачки продуктов из одного резервуара в другой, в случае аварийной ситуации.

По площадкам предусматривается разводка пара и азота с целью пропарки и продувки аппаратов и трубопроводов в ремонтный период.

Промывка резервуаров в ремонтный период будет осуществляться по договору со специализированными организациями с использованием безотходной технологии на основе технического моющего средства компании «Чистый Мир М». Деятельность компании по реализации программы очистка резервуаров, грунтов и других объектов от углеводородных нефтяных соединений и отходов» регламентируется лицензией министерства природных ресурсов РФ № М02/0006/л от 24.05.2002г.

Характеристики дыхательных клапанов представлены в Приложении Таблица 2.

На монтажную площадку с завода – изготовителя металлоконструкции резервуара поставляют в следующем виде:

-днище – выполнено в виде рулонируемой центральной части и листовых кольцевых окраек;

– стенка – состоит из двух полотнищ, изготовленных на заводе и свернутого в рулон для транспортировки;

– кольцевая лестница площадки обслуживания и ограждения – транспортабельными деталями;

– люки, патрубки – в комплекте с ответными фланцами (заглушками), усиливающими листами, крепежными изделиями (укомплектованными метизами).

2.2.2 Требования к квалификации сварщиков и руководителей сварочного производства

Руководство сварочными работами и работами по контролю качества сварных соединений должно возлагаться на специалиста, имеющего специальное образование и в обязательном порядке прошедшего аттестацию, с обязательной записью в аттестационном удостоверении на знание [1], [12], утвержденных Ростехнадзором РФ.

Руководитель сварочными работами назначается совместным приказом по монтажной организации (предприятию) и ОАО «Антипинский НПЗ». Копияприказа должна быть приложена к журналу контроля качества монтажносварочных работ (исполнительной документации на изготовление резервуарных конструкций).

Перед началом монтажно-сварочных работ руководитель сварочных работ обязан:

-укомплектовать объект в соответствии с ППР сварочным и вспомогательным оборудованием, инструментом и сварочными материалами и проверить их качество;

-отобрать для сварки резервуара сварщиков, имеющих допуск к сварке ответственных конструкций, провести их инструктаж и организовать сварку каждым сварщиком контрольных образцом соединений, которые им предстоит выполнять.

Окончательное решение о допуске сварщиков к сварке соответствующих типов сварных соединений на резервуаре принимается руководителем сварочных работ на основании результатов контроля образцов, выполненных каждым сварщиком.

Допуск к сварке резервуара на каждого сварщика должен быть оформлен соответствующей записью в журнале контроля монтажно-сварочных работ с указанием сварных швов, к выполнению которых он допущен.

Сварщики, допускающие нарушения технологии производства сварочных работ, а также низкое качество сварных соединений отстраняются от работы.

Сварные соединения, выполненные этими сварщиками, подвергаются контролю физическими методами по всей длине.

По решению руководителя сварочных работ сварщик может быть переведен на сварку соединений, требующих меньшей квалификации или направлен на прохождение внеочередной аттестации с целью дополнительного обучения и сдачи общего специального и практического экзаменов для получения допуска к выполнению сварочным работам, указанных в его аттестационном удостоверении.

Сварщики, допущенные к механизированной электродуговой сварке, должны сварить по два контрольных образца размером 250x600x15, 250x600x13, 250x600x9 со скосами кромок, тождественными тем, на которых будет выполняться сварка стенки на монтаже. Материал для контрольных образцов должен соответствовать маркам стали 09Г2С-12 толщиной 15, 13, 9 мм. Образцы свариваются механизированной электродуговой сваркой в вертикальном и горизонтальном положениях на вертикальной плоскости. Механические свойства сварных соединений должны быть не ниже механических свойств свариваемого металла.

Разрешение на сварку контрольного соединения выдает член аттестационной комиссии после приемки качества его сборки, о чем делается отметки в «Журнале учета работ при аттестации сварщиков».

Контроль качества контрольных сварных соединений должен выполняться контролерами (дефектоскопистами, специалистами, непосредственно выполняющими контроль, лаборантами), аттестованными в установленном порядке на выполнение контроля конкретными методами.

Визуальный контроль выполняют в соответствии с требованиями нормативных документов и методиками контроля, согласованными с Ростехнадзором России.

К радиографическому, а также контролю разрушающими методами (испытание на излом, испытание на изгиб) контрольных соединений разрешается приступать при условии удовлетворительных результатов визуального и измерительного контроля.

Из сваренных контрольных образцов после просвечивания изготовить и испытать образцы для механических испытаний по стандарту [14].

При изготовлении образцов необходимо принимать меры, исключающие возможность изменения свойств металла в результате нагрева или наклепа, при механической обработке.

По результатам контроля каждым методом должно оформляться заключение (акт, протокол).

Оценку качества контрольных сварных соединений выполняют по нормам, установленным действующими нормативными документами Ростехнадзора России и указанным в заявке на проведение аттестации.

Качество контрольных сварных соединений считают неудовлетворительным, если при контроле каким-либо методом будут выявлены недопустимые внутренние или наружные дефекты.

-механизированная сварка в среде защитного газа проволокой сплошного сечения марки OK Autorod-12.51 диаметром 1,2 мм для стали 09Г2С-12 и Ст3сп5.

Для прихваток и сварки вспомогательных конструкций и приспособлений:

– ручная электродуговая сварка покрытыми электродами типа Э50А для стали 09Г2С-12, типа Э42А диаметром 2,5 мм, 3,0 мм, 3,2 мм для стали СтЗсп5, аттестованные ВНИИСТом.

Сварка должна выполняться на режимах, отработанных при аттестации технологии сварки основных соединений конструкций резервуара и при сварке контрольных образцов.

2.2.4 Требования к подготовке, хранению и использованию сварочных материалов

Сварочные материалы должны хранится отдельно рассортированными по маркам, партиям и диаметрам в условиях, обеспечивающих температуру воздуха не ниже плюс 15 °С и влажности, не превышающей 50% в помещении, защищающем их от воздействия атмосферных осадков, почвенной влаги, коррозии, загрязнений и механических повреждений.

Сварочная проволока должна быть очищена от ржавчины и обезжирена от масел и других загрязнений и заправлена в кассеты полуавтоматов.

Все электроды, перед употреблением должны быть прокалены в печи. Температура прокалки 350-370°С в течение 1,5-2 часов с последующим размещением в термостатах.

Электроды из сушильного шкафа выдаются в количестве, необходимом не более чем для односменной работы.

Полученные электроды следует держать во влагозащищенном закрытом пенале. Электроды могут находиться на открытом воздухе не более 8 часов, после чего они должны быть повторно прокалены. Прокалка электродов допускается не более двух раз.

Сварочный флюс перед применением необходимо просушить при температуре 300 – 400 °С в течении 1,0-2,0 часов в количестве, необходимом для работы в одну смену. Прокаленный флюс хранить в сушильном шкафу или в герметичной таре.

2.2.5 Основные положения при сборке под сварку и сварке монтажных сварных соединений

До начала сварочных работ все соединения конструкции резервуар, должны быть проконтролированы и приняты под сварку по следующим конструктивным и технологическим критериям:

– соответствие металла требованиям проекта и заводской маркировки;

– соответствие собираемых элементов монтажной схеме, проектным размерам и геометрической форме;

– геометрические параметры кромок элементов, подготовленных под сварку (величина угла скоса кромок, зазор в стыке, величина притупления, смещение кромок) должны укладываться в поле допусков, предусмотренных проектом;

– поверхность кромок, а также прилегающая к ним зона шириной 20 мм с каждой стороны соединения должны быть зачищены от любых загрязнений, окалины, ржавчины до чистого металла;

– кромки свариваемых элементов должны быть закреплены с помощью сборочных приспособлений;

– прихватки, применяемые для сборки перед сваркой, должны быть удалены или после визуального контроля качества зашлифованы и переплавлены в процессе сварки.

Приемку соединений под сварку осуществляет руководитель сварочных работ. Обнаруженные отклонения должны быть устранены до начала сварки.

Сварку на монтаже следует выполнять в местном укрытии защищающем свариваемые поверхности конструкции от дождя, снега, ветра.

– Собранные стыки элементов, с соответствии с указаниями проекта необходимо прихватывать в нескольких местах. Прихватки на пересечении швов не допускаются;

– Прихваточные швы выполнять тем же способом и применять то же оборудование и материалы, что и для выполнения основных сварочных швов;

– К качеству прихваток предъявляют такие же требования, как и к сварному шву. Качество прихваток контролировать визуально. Возможно применение лупы с увеличением не более 10. Прихватки, имеющие дефекты, должны быть удалены механическим способом;

– Прихватку должен выполнять сварщик, допущенный к сварке данного шва;

– Прихватку необходимо выполнять с полным проваром, переваривать или удалять при наложении основного шва.

Начало и конец каждого последующего слоя сварочного шва должны быть смещены по отношению к предыдущему на 25-50 мм.

При многослойной сварке каждый предыдущий слой должен быть тщательно очищен от шлака и проверен внешним осмотром. Особенно тщательно осматривать кратеры и места обрыва дуги.

В процессе сварки необходимо обеспечить плавный переход от на плавленного металла к основному. Величина усиления стыковых швов не должна превышать требований госта [16]. В случае, если высота усиления сварных швов превышает допустимую, сварные швы следует зачистить шлифмашинкой до требуемых величин.

При наличии влаги на свариваемых кромках перед началом сварки их необходимо высушить при помощи газового пламени, температура металла не более 250 °С.

Сварку следует производить при стабильном режиме. Предельные отклонения заданных значений силы сварочного тока и напряжения дуги не должны превышать ± 5%.

Колебания напряжения питающей сети электрического тока, к которой подключено сварочное оборудование не должны превышать ± 5%.

Участки шва с порами, трещинами должны быть зашлифованы и заварены.

При двусторонней механизированной или ручной сварке соединений с полным проплавлением кромок необходимо перед выполнением шва с обратной стороны удалить его корень до чистого бездефектного металла.

Поверхность металла и выполненных сварных швов, после окончания сварки, необходимо очищать от шлака, брызг и наплывов (натеков) расплавленного металла.

Качество швов сварных соединений, крепления сборочных приспособлений, определяемое внешним осмотром, должно быть не ниже качества основных сварных соединений.

Сварочными работами должен руководить квалифицированный специалист по сварке, имеющий опыт сооружения резервуара полистовым методом.

Сварочный участок необходимо укомплектовать оборудованием, инструментом и материалами в соответствии с ведомостью сварочного оборудования.

-установить силовые пункты питания электроэнергией (электросборки) и проверить все сварочное оборудование. Питание сварочных машин осуществлять от отдельных фидеров;

– опробовать оборудование и сварочные материалы, подобрать режимы на образцах;

– оградить свариваемые поверхности конструкций и рабочее место сварщика от атмосферных осадков и ветра;

-проверить состояние изоляции сварочных кабелей и правильность присоединения их к клеммам источников постоянного тока;

-соединение кабелей, при наращивании, выполнять на соединительных муфтах;

– проверить арматуру газовых баллонов, рукава для кислорода, горючих газов, защитного газа, а также инструмент для газопламенной обработки.

Прораб (мастер), в соответствии с требованиями промышленной безопасности, должен проверить наличие и состояние лесов, подмостей, на рабочем месте сварщика должны быть созданы безопасные условия труда.

2.2.7 Рекомендации по сварочно-монтажным работам в условиях отрицательных температур

-При резке и обработке кромок неровности, шероховатости, заусенцы и завалы должны быть не более 0,5 мм;

-Исправлять кромки следует абразивным инструментом, при этом следы от обработки должны быть направлены вдоль кромки;

-При температуре воздуха минус 40 °С кислородную резку деталей из низколегированной стали, кромки которых подлежат в дальнейшем механической обработке, рекомен­дуется выполнять с подогревом до температуры 120-160 °С;

-При заготовке отдельных деталей резервуара в зимних условиях правка металла в холодном состоянии ударными инструментами, а также резка его ножницами при температуре ниже минус 25 °С запрещается.

При температуре окружающего воздуха ниже указанных в таблице 2.1 сварку металлоконструкций производить с предварительным, сопутствующим и последующим подогревом до температуры 120-160 °С.

Http://ek-b. ru/promyshlennost_proizvodstvo/diplomnaya_rabota_stroitelstvo. html

В настоящее время нельзя представить себе жизнь и деятельность современного человека без применения электричества. Основное достоинство электрической энергии — относительная простота производства, передачи, дробления, и преобразования.

В системе электроснабжения объектов можно выделить три вида электроустановок:

По производству электроэнергии — электрические станции; по передаче, преобразованию и распределению электроэнергии — электрические сети и подстанции;

По потреблению электроэнергии в производственных и бытовых нуждах — приемники электроэнергии.

Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и т. д.) с помощью электрических машин, называемых генераторами, преобразуется в электрическую энергию.

В зависимости от используемого вида первичной энергии все существующие станции разделяются на следующие основные группы: тепловые, гидравлические, атомные, ветряные, приливные и др.

Совокупность электроприёмников производственных установок цеха, корпуса, предприятия, присоединённых с помощью электрических сетей к общему пункту электропитания, называется электропотребителем.

Совокупность электрических станций, линий электропередачи подстанций тепловых сетей и приемников, объединенных общим непрерывным процессом выработки, преобразования, распределения тепловой электрической энергии, называется энергетической системой.

1) Напряжение сети. Сети могут быть напряжением до 1 кВ — низковольтными, или низкого напряжения (НН), и выше 1 кВ высоковольтными, или высокого напряжения.

Электрические сети выполняются в основном по системе трёхфазного переменного тока, что является наиболее целесообразным, поскольку при этом может производиться трансформация электроэнергии.

3) Назначение. По характеру потребителей и от назначения территории, на которой они находятся, различают: сети в городах, сети промышленных предприятий, сети электрического транспорта, сети в сельской местности.

Ремонтно-механический цех (РМЦ) предназначен для ремонта и настройки электромеханических приборов, выбывающих из строя.

Он является одним из цехов металлургического завода, выплавляющего и обрабатывающего металл. РМЦ имеет два участка, в которых установлено необходимое для ремонта оборудование: токарные, строгальные, фрезерные, сверлильные станки и др. В цехе предусмотрены помещения для трансформаторной подстанции (ТП), вентиляторной, инструментальной, складов, сварочных постов, администрации и пр.

РМЦ получает ЭНС от главной понизительной подстанции (ГПП). Расстояние от ГПП до цеховой ТП – 0,9 км, а от энергосистемы (ЭНС) до ГПП – 14 км. Напряжение на ГПП – 6 и 10 кВ.

Количество рабочих смен – 2. Потребители цеха имеют 2 и 3 категорию надежности ЭНС. Грунт в районе РМЦ – чернозем с температурой +20 С. Каркас

Мощность электропотребления указана для одного электроприемника.

Для распределения электрической энергии внутри цехов промышленных предприятий служат электрические сети напряжением до 1000В.

Схема внутрицеховой сети определяется технологическим процессом производства, планировкой помещений цеха, взаимным расположением ЭП, ТП и вводов питания, расчетной мощностью, требованиями бесперебойности электроснабжения, условиями окружающей среды, технико-экономическими соображениями.

Питание ЭП цеха обычно осуществляется от цеховой подстанции ТП или ТП соседнего цеха.

Питающие сети отходят от центрального распределительного щита цеховой ТП к силовым распределительным шкафах СП, к распределительным шинопроводам ШРА или к отдельным крупным ЭП. В некоторых случаях питающая сеть выполняется по схеме БТМ ("Блок – трансформатор – магистраль").

Распределительные сети – это сети, идущие от силовых распределительных шкафов или шинопроводов непосредственно к ЭП. При этом ЭП подсоединяется к распределительным устройствам отдельной линией. Допускается подсоединять одной линией до 3-4 ЭП мощностью до ЗкВ, соединенные в цепочку.

По своей структуре схемы могут быть радиальными, магистральными и смешанными.

Радиальные схемы с использованием СП применяются при наличии сосредоточенных нагрузок с неравномерным их расположением по площади цеха, а также во взрыво – и пожароопасных цехах, в цехах с химически активной и пыльной средой. Они обладают высокой надежностью и применяются для питания ЭП любых категорий. Сети выполняются кабелями или изолированными проводами.

Магистральные схемы целесообразно применять для питания нагрузок распределительных относительно равномерно по площади цеха, а также для питания групп ЭП принадлежащих одной технологической линии. Схемы выполняются шинопроводами или кабелями. При нормальной среде для построения магистральных сетей можно использовать комплексные шинопроводы.

Для питания ЭП проектируемого цеха применяем трехфазную четырехпроходную сеть напряжением 380/220В частоты 50Гц. Питание электрооборудования будет осуществляться от цеховой ТП. Т. к. потребители по надежности электроснабжения относятся к 2 и 3 категории, то на ТП устанавливаем 1 трансформатор и предусматриваем низковольтную резервную перемычку от ТП соседнего цеха.

Правильное определение ожидаемых (расчётных) электрических нагрузок (расчётных мощностей и токов) на всех участках СЭС является главным основополагающим этапом её проектирования. От этого расчёта зависят исходные данные для выбора всех элементов СЭС – денежные затраты на монтаж и эксплуатацию выбранного оборудования (ЭО).

Завышение ожидаемых нагрузок приводит к удорожанию строительства, перерасходу проводникового материала сетей, к неоправданному увеличению установленной мощности трансформаторов и другого ЭО.

Занижение – может привести к уменьшению пропускной способности электрических сетей, перегреву проводов, кабелей, трансформаторов, к лишним потерям мощности.

Для распределительных сетей расчётная мощность определяется по номинальной мощности (паспортной) присоединённых ЭП. При этом мощность ЭП работающих в повторно кратковременном режиме приводят к длительному режиму.

Для линий питающих узлы электроснабжения (распределительные силовые пункты, шинопроводы, цехи и предприятия в целом) расчёт ожидаемых нагрузок осуществляется специальным методом. Расчётная ожидаемая мощность узла всегда меньше суммы номинальных мощностей присоединенных ЭП из-за не одновременности их работы, случайным вероятным характером их включения и отключения, поэтому простое суммирование ЭП приводит к существенному завышению нагрузки по сравнению с ожидаемой. Основным методом расчёта нагрузки является метод упорядоченных диаграмм. Метод применим, когда известны номинальные данные всех ЭП и их размещение на плане цеха.

Порядок определения расчетных силовых нагрузок по методу упорядоченных диаграмм.

1. Все ЭП, присоединенные к данному узлу группируют по одинаковому технологическому процессу, но не по одинаковой мощности, при этом мощности ЭП, работающих в повторно-кратковременном режиме приводят к длительному режиму.

2. Для каждой группы определяют общую мощность, коэффициент использования, тригонометрические функции и по [2] с. 52, таблица 2.11.

3. Для каждой группы определяют сменную активную, реактивную по формулам

4. Для всего узла определяют, , среднее значение коэффициента использования для всего узла

5. Для узла определяют коэффициент сборки, где – номинальная мощность самого мощного ЭП, – номинальная мощность самого маломощного ЭП. m может быть больше, равен или меньше 3.

6. Для узла определяют эффективное число электроприемников – это условное число одинаковых по мощности и режиму работы ЭП, которые потребляли бы за смену такое же количество электроэнергии, как и реальные ЭП. Значение определяют по [2] с. 55, 56 формулы 2.35 – 2.42.

7. По значениям и определяют коэффициент максимума активной нагрузки с. 54, таблица 2.13.

9. Определяют максимальную расчетную реактивную мощность узла: , где – это коэффициент максимума реактивной мощности.

Находим активную сменную мощность группы одинаковых ЭП за наиболее загруженную смену:

Находим реактивную сменную мощность группы одинаковых ЭП за наиболее загруженную смену:

При расчете максимальной нагрузки выбираем условия расчета эффективного числа. Так, для СП-1 , эффективное число не определяется, а максимальная потребляемая активная мощность рассчитывается по коэффициенту загрузки. кВт.

Расчёт нагрузок по СП-2 – СП-7 аналогичен. Все результаты расчётов сведены в таблицу 2.

Http://baza-referat. ru/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%81%D0%BD%D0%B0%D0%B1%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B8_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BE%D0%B1%D0%BE%D1%80%D1%83%D0%B4%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE_%D1%86%D0%B5%D1%85%D0%B0

Поделиться ссылкой: